Distributed Computing and Intermediate Problems

Jukka Suomela

Related to...

Brandt et al.: "A lower bound for the distributed Lovász local lemma", STOC 2016

arxiv.org/abs/1511.00900

Big picture

- Tuomo presented details related to LLL in December
- Now: why does all this matter?

Big picture

• Our focus:

- distributed computing
- distributed time complexity
- Compare with:
 - Turing machines
 - classes P, NP-intermediate, NP-complete

Classic setting

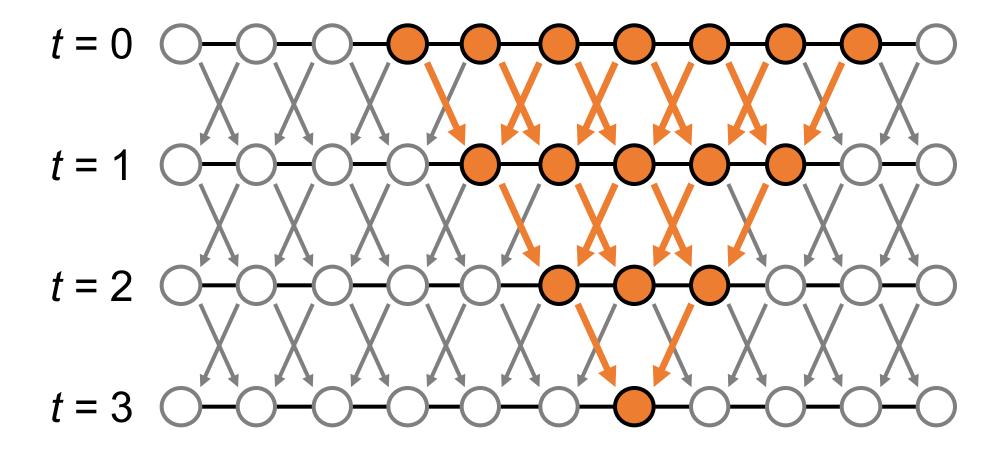
- Algorithm: Turing machine
- Input: string on a tape
- Output: string on a tape
- Time: elementary steps

Classic setting

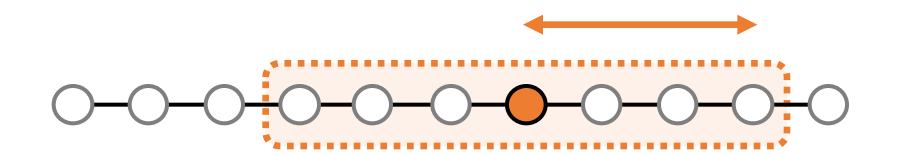
- P
 - lots of things: easy to compute
- NP-intermediate
 - some candidates: factoring, graph isomorphism
- NP-complete
 - lots of things: easy to check, hard to compute?

Computer network + message passing

- input: network topology + unique node identifiers
- output: local output for each computer
- e.g. LOCAL model
- Time step:
 - all computers in parallel: send + receive + compute



- Fast algorithm = localised algorithm
- Time = distance



- Time *O*(1) = "fast"
 - typically fairly trivial problems
- Time $\Theta(n) =$ "slow"
 - brute-force algorithms
 - everything is trivial

- Time *O*(1) = "fast"
 - typically fairly trivial problems
- Intermediate time complexity?
- Time $\Theta(n) =$ "slow"
 - brute-force algorithms
 - everything is trivial

- Fairly trivial to construct contrived problems of any time complexity *T*
 - cheat with a **promise on input**: "trees of diameter *T*"
 - cheat with problem definition:
 "detect if there are any red nodes within distance T"

- Fairly trivial to construct contrived problems of any time complexity *T*
- Cf. time hierarchy theorems
- Cf. class **EXP**
- What could be the analogue of NP?

Idea: easy to check

- LCL: locally checkable labelling
- Everything bounded:
 - O(1) bits of output / node
 - O(1) bits of input / node
 - maximum degree $\Delta = O(1)$

Idea: easy to check

- LCL: locally checkable labelling
- Everything bounded
- Correct solution can be locally verified:
 - check that radius-O(1) neighbourhoods of all nodes look good

Idea: easy to check

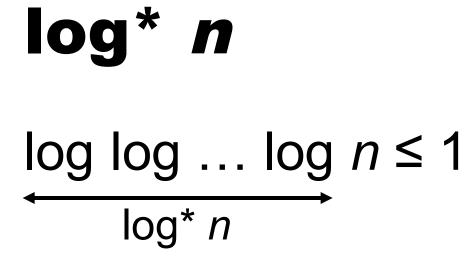
- These are locally checkable labellings:
 - vertex colouring with k colours, edge colouring ...
 - maximal independent set, minimal dominating set, maximal matching, perfect matching, SAT, ...
- These are not:
 - spanning trees, Eulerian cycles ...
 - maximum independent set, maximum matching ...

LCL problems

- Time O(1)
 - easy to compute
 - cf. **P**
- Time *Θ*(*n*)
 - easy to check, hard to compute
 - cf. **NP**

LCL problems

- Time O(1) a bit too strict!
 - easy to compute
 - cf. **P**
- Time *Θ*(*n*)
 - easy to check, hard to compute
 - cf. **NP**



$$\log^* 10^{10000} = 5$$

log* n

- Cole–Vishkin (1986) technique:
 - from x colours to O(log x) colours in one round
 - paths: compare my colour with my successor
 - (value, index) of the *first bit that differs*
- Unique identifiers: poly(n) colours
- After O(log* *n*) steps: **O(1) colours**

log* n

- Lots of LCL problems in time $\Theta(\log^* n)$
 - typically: problems that are easy to solve greedily

• Examples:

- vertex colouring with Δ +1 colours, edge colouring with 2 Δ -1 colours
- maximal independent set, maximal matching, minimal dominating set

LCL problems

- Time *O*(log* *n*)
 - easy to compute, cf. P
- Time Θ(n)
 - easy to check, hard to compute, cf. NP-complete

LCL problems

- Time *O*(log* *n*)
 - easy to compute, cf. P
- Intermediate problems?
 - cf. NP-intermediate?
- Time *Θ*(*n*)
 - easy to check, hard to compute, cf. NP-complete

- Try to construct one!
 - without resorting to a promise...
- Not so easy to cheat any more
- Perhaps everything is either strictly local or strictly global?
 - $O(\log^* n)$ or $\Theta(n)$, nothing else?

- First proper examples discovered this year!
- Sinkless orientation:
 - orient all edges so that all nodes have outdegree ≥ 1

- First proper examples discovered this year!
- Sinkless orientation:
 - orient all edges so that all nodes have outdegree ≥ 1
- 2-regular graphs: boring...
 - upper bound O(n), trivial
 - lower bound Ω(n), easy

- First proper examples discovered this year!
- Sinkless orientation:
 - orient all edges so that all nodes have outdegree ≥ 1
- 3-regular graphs: more interesting!
 - upper bound O(log n), e.g. using LLL
 - lower bound Ω(log log n)

- One problem found, more with reductions!
- Natural example:
 d-colouring in d-regular graphs, *d* ≥ 3
 - at least as hard as sinkless orientation, $\Omega(\log \log n)$
 - upper bounds from prior work, e.g. polylog(n)
 - (recall Brook's theorem)

	2-regular graphs	3-regular graphs
	graphs	graphs
2-colouring	$\Theta(n)$	$\Theta(n)$
3-colouring	O(log* n)	intermediate
4-colouring		O(log* n)