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ABSTRACT
The problem of placing relay nodes in a wireless sensor net-
work is studied in the context of balanced data gathering.
Previous work is extended by showing that even the simplest
classes of the relay placement problem are hard to approx-
imate. This work also presents a heuristic method for both
lower-bounding and upper-bounding the maximum perfor-
mance of a sensor network over all possible relay locations.

Categories and Subject Descriptors: C.2.1 [Computer-
communication Networks]: Network Architecture and De-
sign; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms: Performance, Algorithms, Theory

Keywords: wireless sensor networks, relay placement, bal-
anced data gathering, energy constraints

1. INTRODUCTION
Wireless sensor networks [5] consist of a large number of

sensor nodes which collect data. The collected data is routed
via the network to a sink node. The nodes are battery pow-
ered, and when considering battery lifetime, one of the key
issues is radio communication [6]. To increase the amount
of data gathered from a sensor network during its lifetime,
one may add a small number of relay nodes (base stations)
that are equipped with large batteries. The relay nodes may
gather data from nearby sensor nodes and forward it towards
the sink node.

This work focuses on the relay placement problem [7]:
given a sensor network and the number of relay nodes, the
goal is to find optimal locations for the relay nodes. The per-
formance of a network is determined by the amount of data
gathered from each sensor node during the lifetime of the
network, i.e., before the batteries are drained. The balanced

data gathering [1, 3] formulation is used: the utility function
is a weighted sum of the minimum and average amounts of
data gathered from the nodes.

This paper is organised as follows. Section 2 defines the
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problem, including two special cases, the Euclidean prob-
lem and the sensor-upgrade problem. Section 3 shows that
even these simple special cases are NP-hard to approximate
within small constant factors. Section 4 presents a heuristic
algorithm for both lower-bounding and upper-bounding the
Euclidean relay placement problem.

2. BACKGROUND
An instance of the balanced data gathering problem [1, 3]

is a tuple (λ, S, R, σ, E, s, τ, ρ), where λ ∈ [0, 1] is a balance
parameter, S is a finite set of sensor nodes, R is a finite
set of relay nodes, σ is the sink node, Ei specifies the bat-
tery capacity of the node i, si specifies how much data is
available at the sensor node i, τij is the cost of sending one
unit of data from i to j, and ρ is the cost of receiving one
unit of data. The solution of the problem is a flow f , where
fij is the nonnegative amount of data transmitted from i
to j. The nonnegative value qi ≤ si denotes the amount
of data gathered from the node i ∈ S. The flow must
be preserved: qi +

P

j
fji =

P

j
fij for each sensor i and

P

j
fji =

P

j
fij for each relay i. Furthermore, transmission

and reception costs must not exceed the battery capacity:
P

j
τijfij +

P

j
ρfji ≤ Ei for each node i. The utility of the

solution is the weighted sum of the minimum and average
amounts of data gathered, λ mini∈S qi + (1 − λ) avgi∈S qi.

An instance of the relay-constrained relay placement prob-

lem [7] is a tuple (λ, S,R, N, σ, E, s, τ, ρ), where R is the
set of possible relays, N is the number of relays, and the
other parameters are as above in the balanced data gather-
ing problem. The solution of the problem is a relay place-
ment R ⊆ R with |R| = N . Given a solution R, one can
construct the corresponding instance of the balanced data
gathering problem, (λ, S, R, σ, E, s, τ, ρ). The utility of the
solution R is the maximum of the utility of the balanced
data gathering problem. A solution is h-approximate if its
utility is at least 1/h times the optimum.

In this work, it is assumed that the battery capacity Ei is
the same for all possible relays i ∈ R.

The transmission cost τij must be defined for all pairs of
possible nodes, i, j ∈ S ∪ R ∪ {σ}. These can be specified
explicitly in the finite problem, where R is a finite set. How-
ever, this is not possible if R is infinite; thus, the main focus
is on the following simple model for transmission costs.

