
Low-Degree Graphs,
Sparse Matrices, and 

Low-Bandwidth Networks

Jukka Suomela
Aalto University

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0



Based on joint work with
•Keren Censor-Hillel
•Chetan Gupta
• Juho Hirvonen
•Petteri Kaski
• Janne H. Korhonen

•Christoph Lenzen
•Ami Paz
• Jan Studený
•Hossein Vahidi
•and many others…



Matrix multiplication
•Fundamental computational primitive
•Core operation in modern machine 
learning, scientific computation …
•Computationally expensive operation



Matrix multiplication
•So important that there is even special 
hardware designed to accelerate and 
parallelize matrix multiplication!
•Nvidia Tensor Core
• Google Tensor Processing Unit
• Intel AMX, Intel XMX …



Matrix multiplication
• Interesting “intermediate” problem for 
theory of distributed computing

Problems with simple 
linear-time centralized 

algorithms

Computationally
hard problems

MIS, (Δ+1)-coloring,
maximal matching …

SAT, 3-coloring …

Problems with
nontrivial computation,

nontrivial input size

matrix
multiplication …



Matrix multiplication
• Interesting “intermediate” problem for 
theory of distributed computing
•Direct connections with graph problems

0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

≈



Matrix multiplication
• Interesting “intermediate” problem for 
theory of distributed computing
•Direct connections with graph problems
•Natural parameterized family of problems:
sparse matrix multiplication
• possible to explore various tradeoffs
• different parameter regimes → different tools



Matrix multiplication
• Interesting “intermediate” problem for 
theory of distributed computing
•Direct connections with graph problems
•Natural parameterized family of problems:
sparse matrix multiplication
•Makes sense in virtually any model of
parallel or distributed computing



Thought experiment
•How do you multiply matrices with
1,000,000 × 1,000,000 elements?

0001101001110100010010110111110111111000
1011100011100111010101111001010110000110
0110001101010001110000010001011011111110
1000001000110010100110101101001000011100
0010000010010111011010110010110100000001
0000110111001010111101101111101010010110
0010110100010101011100110011001000010000
1011000100111011100001001011010111010101
0111111111101110111100010010110111100010
1001111010110010101101011011000111110111



Thought experiment
•How do you multiply matrices with
1,000,000 × 1,000,000 elements?
• fits on a hard disk drive
• naive sequential solution takes decades

0001101001110100010010110111110111111000
1011100011100111010101111001010110000110
0110001101010001110000010001011011111110
1000001000110010100110101101001000011100
0010000010010111011010110010110100000001
0000110111001010111101101111101010010110
0010110100010101011100110011001000010000
1011000100111011100001001011010111010101
0111111111101110111100010010110111100010
1001111010110010101101011011000111110111



Thought experiment
•How do you multiply matrices with
1,000,000 × 1,000,000 elements?
• fits on a hard disk drive
• naive sequential solution takes decades

•What if you have 1,000,000 computers?
0001101001110100010010110111110111111000
1011100011100111010101111001010110000110
0110001101010001110000010001011011111110
1000001000110010100110101101001000011100
0010000010010111011010110010110100000001
0000110111001010111101101111101010010110
0010110100010101011100110011001000010000
1011000100111011100001001011010111010101
0111111111101110111100010010110111100010
1001111010110010101101011011000111110111



Setting
•Convenient choice of parameters:
multiply n × n matrices using n computers



Setting
•Convenient choice of parameters:
multiply n × n matrices using n computers
•Don’t take “computer” too literally:
• in practice, one “computer” can be e.g.
one CPU core + its local cache memory
• one physical computer can simulate
many virtual “computers”



Congested
Clique



network

O(n log n)
bits/round≈

O(log n)
bits/round

n computers n computers



0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

≈

network

O(n log n)
bits/round≈

O(log n)
bits/round

n computers n computers

graph with n nodes n × n matrix



network

O(n log n)
bits/round≈

O(log n)
bits/round

n computers n computers

computer i knows column i
(or row i)

0
1
0
0
1

1
0
1
0
0

0
1
0
1
0

0
0
1
0
1

1
0
0
1
0

computer i knows
the neighbors of node i ≈



Problem setting
• Input: n × n matrices A and B
• computer i knows column i of A and column i of B

•Output: n x n matrix X = AB
• computer i has to output column i of X

•n computers
•O(n log n) bits/computer/round



Problem setting
• Input: n × n matrices A and B
• computer i knows column i of A and column i of B

•Output: n x n matrix X = AB
• computer i has to output column i of X

•n computers
•O(n) things/computer/round



It decomposes!

