

Based on joint work with

- Keren Censor-Hillel
- Chetan Gupta
- Juho Hirvonen
- Petteri Kaski
-Janne H. Korhonen
-Christoph Lenzen
- Ami Paz
- Jan Studený
- Hossein Vahidi
- and many others...

Matrix multiplication

- Fundamental computational primitive
- Core operation in modern machine learning, scientific computation ...
- Computationally expensive operation

Matrix multiplication

- So important that there is even special hardware designed to accelerate and parallelize matrix multiplication!
- Nvidia Tensor Core
- Google Tensor Processing Unit
- Intel AMX, Intel XMX ...

Matrix multiplication

- Interesting "intermediate" problem for theory of distributed computing

Problems with simple linear-time centralized algorithms

MIS, ($\Delta+1$)-coloring, maximal matching ...

Problems with nontrivial computation, nontrivial input size
matrix
multiplication ..

Computationally hard problems

SAT, 3-coloring ...

Matrix multiplication

- Interesting "intermediate" problem for theory of distributed computing
- Direct connections with graph problems

Matrix multiplication

- Interesting "intermediate" problem for theory of distributed computing
- Direct connections with graph problems
- Natural parameterized family of problems:
sparse matrix multiplication
- possible to explore various tradeoffs
- different parameter regimes \rightarrow different tools

Matrix multiplication

- Interesting "intermediate" problem for theory of distributed computing
- Direct connections with graph problems
- Natural parameterized family of problems: sparse matrix multiplication
- Makes sense in virtually any model of parallel or distributed computing

Thought experiment

-How do you multiply matrices with $\mathbf{1 , 0 0 0 , 0 0 0} \times \mathbf{1 , 0 0 0 , 0 0 0}$ elements?

Thought experiment

- How do you multiply matrices with $\mathbf{1 , 0 0 0 , 0 0 0} \times \mathbf{1 , 0 0 0 , 0 0 0}$ elements?
- fits on a hard disk drive
- naive sequential solution takes decades

Thought experiment

-How do you multiply matrices with $\mathbf{1 , 0 0 0 , 0 0 0} \times \mathbf{1 , 0 0 0 , 0 0 0}$ elements?

- fits on a hard disk drive
- naive sequential solution takes decades
-What if you have $\mathbf{1 , 0 0 0 , 0 0 0}$ computers?

Setting

- Convenient choice of parameters: multiply $\boldsymbol{n} \times \boldsymbol{n}$ matrices using \boldsymbol{n} computers

Setting

- Convenient choice of parameters: multiply $\boldsymbol{n} \times \boldsymbol{n}$ matrices using \boldsymbol{n} computers
- Don't take "computer" too literally:
- in practice, one "computer" can be e.g. one CPU core + its local cache memory
- one physical computer can simulate many virtual "computers"

Congested
Clique

\approx

\approx

graph with n nodes

$n \times n$ matrix

\approx

computer i knows
the neighbors of node i
\approx

computer i knows column i (or row i)

Problem setting

- Input: $n \times n$ matrices A and B
- computer i knows column i of A and column i of B
- Output: $n \times n$ matrix $X=A B$
- computer i has to output column i of X
- n computers
- $O(n \log n)$ bits/computer/round

Problem setting

- Input: $n \times n$ matrices A and B
- computer i knows column i of A and column i of B
- Output: $n \times n$ matrix $X=A B$
- computer i has to output column i of X
- n computers
- O(n) things/computer/round

It decomposes!

Multiply matrices with $\mathbf{1 0 0 \times 1 0 0}$ elements

Multiply matrices with $\mathbf{1 0 \times 1 0}$ blocks, each block contains $\mathbf{1 0} \times \mathbf{1 0}$ elements

Key idea

- Look at centralized matrix multiplication algorithms
- See what multiplication operations they perform, distribute them
- Keep in mind that we can decompose

Naive algorithm

-What if our matrices consisted of
$\boldsymbol{s} \times \boldsymbol{s}$ elements?

- Naive algorithm would need to calculate $\boldsymbol{s}^{\mathbf{3}}$ products of elements (and do some additions)
- If $\boldsymbol{n}=\boldsymbol{s}^{\mathbf{3}}$, each computer needs to calculate just one product of elements - how convenient!