Each node is associated with a location in the Euclidean
plane R

2. The transmission costs are defined by τij =
d(i, j)α where α > 0 is a parameter (typically 2 ≤ α ≤ 4)
and d(·, ·) denotes the Euclidean distance. This model is
used in the following problems: In the Euclidean problem,



α = 2.0 α = 3.0 α = 4.0

(a) λ = 1.0 ρ > 0 3.24 5.85 10.56
ρ = 0 2.99 5.19 8.99

λ = 0.5 ρ > 0 1.52 1.70 1.82
ρ = 0 1.49 1.67 1.79

(b) λ = 1.0 ρ > 0 3.99 7.99 15.99
ρ = 0 1.14 1.14 1.14

λ = 0.5 ρ > 0 1.59 1.77 1.88
ρ = 0 1.06 1.06 1.06

Table 1: Inapproximability ratios for the relay place-
ment problem: (a) Euclidean problem, (b) sensor-
upgrade problem.

the set of possible relays is the plane R
2. In the sensor-

upgrade problem, the set of possible relays equals the set of
sensor locations.

Note that the sensor-upgrade problem is a special case
of the finite problem. It would be possible to specify ar-
bitrary transmission costs τij explicitly. However, by using
the above definition it is possible to show that the sensor-
upgrade problem (and, thus, the finite problem) remains
computationally hard even if the transmission costs are de-
fined by a simple model of radio propagation.

Prior to this work, these special cases of the relay place-
ment problem were known to be NP-hard to solve exactly
[7]. However, it was not known whether they are also hard
to approximate.

3. INAPPROXIMABILITY
This section shows that both the Euclidean problem and

the sensor-upgrade problem are NP-hard to approximate
within small constant factors. Even if the parameters of the
model for transmission cost are fixed to physically realistic
values, inapproximability within factors as high as 10 can
be obtained. Table 1 summarises the key results for some
concrete numerical values. For example, even if one fixes
λ = 1, α = 3, and an arbitrary ρ > 0, the above-mentioned
simplified problems are NP-hard to approximate within a
constant factor of 5 or better, i.e., any polynomial-time al-
gorithm may return solutions with a utility as low as 20 %
of the optimum, assuming P 6= NP.

The proof of the inapproximability of relay placement uses
the same idea as Feder and Greene [2] in their proof of the
inapproximability of k-centre clustering.

In this section, the term 3-planar graph refers to a planar
graph with maximum degree 3, and the term 3-planar vertex

covering refers to the problem of determining whether there
is a vertex cover of a given size for a given 3-planar graph. In
this section, an instance of 3-planar vertex covering is first
transformed to an equivalent embedded instance of 3-planar
vertex covering; this is further reduced to the problem of ap-

proximating relay placement. This proves that approximat-
ing relay placement is NP-hard, as 3-planar vertex covering
is NP-complete [4].

Transformation. Consider a 3-planar graph G0 (Fig-
ure 1a). Remove isolated vertices, if any. Embed the graph
in a rectangular two-dimensional grid of polynomial size
(Figure 1b). This is possible in polynomial time; see, e.g.,
the linear-time algorithm by Tamassia and Tollis [8].
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Figure 1: Transformation and some key properties.

Shear the rectangular grid and draw the edges along a reg-
ular hexagonal grid (Figure 1c). The sides of the hexagons
are of length 6ℓ; the value ℓ > 0 will be chosen later. In
the hexagonal grid, there are tiles that correspond to the
midpoints of the line segments of the original rectangular
grid (greyed in Figure 1d); a shortcut can be taken through
such tiles. For each edge, take one shortcut if needed to
ensure that the length of each edge is an odd multiple of 6ℓ
(Figure 1d).

Form a new graph G = (V, E) by splitting the edges of
G0 into pieces of length 2ℓ (Figure 1e). Let k′ denote the
total number of new vertices created by the splits; there is
an even number of new vertices on each edge of G0. For any
k0, let k = k0 + k′/2. Now, (G, k) and (G0, k0) are equiv-
alent instances of 3-planar vertex covering. Except for a
scaling by factor 2ℓ, this is also a concrete way of construct-
ing the embedded graph described by Feder and Greene [2,
Figure 2a].

The locations of the vertices have to be presented by ratio-
nal numbers. Choose rational x coordinates. Scale down the
height of the hexagons by less than ǫ units to find rational
y coordinates. It is assumed that 0 < ǫ < (

√
13/2 −

√
3)ℓ.