Multiply matrices with 100 × 100 elements

≈
Multiply matrices with 10 × 10 blocks,
each block contains 10 × 10 elements



Key idea
•Look at centralized matrix multiplication 
algorithms
•See what multiplication operations
they perform, distribute them
•Keep in mind that we can decompose



Naive algorithm
•What if our matrices consisted of

s × s elements?
•Naive algorithm would need to calculate s3 
products of elements (and do some additions)
• If n = s3, each computer needs to calculate just 
one product of elements — how convenient!



Naive algorithm
•What if our matrices consisted of

s × s blocks?
•Naive algorithm would need to calculate s3 
products of blocks (and do some additions)
• If n = s3, each computer needs to calculate just 
one product of blocks — how convenient!



Naive algorithm
•What if our matrices consisted of

s × s blocks, each with n/s × n/s elements?
•Naive algorithm would need to calculate s3 
products of blocks (and do some additions)
• If n = s3, each computer needs to calculate just 
one product of blocks — how convenient!



Naive algorithm
•Split the matrix in n1/3 × n1/3 blocks
each with n2/3 × n2/3 elements
•Route each pair of blocks to a dedicated 
computers
• need to send n4/3 elements to each computer
• bandwidth O(n) elements → takes O(n1/3) rounds

•Route the results back & aggregate…



Fast algorithm
•What if our matrices consisted of

s × s elements?
•Fast algorithm would need to calculate s2.38 
products of elements [+ pre/postprocessing]
• If n = s2.38, each computer needs to calculate 
just one product of elements



Fast algorithm
•What if our matrices consisted of

s × s blocks, each with n/s × n/s elements?
•Fast algorithm would need to calculate s2.38 
products of blocks [+ pre/postprocessing]
• If n = s2.38, each computer needs to calculate 
just one product of blocks



Fast algorithm
•What if our matrices consisted of

s × s blocks, each with n/s × n/s elements?
•Fast algorithm would need to calculate s2.38 
products of blocks [+ pre/postprocessing]
• If n = s2.38 (that is, s = n0.42) each computer 
needs to calculate just one product of blocks



Fast algorithm
•Split the matrix in n0.42 × n0.42 blocks
each with n0.58 × n0.58 elements
•Preprocess, then route each pair of blocks to
a dedicated computers
• need to send n1.16 elements to each computer
• bandwidth O(n) elements → takes O(n0.16) rounds

•Route the results back & aggregate…



Recap
•Centralized naive matrix multiplication: O(n3)
•Congested clique: O(n1−2/3) = O(n1/3)



Recap
•Centralized naive matrix multiplication: O(n3)
•Congested clique: O(n1−2/3) = O(n1/3)
•Centralized fast matrix multiplication: O(n2.38)
•Congested clique: O(n1−2/2.38) = O(n0.16)



Recap
•Centralized naive matrix multiplication: O(n3)
•Congested clique: O(n1−2/3) = O(n1/3)
•Centralized fast matrix multiplication: O(n2.38)
•Congested clique: O(n1−2/2.38) = O(n0.16)
•Centralized → O(n2)
•Congested clique → O(1)



Recap
•Centralized naive matrix multiplication: O(n3)
•Congested clique: O(n1−2/3) = O(n1/3)
•Centralized fast matrix multiplication: O(n2.38)
•Congested clique: O(n1−2/2.38) = O(n0.16)
•Centralized → O(n2)
•Congested clique → O(1)

[PODC 2015]



Sparsity?