Naive algorithm

- What if our matrices consisted of $\boldsymbol{s} \times \boldsymbol{s}$ blocks?
- Naive algorithm would need to calculate $\boldsymbol{s}^{\mathbf{3}}$ products of blocks (and do some additions)
- If $\boldsymbol{n}=\boldsymbol{s}^{\mathbf{3}}$, each computer needs to calculate just one product of blocks - how convenient!

Naive algorithm

- What if our matrices consisted of
$\boldsymbol{s} \times \boldsymbol{s}$ blocks, each with $\boldsymbol{n} / \mathbf{s} \times \boldsymbol{n} / \mathbf{s}$ elements?
- Naive algorithm would need to calculate $\boldsymbol{s}^{\mathbf{3}}$ products of blocks (and do some additions)
- If $\boldsymbol{n}=\boldsymbol{s}^{\mathbf{3}}$, each computer needs to calculate just one product of blocks - how convenient!

Naive algorithm

- Split the matrix in $n^{1 / 3} \times n^{1 / 3}$ blocks each with $n^{2 / 3} \times n^{2 / 3}$ elements
- Route each pair of blocks to a dedicated computers
- need to send $n^{4 / 3}$ elements to each computer
- bandwidth $O(n)$ elements \rightarrow takes $\mathbf{O}\left(\boldsymbol{n}^{1 / 3}\right)$ rounds
- Route the results back \& aggregate...

Fast algorithm

- What if our matrices consisted of $\boldsymbol{s} \times \boldsymbol{s}$ elements?
- Fast algorithm would need to calculate $\boldsymbol{s}^{\mathbf{2} .38}$ products of elements [+ pre/postprocessing]
- If $\boldsymbol{n}=\boldsymbol{s}^{\mathbf{2 . 3 8}}$, each computer needs to calculate just one product of elements

Fast algorithm

- What if our matrices consisted of $\boldsymbol{s} \times \boldsymbol{s}$ blocks, each with $\boldsymbol{n} / \mathbf{s} \times \boldsymbol{n} / \mathbf{s}$ elements?
- Fast algorithm would need to calculate $\boldsymbol{s}^{\mathbf{2 . 3 8}}$ products of blocks [+ pre/postprocessing]
- If $\boldsymbol{n}=\boldsymbol{s}^{\mathbf{2 . 3 8}}$, each computer needs to calculate just one product of blocks

Fast algorithm

- What if our matrices consisted of $\boldsymbol{s} \times \boldsymbol{s}$ blocks, each with $\boldsymbol{n} / \mathbf{s} \times \boldsymbol{n} / \mathbf{s}$ elements?
- Fast algorithm would need to calculate $\boldsymbol{s}^{\mathbf{2 . 3 8}}$ products of blocks [+ pre/postprocessing]
- If $\boldsymbol{n}=\boldsymbol{s}^{\mathbf{2} .38}$ (that is, $\boldsymbol{s}=\boldsymbol{n}^{\mathbf{0 . 4 2}}$) each computer needs to calculate just one product of blocks

Fast algorithm

- Split the matrix in $n^{0.42} \times n^{0.42}$ blocks each with $n^{0.58} \times n^{0.58}$ elements
- Preprocess, then route each pair of blocks to a dedicated computers
- need to send $n^{1.16}$ elements to each computer
- bandwidth $O(n)$ elements \rightarrow takes $\mathbf{O}\left(\boldsymbol{n}^{\mathbf{0 . 1 6}}\right)$ rounds
- Route the results back \& aggregate...

Recap

-Centralized naive matrix multiplication: $O\left(n^{3}\right)$
-Congested clique: $O\left(n^{1-2 / 3}\right)=O\left(n^{1 / 3}\right)$

Recap

- Centralized naive matrix multiplication: $O\left(n^{3}\right)$
- Congested clique: $O\left(n^{1-2 / 3}\right)=O\left(n^{1 / 3}\right)$
- Centralized fast matrix multiplication: $O\left(n^{2.38}\right)$
- Congested clique: $O\left(n^{1-2 / 2.38}\right)=O\left(n^{0.16}\right)$

Recap

- Centralized naive matrix multiplication: $O\left(n^{3}\right)$
- Congested clique: $O\left(n^{1-2 / 3}\right)=O\left(n^{1 / 3}\right)$
- Centralized fast matrix multiplication: $O\left(n^{2.38}\right)$
- Congested clique: $O\left(n^{1-2 / 2.38}\right)=O\left(n^{0.16}\right)$
- Centralized $\rightarrow O\left(n^{2}\right)$
- Congested clique $\rightarrow O(1)$

[PODC 2015]

Recap

- Centralized naive matrix multiplication: $O\left(n^{3}\right)$
- Congested clique: $O\left(n^{1-2 / 3}\right)=O\left(n^{1 / 3}\right)$
- Centralized fast matrix multiplication: $O\left(n^{2.38}\right)$
- Congested clique: $O\left(n^{1-2 / 2.38}\right)=O\left(n^{0.16}\right)$
- Centralized $\rightarrow O\left(n^{2}\right)$
- Congested clique $\rightarrow O(1)$

Sparsity?