Reduction. Vertices of degree 1 are called outer vertices;
the remaining vertices are called inner vertices. Edges ad-
jacent to at least one outer vertex are called outer edges;
the remaining edges are called inner edges. Midpoints of
these edges are called outer midpoints and inner midpoints,
respectively.

Construct the following three instances of the relay place-
ment problem. First, construct an instance of the sensor-
upgrade problem; the instance is called I1. Choose N = k;
the values of λ, α, and ρ are discussed later. Place one sensor



at each inner midpoint, outer midpoint, inner vertex, and
outer vertex. These are called inner edge sensors, outer edge

sensors, inner vertex sensors, and outer vertex sensors, and
their battery capacities are ℓα, ℓα, (2ℓ)α, and (2ℓ)α units,
respectively. The amount of available data is 1 for each sen-
sor. Place the sink node at any location not closer than 3ℓ
units from any vertex or edge of G. The battery capacity of
each relay is ∞ (or a suitable large constant).

Second, construct another instance of the sensor-upgrade
problem, I2. The construction of I2 is identical to I1 except
that the battery capacities of inner edge sensors, outer edge
sensors, inner vertex sensors, and outer vertex sensors are
(3/2)ℓα, 2ℓα, ℓα, and ℓα units, respectively.

Third, construct an instance of the Euclidean problem, I3.
The network layout and the parameters of I3 are identical
to those of I1 except that there are no vertex sensors.

“Yes” instances. Assume that there is a vertex cover
X ⊆ V of size k for G. Construct a relay placement R by
placing one relay at each vertex v ∈ X. The set R is a
feasible solution of I1, I2, and I3.

Consider I1 or I3. For each vertex or edge sensor, there is
enough battery capacity to transmit 1 unit of data directly
to the nearest relay, and the relay can forward the data to
the sink. The amount of data gathered from each sensor is
1, and the utility of the solution equals 1 for all λ, α, and ρ.

Next, consider I2. If ρ = 0, it is possible to gather 1 unit
of data from each sensor as follows. Edge sensors transmit
directly to the nearest relay. Outer vertex sensors without
a relay transmit 1 unit of data to the neighbouring outer
edge sensor. Inner vertex sensors without a relay choose two
neighbouring edge sensors and transmit 1/2 units of data to
each of them. The utility of the solution equals 1 for all λ
and α, assuming ρ = 0.

“No” instances, Euclidean problem. Consider a so-
lution of I3. A relay r-covers an edge if the distance between
the relay and the midpoint of the edge is at most r. The dis-
tance between the midpoints of two non-neighbouring edges
is more than

√
13 ℓ − ǫ units [2], see Figure 1f. The degree

of the graph is bounded by 3, and there are no cliques of
size 3. Thus, if a set of edges is (

√
13 ℓ/2 − ǫ)-covered by a

relay, the edges are mutually neighbouring, and they share
a common endpoint. If each edge is (

√
13 ℓ/2 − ǫ)-covered

by some relay, the corresponding common endpoints form a
vertex cover of size at most N = k.

Thus, if there is no vertex cover of size k, there is an edge
sensor i such that there is no relay or sink within

√
13 ℓ/2−ǫ

units [2]. There may be two other inner edge sensors a and b
at a distance between

√
3 ℓ− ǫ and

√
3 ℓ, see Figure 1g. The

sensors i, a, and b are called nearby sensors; other sensors,
relays, and the sink are called distant targets.

Assume that at least q units of data is gathered from the
sensor i. Write y for the total amount of data transmitted
from i to a and b; the remaining q− y units are transmitted
to distant targets. The nodes a and b have to receive at
least a total of y units of data. The total energy resources
of the nodes imply (

√
3 ℓ− ǫ)αy +(

√
13 ℓ/2− ǫ)α(q−y) ≤ ℓα

and ρy ≤ 2ℓα. If λ, ρ, and α are part of the problem in-
stance, and if arbitrary values are allowed for these param-
eters, choose ℓ = 1, λ = 1, ρ = 0, and α = log√

3−ǫ h for any
h > 1. It follows that q ≤ 1/h, and the utility of the solution
is at most 1/h. Thus, distinguishing between a utility of 1
and a utility of 1/h in the relay placement problem makes
it possible to solve 3-planar vertex covering; in other words,

approximating relay placement within any constant factor h
is NP-hard. However, this says little about the approxima-
bility of practical, physically realistic instances of the relay
placement problem.

