Tight local approximation results for max-min linear programs

Patrik Floréen, Marja Hassinen, Petteri Kaski, Jukka Suomela

HIIT,
University of Helsinki,
Finland
Algosensors
12 July 2008

Local algorithms

Local algorithm: output of a node is a function of input within its constant-radius neighbourhood

(Linial 1992; Naor and Stockmeyer 1995)

Local algorithms

Local algorithm: changes outside the local horizon of a node do not affect its output

(Linial 1992; Naor and Stockmeyer 1995)

Max-min linear program

Let $A \geq 0, c_{k} \geq 0$
Objective:

$$
\begin{aligned}
& \text { maximise } \min _{k \in K} c_{k}^{\top} x \\
& \text { subject to } \quad A x \leq 1 \text {, } \\
& x \geq 0
\end{aligned}
$$

Generalisation of packing LP:

$$
\begin{aligned}
\text { maximise } & c^{\top} x \\
\text { subject to } & A x
\end{aligned}
$$

Max-min linear program

Example: Data gathering in a sensor network

- circle = sensor
- square = relay
- edge = network connection

Max-min linear program

Example: Maximise the minimum amount of data gathered from each sensor
maximise $\min \{$

$$
\begin{aligned}
& x_{1}, x_{2}+x_{4} \\
& x_{3}+x_{5}+x_{7} \\
& x_{6}+x_{8}, x_{9}
\end{aligned}
$$

Max-min linear program

Example: Maximise the minimum amount of data gathered from each sensor; each relay has a limited battery capacity
maximise min $\{$

$$
\begin{aligned}
& x_{1}, x_{2}+x_{4}, \\
& x_{3}+x_{5}+x_{7}, \\
& x_{6}+x_{8}, x_{9}
\end{aligned}
$$

$$
\}
$$

subject to

$$
\begin{aligned}
& \frac{x_{1}+x_{2}+x_{3} \leq 1}{x_{4}+x_{5}+x_{6} \leq 1} \\
& x_{7}+x_{8}+x_{9} \leq 1 \\
& x_{1}, x_{2}, \ldots, x_{9} \geq 0
\end{aligned}
$$

Max-min linear program

Example: Maximise the minimum amount of data gathered from each sensor; each relay has a limited battery capacity

An optimal solution:

$$
\begin{aligned}
x_{1}=x_{5} & =x_{9}=3 / 5 \\
x_{2} & =x_{8}=2 / 5 \\
x_{4} & =x_{6}=1 / 5 \\
x_{3} & =x_{7}=0
\end{aligned}
$$

Max-min linear program

Communication graph: $\mathcal{G}=(V \cup I \cup K, E)$

$$
\begin{array}{ll}
\text { maximise } & \min \{ \\
& x_{1}, x_{2}+x_{4}, \\
& x_{3}+x_{5}+x_{7}, \\
& x_{6}+x_{8}, x_{9} \\
& \} \\
\text { subject to } & x_{1}+x_{2}+x_{3} \leq 1, \\
& x_{4}+x_{5}+x_{6} \leq 1, \\
& x_{7}+x_{8}+x_{9} \leq 1, \\
& x_{1}, x_{2}, \ldots, x_{9} \geq 0
\end{array}
$$

Max-min linear program

Communication graph: $\mathcal{G}=(V \cup I \cup K, E)$

$$
\begin{array}{cl}
\text { maximise } & \min \{ \\
& x_{1}, \underline{x_{2}+x_{4}} \\
& x_{3}+x_{5}+x_{7} \\
& x_{6}+x_{8}, x_{9} \\
\} & \\
\text { subject to } x_{1}+x_{2}+x_{3} \leq 1 \\
& x_{4}+x_{5}+x_{6} \leq 1 \\
& x_{7}+x_{8}+x_{9} \leq 1 \\
& x_{1}, x_{2}, \ldots, x_{9} \geq 0
\end{array}
$$