Sparse matrices

- Let us look at the simplest possible case: uniformly sparse input \& output
- Input: each row and each column contains sd nonzeros
- Output: we only care about $\leq \boldsymbol{d}$ elements in each row and column

Sparse matrices

- Example: triangle detection \& counting
- Let $A=B=$ graph and compute $X=A B$
- $X_{i k}=\operatorname{sum}$ of $A_{i j} \cdot B_{j k}$ over all j
$=$ number of paths of the form $i-j-k$
- Triangle ($i, ?, k$) exists if $X_{i k} \neq 0$ and we have edge $\{i, k\}$ in the graph

Sparse matrices

- Example: triangle detection \& counting - assume: maximum degree d
- Let $A=B=$ graph and compute $X=A B$
- A and B are uniformly spares
- Triangle ($i, ?, k$) exists if $X_{i k} \neq 0$ and we have edge $\{i, k\}$ in the graph
- we only care about a sparse set of values in X

Sparse matrices

- Input: each row and each column contains sd nonzeros
- Output: we only care about $\leq d$ elements in each row and column

Sparse matrices

- Input: each row and each column contains sd nonzeros
- Output: we only care about $\leq d$ elements in each row and column
- Supported model: matrix structure known - locations of (possibly) non-zero inputs
- locations of output elements we care about

Prior work

- Trivial dense: $O\left(n^{1 / 3}\right)$ rounds
- Censor-Hillel, Dory, Korhonen, Leitersdorf: $O\left(d / n^{2 / 3}\right)$ rounds for $d \geq n^{2 / 3}$
- O(1) rounds for $d \leq n^{2 / 3}$

Fast matrix multiplication: $O\left(n^{0.16}\right)$

Censor-Hillel, Dory, Korhonen, Leitersdorf

Complexity of sparse matrix multiplication in congested clique

Wrong model

\approx

\approx

Low-bandwidth model

 a.k.a. "node-capacitated clique" or "node-congested clique"

New problem setting

- Input: sparse $n \times n$ matrices A and B
- computer i knows column i of A and column i of B
- Output: sparse $n \times n$ matrix $X=A B$
- computer i has to output column i of X
- n computers
- $O(\log n)$ bits/computer/round

Complexity of sparse matrix multiplication in congested clique

Complexity of sparse matrix multiplication in low-bandwidth model

1 clique round can be simulated in n low-b/w rounds

This is what the landscape looks like today

[SPAA 2022]

How?

It's just triangles

If you can do matrix multiplication, you can detect, count, etc. triangles

If you can "process" triangles, you can do matrix multiplication

It's just triangles

"Process" triangle (i, j, k)

\approx
Add $A_{i j} B_{j k}$ to $X_{i k}$

It's just triangles

Dense matrix multiplication

Batch-process many overlapping triangles

It's just triangles

- Many triangles:
- find clusters of overlapping triangles
- batch-process with dense matrix multiplication
- many triangles eliminated
- Few triangles:
- can afford to process them individually

Key lemma:

If there are many triangles, there is a dense cluster
clustered

What next?

Beyond uniformly sparse

- Different notions of sparsity:

- uniformly sparse
- rows are sparse
- columns are sparse
- bounded degeneracy: can repeatedly find and eliminate a sparse row or column
- average sparse ...

Beyond uniformly sparse

- Different notions of sparsity
- Which of these admit:
- $o\left(d^{2}\right)$-round algorithms?
- $O\left(d^{2}\right)$-round algorithms?
- $O\left(d^{2}+\log n\right)$-round algorithms?

Beyond uniformly sparse

- Ongoing work: answers to many of these questions coming!
- But these are still open:
- if we can do something in $O\left(d^{2}\right)$ rounds, can we always push it down to $o\left(d^{2}\right)$ rounds?
-could we go all the way to $O\left(d^{4 / 3}\right)$ rounds?

Conclusions

Dense: split work following
centralized algorithms
Sparse: process triangles