Now, assume that both α and ρ are fixed to arbitrary val-
ues. It turns out that the relay placement problem is hard
to approximate even in this case. First, consider the case
ρ > 0. For any ǫ1 > 0, there is an ℓ such that 2ℓα/ρ < ǫ1,
implying y < ǫ1. Thus, it is possible to obtain an upper
bound for q that is arbitrarily close to (2/

√
13)α. By choos-

ing λ = 1, the bound implies the inapproximability of relay
placement within (

√
13/2)α − ǫ2 for all ǫ2 > 0. Second,

consider the case ρ = 0. By choosing, say, ℓ = 1, it is possi-
ble to obtain an upper bound arbitrarily close to (1/

√
3)α,

implying inapproximability within (
√

3)α − ǫ2 for all ǫ2 > 0.
Even if λ is fixed to any value 0 < λ ≤ 1, the same idea

can be applied to obtain an inapproximability ratio strictly
larger than 1 by noting that min qi is bounded by q and
avg qi is bounded by 1. The inapproximability ratios for
some concrete values are summarised in Table 1.

“No” instances, sensor-upgrade problem. Consider
a solution of the instance I1 or I2. A disk of radius 2ℓ − ǫ
is required in order to cover non-neighbouring edges by a
relay, see Figure 1g. Thus, if there is no vertex cover of size
k, there is an edge sensor i such that there is no relay or sink
within 2ℓ− ǫ units. There are two vertex sensors u and v at
a distance between ℓ − ǫ and ℓ, and in the case of an inner
edge sensor, there may be two other inner edge sensors a and
b at distances between

√
3ℓ − ǫ and

√
3ℓ. The sensors i, u,

v, a, and b are called nearby sensors; other sensors, relays,
and the sink are called distant targets. Choose the labels so
that the degree of the vertex u is always 2; the degree of the
vertex v may be 1, 2, or 3.

Again, assume that both α and ρ are fixed to arbitrary
values. First, consider the case ρ > 0. Study the instance I1.
As above, choose a small ℓ > 0; this way receptions are very
expensive compared to battery capacities, only a negligible
amount of data gathered from i can be forwarded by nearby
sensors, and the utility is bounded by the amount of data
that can be transmitted over a distance of 2ℓ− ǫ units. This
implies inapproximability within 2α − ǫ2 for all ǫ2 > 0.

Second, consider the case ρ = 0. Study the instance I2.
To simplify the discussion, the proof focuses on on the spe-
cial case of α > log

3
4 ≈ 1.26; this covers most physically

realistic special cases. Assume that at least q units of data
is gathered from each of i, u, and v. Consider the total
amount of energy consumed by i, u, and v.

If the degree of v is 1, there is no other node except i
and u within 3ℓ − ǫ units. For transmitting data from v
to a distant target, there are different multihop paths to
choose from: directly from v to a distant target, via i to a
distant target, etc. However, any combination of such paths
consumes at least a total of 3q(ℓ−ǫ)α units of energy in i, u,
and v if q units of data needs to be transmitted. Similarly,
any routing from i to a distant target consumes at least
2q(ℓ− ǫ)α units of energy, and any routing from u consumes
at least q(ℓ− ǫ)α units of energy. The total battery capacity
of i, u, and v equals (1 + 2 + 1)ℓα, as i is an outer edge
sensor. This implies (3+2+1)q(ℓ− ǫ)α ≤ (1+2+1)ℓα. By
choosing any ℓ and a small ǫ, the bound q ≤ 2/3 + ǫ3 can
be obtained for any ǫ3 > 0.

If the degree of v is at least 2, any routing from u or v to
a distant target consumes at least q(ℓ− ǫ)α units of energy.