Max-min linear program

Communication graph: $\mathcal{G}=(V \cup I \cup K, E)$
maximise $\min \{$

Max-min linear program

Communication graph: $\mathcal{G}=(V \cup I \cup K, E)$

Key parameters:
$\Delta_{I}=$ max. degree of $i \in I$
$\Delta_{K}=$ max. degree of $k \in K$

Problem is bipartite if each $v \in V$ adjacent to exactly one $i \in I$ and exactly one $k \in K$

Old results

"Safe algorithm":
Node v chooses

$$
x_{v}=\min _{i: a_{i j}>0} \frac{1}{a_{i v}\left|\left\{u: a_{i u}>0\right\}\right|}
$$

(Papadimitriou and Yannakakis 1993)
Factor Δ_{l} approximation
Uses information only in radius 1 neighbourhood of v
A better approximation ratio with a larger radius?

New results: bipartite problems

The safe algorithm is factor Δ_{I} approximation

Theorem

For any $\epsilon>0$, there is a local algorithm for bipartite max-min LPs with approximation ratio $\Delta_{l}\left(1-1 / \Delta_{K}\right)+\epsilon$

Theorem

There is no local algorithm for bipartite max-min LPs with approximation ratio $\Delta_{l}\left(1-1 / \Delta_{K}\right)$

Degree of a constraint $i \in l$ is at most Δ_{I}
Degree of an objective $k \in K$ is at most Δ_{K}
Bipartite: each $v \in V$ adjacent to one $i \in I$ and one $k \in K$

New results: bounded growth

Assume bounded relative growth beyond radius R :

$$
\frac{|B(v, r+2)|}{|B(v, r)|} \leq 1+\delta \quad \text { for all } v \in V, r \geq R
$$

where $B(v, r)=$ agents in radius r neighbourhood of v
There is a local algorithm for max-min LPs with approximation ratio $1+2 \delta+o(\delta)$
(Floréen et al. 2008)

Theorem

There is no local algorithm for max-min LPs
with approximation ratio $1+\delta / 2$ (assuming $\Delta_{I} \geq 3, \Delta_{K} \geq 3,0.0<\delta<0.1$)

Inapproximability

Regular high-girth graph or regular tree?

Inapproximability

Locally indistinguishable

Inapproximability

Optimum $\leq 2 / 3$ vs. optimum ≥ 1

Inapproximability

Approx. ratio $\geq 1 /(2 / 3)=3(1-1 / 2)=\Delta_{l}\left(1-1 / \Delta_{K}\right)$

Approximability

Step 1: Unfold the graph into an infinite tree

Step 2: Regularise the tree: each constraint $i \in I$ has degree exactly $\Delta_{\text {I }}$, etc.

Step 3: Construct local subproblems, solve them optimally, take averages

Summary

Max-min linear programs: given $A, c_{k} \geq 0$,

$$
\begin{aligned}
& \text { maximise } \min _{k \in K} c_{k}^{\top} x \\
& \text { subject to } A x \leq \mathbf{1}, x \geq \mathbf{0}
\end{aligned}
$$

Local algorithms: output of a node is a function of input within its constant-radius neighbourhood

Results:

- Bipartite max-min LPs: tight upper and lower bound
- Bounded relative growth: near-tight lower bound
http://www.hiit.fi/ada/geru - jukka.suomela@cs.helsinki.fi

References

P. Floréen, P. Kaski, T. Musto, and J. Suomela (2008).

Approximating max-min linear programs with local algorithms.
Proc. IPDPS 2008. [DOI]
P. Floréen, M. Hassinen, P. Kaski, and J. Suomela (2008b).

Tight local approximation results for max-min linear programs.
Proc. Algosensors 2008.
N. Linial (1992). Locality in distributed graph algorithms.

SIAM Journal on Computing, 21(1):193-201. [DOI]
M. Naor and L. Stockmeyer (1995). What can be computed locally?

SIAM Journal on Computing, 24(6):1259-1277. [DOI]
C. H. Papadimitriou and M. Yannakakis (1993).

Linear programming without the matrix.
Proc. STOC 1993. [DOI]

