

Jukka Suomela Aalto University

Low-Degree Graphs, Sparse Matrices, and Low-Bandwidth Networks

Based on joint work with

- Keren Censor-Hillel
- Chetan Gupta
- Juho Hirvonen
- Petteri Kaski
- Janne H. Korhonen

- Christoph Lenzen
- Ami Paz
- Jan Studený
- Hossein Vahidi
- and many others...

- Fundamental computational primitive
- Core operation in **modern machine learning**, scientific computation ...
- Computationally expensive operation

- So important that there is even special hardware designed to **accelerate** and **parallelize** matrix multiplication!
 - Nvidia Tensor Core
 - Google Tensor Processing Unit
 - Intel AMX, Intel XMX ...

 Interesting "intermediate" problem for theory of distributed computing

Problems with simple linear-time centralized algorithms

MIS, $(\Delta + 1)$ -coloring, maximal matching ...

Problems with nontrivial computation, nontrivial input size

> matrix multiplication ...

Computationally hard problems

SAT, 3-coloring ...

- Interesting "intermediate" problem for theory of distributed computing
- Direct connections with graph problems

- Interesting "intermediate" problem for theory of distributed computing
- Direct connections with graph problems
- Natural parameterized family of problems:
 sparse matrix multiplication
 - possible to explore various *tradeoffs*
 - different *parameter regimes* \rightarrow different tools

- Interesting "intermediate" problem for theory of distributed computing
- Direct connections with graph problems
- Natural parameterized family of problems:
 sparse matrix multiplication
- Makes sense in virtually **any model** of parallel or distributed computing

Thought experiment

How do you multiply matrices with
 1,000,000 × 1,000,000 elements?

Thought experiment

- How do you multiply matrices with
 1,000,000 × 1,000,000 elements?
 - fits on a hard disk drive
 - naive sequential solution takes decades

Thought experiment

- How do you multiply matrices with
 1,000,000 × 1,000,000 elements?
 - fits on a hard disk drive
 - naive sequential solution takes decades
- What if you have 1,000,000 computers?

Convenient choice of parameters: multiply *n* × *n* matrices using *n* computers

- Convenient choice of parameters:
 multiply *n* × *n* matrices using *n* computers
- Don't take "computer" too literally:
 - in practice, one "computer" can be e.g. one CPU core + its local cache memory
 - one physical computer can simulate many virtual "computers"

Congested Clique

graph with *n* nodes

 $n \times n$ matrix

computer *i* knows column *i* (or row *i*)

Problem setting

- Input: n × n matrices A and B
 computer i knows column i of A and column i of B
- Output: n x n matrix X = AB
 computer i has to output column i of X
- *n* computers
- O(n log n) bits/computer/round

Problem setting

- Input: n × n matrices A and B
 computer i knows column i of A and column i of B
- Output: n x n matrix X = AB
 computer i has to output column i of X
- *n* computers
- O(n) things/computer/round

It decomposes!

Multiply matrices with **100 × 100 elements**

\approx

Multiply matrices with **10 × 10 blocks**, each block contains **10 × 10 elements**

- Look at **centralized** matrix multiplication algorithms
- See what **multiplication operations** they perform, distribute them
- Keep in mind that we can **decompose**

- What if our matrices consisted of *s* × *s* elements?
- Naive algorithm would need to calculate **s³** products of elements (and do some additions)
- If *n* = *s*³, each computer needs to calculate just
 one product of elements how convenient!

- What if our matrices consisted of s × s blocks?
- Naive algorithm would need to calculate s³ products of blocks (and do some additions)
- If *n* = *s*³, each computer needs to calculate just
 one product of *blocks* how convenient!

- What if our matrices consisted of
 s × s blocks, each with n/s × n/s elements?
- Naive algorithm would need to calculate s³ products of blocks (and do some additions)
- If *n* = *s*³, each computer needs to calculate just
 one product of *blocks* how convenient!

- Split the matrix in $n^{1/3} \times n^{1/3}$ blocks each with $n^{2/3} \times n^{2/3}$ elements
- Route each pair of blocks to a dedicated computers
 - need to send $n^{4/3}$ elements to each computer
 - bandwidth O(n) elements \rightarrow takes $O(n^{1/3})$ rounds
- Route the results back & aggregate...

- What if our matrices consisted of s × s elements?
- Fast algorithm would need to calculate **s^{2.38}** products of elements [+ pre/postprocessing]
- If *n* = *s*^{2.38}, each computer needs to calculate just one product of elements

- What if our matrices consisted of
 s × s blocks, each with n/s × n/s elements?
- Fast algorithm would need to calculate **s^{2.38}** products of **blocks** [+ pre/postprocessing]
- If *n* = *s*^{2.38}, each computer needs to calculate just one product of *blocks*

- What if our matrices consisted of
 s × s blocks, each with n/s × n/s elements?
- Fast algorithm would need to calculate **s^{2.38}** products of **blocks** [+ pre/postprocessing]
- If n = s^{2.38} (that is, s = n^{0.42}) each computer needs to calculate just one product of blocks

- Split the matrix in $n^{0.42} \times n^{0.42}$ blocks each with $n^{0.58} \times n^{0.58}$ elements
- Preprocess, then route each pair of blocks to a dedicated computers
 - need to send $n^{1.16}$ elements to each computer
 - bandwidth O(n) elements \rightarrow takes $O(n^{0.16})$ rounds
- Route the results back & aggregate...

