Large Cuts with Local Algorithms

Jukka Suomela

research.ics.aalto.fi/da

Helsinki Algorithms Seminar 28 March 2014

Weight w(c) = fraction of cut edges O-O

 $0 \le w(c) \le 1$

Weight w(c) = fraction of cut edges O-O

Uniform random cut: E[w(c)] = 1/2

Can we do better than 1/2?

Larger than 1/2?

- Not much larger in general graphs
 - complete graph: $w(c) \le 1/2 + O(1/n)$
 - triangles bad
 - high degrees bad

Focus: d-regular triangle-free graphs

Cuts in *d*-regular triangle-free graphs

- Shearer (1992): $w(c) \ge 1/2 + 0.177/\sqrt{d}$ $d = 4: w(c) \ge 0.594$
- Hirvonen, Rybicki, Schmid, S.: $w(c) \ge 1/2 + 0.281/\sqrt{d}$ $d = 4: w(c) \ge 0.641$
- Proof: simple randomised distributed algorithms!

General idea

- Pick a uniform random cut
- Fix it locally
- Each node only looks at:
 - its own colour
 - how many neighbours have the same colour

Only 2d+2 cases

Shearer's algorithm

we were lucky, do nothing looks bad, try again <u>once</u>

Shearer's algorithm

Shearer's algorithm

Better and simpler!

- Shearer: *randomised* fixing of random cuts
- New: deterministic fixing of random cuts
- There are only 2^{2d+2} possible algorithms!

$A: \{ \bigcirc 1 \dots d \bigcirc 1 \dots d \} \rightarrow \{ \bigcirc, \bigcirc \}$

Evaluation of algorithm candidates

- Fix an algorithm A
- Any *d*-regular triangle-free graph *G*, any edge *e* = {*u*, *v*} in *G*
- Pr[e is a cut edge] ?
 - independent of G and e, only depends on A

$\{u, v\}$ is a cut edge iff $A(3) \neq A(0)$

 $\{u, v\}$ is a cut edge iff $A(3) \neq A(2)$

Neighbourhood graph

neighbourhoods

Largest cut = optimal algorithm

neighbourhoods

output for each case

Small d: optimal algorithms

d = 6

Small d: optimal algorithms

τ > d/2

Does it make any sense??

we were lucky, do nothing looks bad, flip

More typical scenario

we were lucky, do nothing looks bad, flip

 $\tau = 0$ τ=1 τ=2 τ=4 **Τ=3** 0.500 0.359 0.641

τ=5

0.500

W(C) 0.56 0.54 0.52 0.50 0.48 0.46 0.44 10 20 30 0 40

threshold τ

Cuts in *d*-regular triangle-free graphs

- Shearer (1992): $w(c) \ge 1/2 + 0.177/\sqrt{d}$ $d = 4: w(c) \ge 0.594$
- Hirvonen, Rybicki, Schmid, S.: $w(c) \ge 1/2 + 0.281/\sqrt{d}$ $d = 4: w(c) \ge 0.641$
- Demo:

users.ics.aalto.fi/suomela/local-maxcut-demo