Jukka Suomela

Aalto University · Helsinki · Finland jukkasuomela.fi

Algorithms that design algorithms?

Computer science: *what can be automated?*

Computer science: *what can be automated?*

Today: can we automate the study of distributed computing?

• **Question:** is there an efficient distributed algorithm for solving task *X* in model *M*?

- Question: is there an efficient distributed algorithm for solving task X in model M?
- **Approach:** find smart people, spend lots of time in front of a whiteboard ...

- **Question:** is there an efficient distributed algorithm for solving task *X* in model *M*?
- **Approach:** find smart people, spend lots of time in front of a whiteboard ...
- End result: algorithm, algorithm analysis, proof of correctness, lower bound proof ...

- **Question:** is there an efficient distributed algorithm for solving task *X* in model *M*?
- Approach: find smart people, spend lots of time in front of a whiteboard ...
- End result: algorithm, algorithm analysis, proof of correctness, lower bound proof ...

Toy example: Locally checkable problems in cycles

• Computer network: cycle of n computers

- globally consistent orientation
- each node has one "successor" and one "predecessor"

Setting

- Computer network: cycle of n computers
- Model of computing: LOCAL model
 - synchronous communication rounds
 - time = number of rounds until all nodes stop
 - unbounded message size
 - unlimited local computation
 - unique identifiers

Setting

- Computer network: cycle of n computers
- Model of computing: LOCAL model
- Problem: any discrete problem you can define with local constraints
 - finite number of output labels
 - relation that tells which label sequences are valid

- independent set = no two neighbors selected
- maximal = cannot greedily add more

- independent set = no two neighbors selected
- maximal = cannot greedily add more

- independent set = no two neighbors selected
- maximal = cannot greedily add more

$$\rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 1 \rightarrow 0$$

- independent set = no two neighbors selected
- maximal = cannot greedily add more

- independent set = no two neighbors selected
- maximal = cannot greedily add more

- independent set = no two neighbors selected
- maximal = cannot greedily add more

- independent set = no two neighbors selected
- maximal = cannot greedily add more

• Example: maximal independent set

- independent set = no two neighbors selected
- maximal = cannot greedily add more

good

• Valid if you only see these: ???, ???, ????

• Example: maximal independent set

- independent set = no two neighbors selected
- maximal = cannot greedily add more

good

• Valid if you only see these: 001, 010, 100, 101

• Example: maximal independent set • independent set = no two neighbors selected not greedily add more Problem specification good

• Valid if you only see these: 001, 010, 100, 101

Valid label sequences

- 2-coloring: 12, 21
- 3-coloring: 12, 21, 13, 31, 23, 32
- Independent set: 01, 10, 00

All possible output labelings in a window of size k

- *Maximal independent set:* **001, 010, 100, 101**
- Distance-2 coloring with 3 colors: 123, 132, 213, 231, 312, 321

Fully automatic

• Write down the specification of any locally checkable problem X

Fully automatic

- Write down the specification of any locally checkable problem X
- Then you can *find efficiently*
 - distributed round complexity of X
 - asymptotically optimal distributed algorithm for X

This algorithm solves X in time O(log* n)

Fully automatic

- Write down the specification of any locally checkable problem X
- Then you can *find efficiently*
 - distributed round complexity of X
 - asymptotically optimal distributed algorithm for X

Polynomial time (in the size of problem description)

Example: X = maximal independent set problem

1 0 0

0 0 1

1 0 0

0 0 1

1 0 1

010???

Compatible neighborhoods for adjacent nodes

1 0 0

0 0 1

1 0 1

0 1 0 1 0

Compatible neighborhoods for adjacent nodes

1 0 0

0 0 1

0

1

Compatible neighborhoods for adjacent nodes

1 0 0

0 0 1

1 0 0

1 0 0

1 0 1

0 1 0 - 1 0 0 1 0 1 $1 \quad 0 \quad 0 \quad \rightarrow \quad 0 \quad 0 \quad 1$

1 0 0

1 0 1

1 0 0

1 0 1

1 0 0

0 0 1

1 0 1

1 0 0

0 0 1

1 0 1

1 0 0

1 0 1

0 0 1

1 0 0

1 0 1

 $\left(
ight)$

 $\left(\right)$

Let's draw this graph

distance-2 coloring

Algorithm: ?

self-loop J solvable in O(1) rounds

Algorithm: Constant output (e.g. here all-0)

Proof: ?

Proof: No self-loop \rightarrow any solution breaks symmetry everywhere

Proof: No self-loop \rightarrow any solution breaks symmetry everywhere \rightarrow can be used to find 3-coloring

Proof: No self-loop \rightarrow any solution breaks symmetry everywhere \rightarrow can be used to find 3-coloring \rightarrow not possible in $o(\log^* n)$ rounds

distance-2 coloring

Let's study walks that start and end here

87

Can you find a self-returning walk of length 8?

97

Can you find a self-returning walk of length 9?

Self-returning walk of length k

k = 5, 6, 7, 8, 9, ...