Sparse matrices
•Let us look at the simplest possible case:
uniformly sparse input & output
• Input: each row and each column contains
≤ d nonzeros
•Output: we only care about ≤ d elements
in each row and column



Sparse matrices
•Example: triangle detection & counting
•Let A = B = graph and compute X = AB
•Xik = sum of Aij · Bjk over all j
= number of paths of the form i–j–k
•Triangle (i, ?, k) exists if Xik ≠ 0 and we have
edge {i, k} in the graph



Sparse matrices
•Example: triangle detection & counting
• assume: maximum degree d

•Let A = B = graph and compute X = AB
• A and B are uniformly spares

•Triangle (i, ?, k) exists if Xik ≠ 0 and we have
edge {i, k} in the graph
•we only care about a sparse set of values in X



Sparse matrices
• Input: each row and each column contains
≤ d nonzeros
•Output: we only care about ≤ d elements
in each row and column



Sparse matrices
• Input: each row and each column contains
≤ d nonzeros
•Output: we only care about ≤ d elements
in each row and column
•Supported model: matrix structure known
• locations of (possibly) non-zero inputs
• locations of output elements we care about



Prior work
•Trivial dense: O(n1/3) rounds
•Censor-Hillel, Dory, Korhonen, Leitersdorf:
O(d/n2/3) rounds for d ≥ n2/3

•O(1) rounds for d ≤ n2/3



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

Naive matrix
multiplication:
O(n0.33)



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

Fast matrix
multiplication:
O(n0.16)



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

Censor-Hillel,
Dory, Korhonen,
Leitersdorf



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

Complexity of
sparse matrix
multiplication in
congested clique



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

Complexity of
sparse matrix
multiplication in
congested clique

It doesn’t matter if
the matrix is very sparse

or fairly dense???



Wrong model



network

O(n log n)
bits/round≈

O(log n)
bits/round

n computers n computers



network

O(n log n)
bits/round≈

O(log n)
bits/round

n computers n computers



Low-bandwidth model

network

O(log n)
bits/round

n computers

a.k.a. “node-capacitated clique” or “node-congested clique”



New problem setting
• Input: sparse n × n matrices A and B
• computer i knows column i of A and column i of B

•Output: sparse n x n matrix X = AB
• computer i has to output column i of X

•n computers
•O(log n) bits/computer/round



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

Complexity of
sparse matrix
multiplication in
congested clique



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Complexity of
sparse matrix
multiplication in
low-bandwidth
model

1 clique round can
be simulated in
n low-b/w rounds



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Complexity of
sparse matrix
multiplication in
low-bandwidth
model?



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Censor-Hillel,
Dory, Korhonen,
Leitersdorf
works also here



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Very sparse
matrices:
trivial solution,
O(d2)-rounds

• Each computer
outputs d results

• Each output
depends on d inputs



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Are we done?



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Simple information-
theoretic lower bound



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Are we done?



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

No, there is
a slightly better
algorithm for
sparse cases:
O(d1.91) rounds



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

This is what
the landscape
looks like today

[SPAA 2022]



n1.33

Density d
n 

0.5

Time

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

And it turns out
that further
improvements
are possible:
O(d1.84) rounds

[unpublished]



How?



It’s just triangles

If you can do matrix multiplication,
you can detect, count, etc. triangles

If you can “process” triangles,
you can do matrix multiplication



It’s just triangles

“Process” triangle (i, j, k)

≈
Add Aij Bjk to Xik



It’s just triangles

Dense matrix multiplication

≈
Batch-process many
overlapping triangles



It’s just triangles
•Many triangles:
• find clusters of overlapping triangles
• batch-process with dense matrix multiplication
•many triangles eliminated

•Few triangles:
• can afford to process them individually



+

+

+

=

all triangles

small

clustered

clustered

clustered

+
…

Key lemma:

If there are many
triangles, there is
a dense cluster



What next?



Beyond uniformly sparse
•Different notions of sparsity:
• uniformly sparse
• rows are sparse
• columns are sparse
• bounded degeneracy: can repeatedly find
and eliminate a sparse row or column
• average sparse …



Beyond uniformly sparse
•Different notions of sparsity
•Which of these admit:
• o(d2)-round algorithms?
•O(d2)-round algorithms?
•O(d2 + log n)-round algorithms?



Beyond uniformly sparse
•Ongoing work: answers to many of these 
questions coming!
•But these are still open:
• if we can do something in O(d2) rounds,
can we always push it down to o(d2) rounds?
• could we go all the way to O(d4/3) rounds?



Conclusions



n0.33

Time

n 

0.0

Density d
n 

0.5n 

0.0 n 

1.0

n1.33

Density d
n 

0.5

n 

0.5

n 

1.0

n 

0.0

n 

0.0 n 

1.0

Congested
clique

Low bandwidth

Dense: split work following
centralized algorithms

Sparse: process triangles