- Centralized naive matrix multiplication: $O(n^3)$
- Congested clique: $O(n^{1-2/3}) = O(n^{1/3})$

Recap

- Centralized naive matrix multiplication: $O(n^3)$
- Congested clique: $O(n^{1-2/3}) = O(n^{1/3})$
- Centralized fast matrix multiplication: $O(n^{2.38})$
- Congested clique: $O(n^{1-2/2.38}) = O(n^{0.16})$

Recap

- Centralized naive matrix multiplication: $O(n^3)$
- Congested clique: $O(n^{1-2/3}) = O(n^{1/3})$
- Centralized fast matrix multiplication: $O(n^{2.38})$
- Congested clique: $O(n^{1-2/2.38}) = O(n^{0.16})$
- Centralized $\rightarrow O(n^2)$
- Congested clique $\rightarrow O(1)$

[PODC 2015]

Recap

- Centralized naive matrix multiplication: $O(n^3)$
- Congested clique: $O(n^{1-2/3}) = O(n^{1/3})$
- Centralized fast matrix multiplication: $O(n^{2.38})$
- Congested clique: $O(n^{1-2/2.38}) = O(n^{0.16})$
- Centralized $\rightarrow O(n^2)$
- Congested clique $\rightarrow O(1)$

Sparsity?

Sparse matrices

- Let us look at the simplest possible case: uniformly sparse input & output
- Input: each row and each column contains
 < d nonzeros
- **Output:** we only care about ≤ *d* elements in each row and column

Sparse matrices

- Example: triangle detection & counting
- Let A = B = graph and compute X = AB
- X_{ik} = sum of $A_{ij} \cdot B_{jk}$ over all j = number of paths of the form i-j-k
- Triangle (*i*, ?, *k*) exists if $X_{ik} \neq 0$ and we have edge {*i*, *k*} in the graph
Sparse matrices

- Example: triangle detection & counting
 assume: maximum degree d
- Let A = B = graph and compute X = AB
 A and B are uniformly spares
- Triangle (*i*, ?, *k*) exists if $X_{ik} \neq 0$ and we have edge {*i*, *k*} in the graph

• we only care about a sparse set of values in X

Sparse matrices

- Input: each row and each column contains
 ≤ d nonzeros
- Output: we only care about ≤ d elements in each row and column

Sparse matrices

- Input: each row and each column contains
 ≤ d nonzeros
- Output: we only care about ≤ d elements in each row and column
- Supported model: matrix structure known
 - locations of (possibly) non-zero inputs
 - locations of output elements we care about

Prior work

- Trivial dense: $O(n^{1/3})$ rounds
- Censor-Hillel, Dory, Korhonen, Leitersdorf: $O(d/n^{2/3})$ rounds for $d \ge n^{2/3}$
- **O(1) rounds** for $d \le n^{2/3}$

Naive matrix multiplication: $O(n^{0.33})$

Fast matrix multiplication: $O(n^{0.16})$

Censor-Hillel, Dory, Korhonen, Leitersdorf

Complexity of sparse matrix multiplication in congested clique

Complexity of sparse matrix multiplication in congested clique

It doesn't matter if the matrix is very sparse or fairly dense???

Wrong model

Low-bandwidth model

a.k.a. "node-capacitated clique" or "node-congested clique"

New problem setting

- Input: sparse n × n matrices A and B
 computer i knows column i of A and column i of B
- •Output: sparse *n* x *n* matrix *X* = *AB*
 - computer *i* has to output column *i* of X
- *n* computers
- O(log n) bits/computer/round

Complexity of sparse matrix multiplication in congested clique

Complexity of sparse matrix multiplication in low-bandwidth model

1 clique round can be simulated in *n* low-b/w rounds

Complexity of sparse matrix multiplication in low-bandwidth model

Censor-Hillel, Dory, Korhonen, Leitersdorf works also here

Very sparse matrices: trivial solution, $O(d^2)$ -rounds

- Each computer outputs *d* results
- Each output depends on *d* inputs

Are we done?

Are we done?

No, there is a slightly better algorithm for sparse cases: $O(d^{1.91})$ rounds

This is what the landscape looks like today

[SPAA 2022]

And it turns out that further improvements are possible: $O(d^{1.84})$ rounds

[unpublished]

If you can do matrix multiplication, you can detect, count, etc. triangles

If you can "process" triangles, you can do matrix multiplication

"Process" triangle (*i*, *j*, *k*)

 \approx

Add $A_{ij} B_{jk}$ to X_{ik}

Dense matrix multiplication

Batch-process many overlapping triangles

Many triangles:

- find clusters of overlapping triangles
- batch-process with dense matrix multiplication
 many triangles eliminated

• Few triangles:

• can afford to process them individually

Key lemma:

If there are many triangles, there is a dense cluster

What next?

Beyond uniformly sparse

Different notions of sparsity:

- uniformly sparse
- rows are sparse
- columns are sparse
- bounded degeneracy: can repeatedly find and eliminate a sparse row or column
- average sparse ...

Beyond uniformly sparse

Different notions of sparsity

•Which of these admit:

- $o(d^2)$ -round algorithms?
- $O(d^2)$ -round algorithms?
- $O(d^2 + \log n)$ -round algorithms?

Beyond uniformly sparse

- Ongoing work: answers to many of these questions coming!
- But these are **still open:**
 - if we can do something in $O(d^2)$ rounds, can we always push it down to $o(d^2)$ rounds?
 - could we go all the way to $O(d^{4/3})$ rounds?

Conclusions

Dense: split work following centralized algorithms

Sparse: process triangles