Any routing from i consumes at least 2q(ℓ − ǫ)α units of
energy; the above simplifying assumption on α implies that
the direct path (i, a) is at least as expensive as the multihop
path (i, v, a). The total energy consumption equals at least
(1 + 2 + 1)q(ℓ − ǫ)α, and the total battery capacity equals
(1 + 3/2 + 1)ℓα, as i is an inner edge sensor. The bound
q ≤ 7/8 + ǫ3 can be obtained for any ǫ3 > 0.

Thus, q ≤ 7/8 + ǫ3 in both cases, and relay placement
is hard to approximate within 8/7 − ǫ2 for all ǫ2 > 0. See
Table 1 for a summary.

4. HEURISTICS
Despite the lack of efficient approximation algorithms with

good approximation ratios, it may still be possible to find
a good solution in many practical problem instances by us-
ing a heuristic algorithm. However, typical heuristics are of
little use in comparing the performance of different kinds of
sensor networks: the heuristics provide only a feasible so-
lution (i.e., a lower bound for the optimum); they do not
provide an upper bound for the optimum. Thus, seemingly
poor performance of a network may be either intrinsic, or
it may be caused by the heuristic algorithm finding only
suboptimal solutions.

This section presents a (non-polynomial) heuristic method
for finding both lower and upper bounds for the solution
of the Euclidean relay placement problem. The algorithm
maintains an upper bound and a feasible solution. It tight-
ens the upper bound and improves the solution until the
ratio of the upper bound and the obtained utility is good
enough or a time limit or other termination criterion is met.

In the case of transmission costs defined by power law
or a similar monotone function, an optimal solution can be
found in the bounding rectangle that contains all sensors
and the sink. The upper bound is derived by partitioning
the bounding rectangle into a number of rectangular cells.
Given a partition, an instance of the finite relay placement
problem is constructed.

In the finite problem, the sink and the sensors are the same
as in the original Euclidean problem. For each cell, add N
possible relays to the same location. The battery capacities
of the nodes, the amount of data available at each sensor,
the balance parameter, and the reception cost are exactly
as specified in the original problem.

Assign a geometrical area to each node. For each sensor
node and the sink, this area is the single point of the location
of the node. For each relay location, the area is the corre-
sponding rectangular cell. The transmission cost between
two nodes is specified as the lowest possible transmission

cost between their respective areas.
The finite relay placement problem is solved by using any

approximate solver. The solver returns a solution x and
an upper bound for the utility. The upper bound for the
constructed finite problem is also an upper bound for the
utility of the original Euclidean problem.

The solution x can be used to construct a solution of the
Euclidean relay placement problem by placing each relay at
the centre point of the corresponding cell. The utility of this
solution can be evaluated by formulating the corresponding
balanced data gathering problem. Any LP solver can be
used to optimise balanced data gathering [1].

If the tightest upper bound is within a given factor of
the best solution, the algorithm terminates. Otherwise, the
bounding rectangle is divided into a larger number of cells,

and the process is repeated. The following scheme is used
here to partition the rectangle. The first partition consists
of one cell covering the entire bounding rectangle. At each
iteration, split each cell that contains some relay nodes into
four new rectangles of equal size. This scheme guarantees
convergence while generating only a moderate number of
new cells.

The solution returned by the above algorithm is not neces-
sarily a local optimum. Thus, it may be possible to improve
the utility of the solution by local search. Here one may use,
e.g., line search in a similar way as proposed by Falck et al.

[1] for their incremental relay placement algorithm.
The algorithm needs to solve the finite problem, either ex-

actly or approximately. One possibility is to formulate the
problem as a mixed integer linear program (MIP) and use
any MIP solver to find an optimum. The MIP formulation
is a relatively straightforward extension to the LP formula-
tion of balanced data gathering [1]. It should be noted that
the case of multiple relays at the same location needs to be
handled efficiently. This is easy with the MIP formulation:
instead of n integral variables with the upper bound of 1,
use one variable with the upper bound of n.

The algorithm presented in this paper has been imple-
mented in the C programming language. The source code
of the implementation, a test data set, and a number of
test results and timings are available1 under a free software
license.
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