
Algorithms
that design
algorithms?

Jukka Suomela
Aalto University · Helsinki · Finland

jukkasuomela.fi

Computer science: what
can be automated?

Computer science: what
can be automated?

Today: can we automate
the study of distributed
computing?

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?
•Approach: find smart people, spend
lots of time in front of a whiteboard …

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?
•Approach: find smart people, spend
lots of time in front of a whiteboard …
•End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof …

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?
•Approach: find smart people, spend
lots of time in front of a whiteboard …
•End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof …

Toy example:
Locally checkable
problems in cycles

75

10 8
52

22

7

31

Setting
•Computer network: cycle of n computers
• globally consistent orientation
• each node has one “successor”
and one “predecessor”

75

10 8
52

22

7

31

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
• synchronous communication rounds
• time = number of rounds until
all nodes stop
• unbounded message size
• unlimited local computation
• unique identifiers

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints
• finite number of output labels
• relation that tells which
label sequences are valid

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

00 01 011 1

11 00 001 1

badbad

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

11 00 001 1

good

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

•Valid if you only see these:
???, ???, ???, ???

11 00 001 1

good

Local problems
•Example: maximal independent set
• independent set = no two neighbors selected
•maximal = cannot greedily add more

•Valid if you only see these:
001, 010, 100, 101

Local problems

•Valid if you only see these:
001, 010, 100, 101

Problem
specification

Valid label sequences
•2-coloring: 12, 21
•3-coloring: 12, 21, 13, 31, 23, 32
• Independent set: 01, 10, 00
•Maximal independent set: 001, 010, 100, 101
•Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

All possible
output labelings

in a window
of size k

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

This algorithm
solves X in

time O(log* n)

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

Polynomial time
(in the size
of problem
description)

How?

001

010

100

101
Example:

X = maximal
independent
set problem

001

010

100

101

010

001

010

100

101

???

010

Compatible
neighborhoods

for adjacent
nodes

001

010

100

101

001

010

Compatible
neighborhoods

for adjacent
nodes

001

010

100

101

001

010

101

Compatible
neighborhoods

for adjacent
nodes

001

010

100

101

001

010

101

010 001 101

001

010

100

101

???

001

010 001 101

001 ???

001

010

100

101

100

001

010 001 101

001 100

001

010

100

101

???

100

010 001 101

001 100

100 ???

001

010

100

101

010

100

010 001 101

001 100

100 010

001

010

100

101

???

101

010 001 101

001 100

100 010

101 ???

001

010

100

101

010

101

010 001 101

001 100

100 010

101 010

001

010

100

101

010

101

010 001 101

001 100

100 010

101 010

001

010

100

101

010

101

010 001 101

001 100

100 010

101 010

Let’s draw
this graph

010 001 101

001 100

100 010

101 010

001

010

100

101

001

010

100

101 This graph
is all that
we need!

21

12
2-coloring

21

1 3

3 22 3

12

13

21

12
3-coloring 2-coloring

independent set

21

1 3

3 22 3

12

13

21

1 0

0 0

0 1

12
3-coloring 2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13

21

1 0

0 0

0 1

12
3-coloring 2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set
1 0

0 0

0 1

self-loop

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Algorithm:
?

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Algorithm:
Constant output
(e.g. here all-0)

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Proof: ?

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Proof: No self-loop
→ any solution breaks symmetry everywhere

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Proof: No self-loop
→ any solution breaks symmetry everywhere
→ can be used to find 3-coloring

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Proof: No self-loop
→ any solution breaks symmetry everywhere
→ can be used to find 3-coloring
→ not possible in o(log* n) rounds

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

maximal
independent
set001

010

100

101

Let’s study
walks that start

and end here

maximal
independent
set001

010

100

101

0

maximal
independent
set001

010

100

101

1

maximal
independent
set001

010

100

101

2

maximal
independent
set001

010

100

101

3

maximal
independent
set001

010

100

101

4

maximal
independent
set001

010

100

101

5
Self-returning

walk of length 5

maximal
independent
set001

010

100

101

0

maximal
independent
set001

010

100

101

1

maximal
independent
set001

010

100

101

2

maximal
independent
set001

010

100

101

3

maximal
independent
set001

010

100

101

4

maximal
independent
set001

010

100

101

5

maximal
independent
set001

010

100

101

6
Self-returning

walk of length 6

maximal
independent
set001

010

100

101

0

maximal
independent
set001

010

100

101

1

maximal
independent
set001

010

100

101

2

maximal
independent
set001

010

100

101

3

maximal
independent
set001

010

100

101

4

maximal
independent
set001

010

100

101

5

maximal
independent
set001

010

100

101

6

maximal
independent
set001

010

100

101

7
Self-returning

walk of length 7

maximal
independent
set001

010

100

101

8? Can you find
a self-returning

walk of length 8?