Decidable in polynomial time (how?)

solvable in
O(log* n) rounds

Algorithm: ???

solvable in
O(log* n) rounds

Find markers separated by ≥ k₀ hops Use flexible configuration around markers Follow a selfreturning walk to fill in between markers 0

solvable in
O(log* n) rounds

Algorithm:

- split in blocks of length $\geq k_0$
- use the flexible configuration at each block boundary
- fill in between boundaries by following a self-returning walk

"Flexible": for all $k \ge k_0$ there is a selfreturning walk of length k solvable in

solvable in O(log* n) rounds **Proof:** Not flexible \rightarrow must use the same non-flexible configuration at least twice far from each other; not compatible for all distances \rightarrow global coordination needed \rightarrow not possible in o(n) rounds

distance-2 coloring

distance-2 coloring

independent set

O(log* *n*)

distance-2 coloring

independent set

O(log* *n*)

O(n)

Fully automatic

- Write down the specification of any locally checkable problem X
- Then you can *find efficiently*
 - distributed round complexity of X
 - asymptotically optimal distributed algorithm for X

This algorithm solves X in time O(log* n)

Can we generalize beyond directed cycles?

Grids

solution ≈ execution history of a **finite automaton**

solution ≈ execution history of a **finite automaton**

 $\left(\right)$

()

solution ≈ execution history of a **Turing machine**

solution ≈ execution history of a **finite automaton**

Grids

solution ≈ execution history of a **Turing machine**

solution ≈ execution history of a **finite automaton**

Grids

solution ≈ execution history of a **Turing machine**

Many questions undecidable

Undecidable # hopeless

Normal forms

Any algorithm **A** that solves a locally checkable problem X fast can be written as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

- C_k = distance-k coloring
- **B** = finite function that maps colored neighborhoods to local outputs

Normal forms

Any algorithm **A** that solves a locally checkable problem X fast can be written as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

- C_k = distance-k coloring
- **B** = finite function that maps colored neighborhoods to local outputs

Normal forms

Any algorithm **A** that solves a locally checkable problem X fast can be written as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

- C_k = distance-k coloring
- **B** = finite function that maps colored neighborhoods to local outputs

Proof idea: Coloring \approx locally unique identifiers. If *A* fails with such fake identifiers, it also fails in some small graph with some real identifiers.
Any algorithm **A** that solves a locally checkable problem X fast can be written as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

- C_k = distance-k coloring
- **B** = finite function that maps colored neighborhoods to local outputs

For each *k* = 1, 2, 3, ...:

- check all possible candidate functions **B**
- if any of them is good \rightarrow fast algorithm found!

Any algorithm **A** that solves a locally checkable problem X fast can be written as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

- C_k = distance-k coloring
- **B** = finite function that maps colored neighborhoods to local outputs

For each *k* = 1, 2, 3, ...:

- check all possible candidate functions **B**
- if any of them is good \rightarrow fast algorithm found!

Undecidability: *don't know when to stop if fast algorithms don't exist*

ves a locally checkable ritten as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

new orhoods to local outputs

For each <u>k = 1, 2, 3, ...</u>:

- check all possible candidate functions **B**
- if any of them is good \rightarrow fast algorithm found!

Any algorithm **A** that solves a locally checkable problem X fast can be written as $\mathbf{A} = \mathbf{B} \circ \mathbf{C}_{\mathbf{k}}$

C_k = distance-k
 B = finite funct
 Computational complexity:
 neighborhoods
 typically doubly-exponential in k

For each *k* = 1, 2, 3, ...

- check all possible candidate functions *B*
- if any of them is good \rightarrow fast algorithm found!

• Natural problems often solvable with a *small k*

- Natural problems often solvable with a *small k*
- We can make it more feasible in practice:
 - more "compact" normal forms, e.g. distance-k coloring \rightarrow ruling set

- Natural problems often solvable with a *small k*
- We can make it more feasible in practice:
 - more "compact" normal forms, e.g. distance-k coloring \rightarrow ruling set
 - represent "candidate B is good for this value of k" as a Boolean formula and use modern SAT solvers to find such a B

- Example: *4-coloring in grids*
- Computers were much faster than human beings in figuring out that this is solvable in $O(\log^* n)$ rounds

Cycles, paths

solution ≈ execution history of a **finite automaton**

Grids

solution ≈ execution history of a **Turing machine**

Many questions undecidable (but there is hope!)

Cycles, paths

solution ≈ execution history of a **finite automaton**

Grids + beyond

solution ≈ execution history of a **Turing machine**

Bad news apply to any graph family that contains large grids

Cycles, paths

solution ≈ execution history of a **finite automaton**

Grids + beyond

solution ≈ execution history of a **Turing machine**

What is here between paths and grids?

Big picture: meta-computational questions and algorithms synthesis

Meta questions

. . .

- Designing algorithms that design algorithms?
- Studying the computational complexity of studying computational complexity?
- Using computation (in practice) to understand computation (in theory)?

Verification & synthesis

Algorithm verification:

- given problem *P* and algorithm *A*
- does A solve P?

Algorithm synthesis:

- given problem P
- find an algorithm A that solves P?

Verification & synthesis

- Algorithm verification often hard
 - recall: halting problem
- Algorithm synthesis can be easier!
 - verification must handle arbitrary algorithms
 synthesis can produce "nice" algorithms

Conclusions

Take-home messages

- Algorithm design can be made systematic and mechanical, even computers can do it!
 - we need the right *representations* for computational problems & algorithms
 - this is **not machine learning** but is this Al?
- Key concepts:
 - meta-computational problems
 - algorithm *verification* vs. algorithm *synthesis*