maximal
independent
set001

010

100

101

9? Can you find
a self-returning

walk of length 9?

maximal
independent
set001

010

100

101

k = 5, 6, 7, 8, 9, …

Self-returning
walk of length k

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

Decidable in
polynomial time

(how?)

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

solvable in
O(log* n) rounds

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

Algorithm: ???

solvable in
O(log* n) rounds

Find markers
separated by

≥ k0 hops

1

0

0
1

0

1

0

0

0Use flexible
configuration

around markers

1

0

0

0
1

0

0

1

1

0

0
1

0

0Follow a self-
returning walk to

fill in between
markers

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

Algorithm:
• split in blocks of length ≥ k0
• use the flexible configuration

at each block boundary
• fill in between boundaries by

following a self-returning walk

solvable in
O(log* n) rounds

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

solvable in
O(log* n) rounds

Proof: Not flexible → must use
the same non-flexible configuration
at least twice far from each other;
not compatible for all distances
→ global coordination needed
→ not possible in o(n) rounds

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12

O(1)

distance-2 coloring2-coloring3-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12

O(1)

distance-2 coloring2-coloring

O(log* n)

3-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12

O(1)

distance-2 coloring2-coloring

O(log* n)

3-coloring

O(n)

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

This algorithm
solves X in

time O(log* n)

Can we generalize
beyond directed cycles?

1 201 1

Cycles, paths

1 201

1 1X

X 10

0 X0

0 00

1 1

1 1

1 X

X 2

1

Cycles, paths Grids

1 201

1 1X

X 10

0 X0

0 00

1 1

1 1

1 X

X 2

1

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

1 201

1 1X

X 10

0 X0

0 00

1 1

1 1

1 X

X 2

1

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions
(efficiently)
decidable

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions
(efficiently)
decidable

Many questions
undecidable

Undecidable
≠

hopeless

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

“Fast” = e.g. O(log* n)

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

Proof idea: Coloring ≈ locally unique identifiers.
If A fails with such fake identifiers, it also fails
in some small graph with some real identifiers.

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Finite computation for
a given candidate B:
no worries about
the halting problem

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Undecidability:
don’t know when to stop if
fast algorithms don’t exist

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Computational complexity:
typically doubly-exponential in k

Sometimes doable!
•Natural problems often solvable with a small k

Sometimes doable!
•Natural problems often solvable with a small k
•We can make it more feasible in practice:
•more “compact” normal forms,
e.g. distance-k coloring → ruling set

Sometimes doable!
•Natural problems often solvable with a small k
•We can make it more feasible in practice:
•more “compact” normal forms,
e.g. distance-k coloring → ruling set
• represent “candidate B is good for this value of k”
as a Boolean formula and use modern SAT solvers
to find such a B

Sometimes doable!
•Example: 4-coloring in grids
•Computers were much faster than human
beings in figuring out that this is solvable in
O(log* n) rounds

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions
(efficiently)
decidable

Many questions
undecidable

(but there is hope!)

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Bad news apply to
any graph family that
contains large grids

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

What is here
between paths

and grids?

Big picture:
meta-computational
questions and
algorithms synthesis

Meta questions
•Designing algorithms that design
algorithms?
•Studying the computational complexity of
studying computational complexity?
•Using computation (in practice) to
understand computation (in theory)?
…

Verification & synthesis
•Algorithm verification:
• given problem P and algorithm A
• does A solve P?

•Algorithm synthesis:
• given problem P
• find an algorithm A that solves P?

Verification & synthesis
•Algorithm verification often hard
• recall: halting problem

•Algorithm synthesis can be easier!
• verification must handle arbitrary algorithms
• synthesis can produce “nice” algorithms

Conclusions

Take-home messages
•Algorithm design can be made systematic
and mechanical, even computers can do it!
•we need the right representations for
computational problems & algorithms
• this is not machine learning — but is this AI?

•Key concepts:
•meta-computational problems
• algorithm verification vs. algorithm synthesis

