Jukka Suomela

Aalto University • Helsinki • Finland jukkasuomela.fi

Algorithms
 that design algorithms?

Computer science: what can be automated?

Computer science: what can be automated?

Today: can we automate the study of distributed computing?

Standard process

-Question: is there an efficient distributed algorithm for solving task X in model M ?

Standard process

- Question: is there an efficient distributed algorithm for solving task X in model M ?
- Approach: find smart people, spend lots of time in front of a whiteboard ...

Standard process

- Question: is there an efficient distributed algorithm for solving task X in model M ?
- Approach: find smart people, spend lots of time in front of a whiteboard ...
- End result: algorithm, algorithm analysis, proof of correctness, lower bound proof ...

Standard process

- Question: is there an efficient distributed algorithm for solving task X in model M ?
- Approach: find smart people, spend lnts of time in front of a whiteboard ...
-End result: algorithm, algorithm analysis, proof of correctness, lower bound proof ...

Toy example: Locally checkable problems in cycles

Setting

- Computer network: cycle of n computers
- globally consistent orientation
- each node has one "successor" and one "predecessor"

Setting

- Computer network: cycle of n computers
- Model of computing: LOCAL model
- synchronous communication rounds
- time = number of rounds until all nodes stop
- unbounded message size
- unlimited local computation
- unique identifiers

Setting

- Computer network: cycle of n computers
- Model of computing: LOCAL model
-Problem: any discrete problem you can define with local constraints
- finite number of output labels
- relation that tells which
label sequences are valid

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more
 ???, ???, ???, ???

Local problems

- Example: maximal independent set
- independent set = no two neighbors selected
- maximal = cannot greedily add more

- Valid if you only see these: 001, 010, 100, 101

Local problems

- Example: maximal independent set - independent set = no two neighbors selected Problem specification
- Valid if you only see these:
good 001, 010, 100, 101

Valid label sequences

-2-coloring: 12, 21
-3-coloring: 12, 21, 13, 31, 23, 32

- Independent set: 01, 10, 00
- Maximal independent set: 001, 010, 100, 101
- Distance-2 coloring with 3 colors: 123, 132, 213, 231, 312, 321

Fully automatic

$$
\begin{array}{r}
X=\begin{array}{r}
\{001,010, \\
100,101\}
\end{array}
\end{array}
$$

- Write down the specification of any locally checkable problem X

Fully automatic

- Write down the specification of any locally checkable problem X
-Then you can find efficiently
- distributed round complexity of X
- asymptotically optimal distributed algorithm for X

$X=\{001,010$, 100, 101$\}$

This algorithm solves X in time $O\left(\log ^{*} n\right)$

Fully automatic

- Write down the specification of any locally checkable problem X
-Then you can find efficiently
- distributed round complexity of X
- asymptotically optimal distributed algorithm for X

Polynomial time

 (in the size of problem description)How?

010

100

$0 \quad 0 \quad 1$

$1 \quad 0 \quad 1$

> Example: X = maximal independent set problem

0	1	0
1	0	0
0	0	1
1	0	1

$$
\begin{array}{llllll|lll}
0 & 1 & 0 & \rightarrow & 0 & 0 & 1 & 0 & 1
\end{array}
$$

0	1	0
1	0	0
0	0	1
1	0	1


```
0 1 0
10 0
    0 0 1
    1 0 1
```

\section*{| 1 | 0 | 1 | |
| :---: | :---: | :---: | :---: |
| | 0 | 1 | 0 |
| | | | |
 Let's draw this graph}

$$
\begin{aligned}
& \hline 0
\end{aligned} 1
$$

$$
\left.\begin{array}{lll}
0 & 1 & 0
\end{array} \rightarrow \begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0
\end{array} \rightarrow \begin{array}{llll}
0 & 0 & 1
\end{array}\right]
$$

This graph is all that we need!

independent set

independent set

independent set

2-coloring

distance-2 coloring

independent set

distance-2 coloring

self-loop

independent set

self-loop

 solvable in $O(1)$ rounds

Algorithm:

?

independent set
self-loop
 solvable in $O(1)$ rounds

Algorithm:

Constant output (e.g. here all-0)

independent set
self-loop

solvable in $O(1)$ rounds

Proof: ?

independent set

Proof: No self-loop

\rightarrow any solution breaks symmetry everywhere

independent set
self-loop

solvable in $O(1)$ rounds

Proof: No self-loop

\rightarrow any solution breaks symmetry everywhere
\rightarrow can be used to find 3-coloring

independent set
self-loop

solvable in $O(1)$ rounds

Proof: No self-loop
\rightarrow any solution breaks symmetry everywhere
\rightarrow can be used to find 3-coloring
\rightarrow not possible in o(log* n) rounds

independent set

distance-2 coloring

 independent set

distance-2 coloring

Can you find a self-returning walk of length 8 ?

Can you find a self-returning walk of length 9 ?

$$
k=5,6,7,8,9, \ldots
$$

"Flexible": for all $k \geq k_{0}$ there is a selfreturning walk of length k


```
"Flexible": for all \(k \geq k_{0}\) there is a selfreturning walk of length \(k\)
```


Decidable in polynomial time (how?)

"Flexible": for all $k \geq k_{0}$ there is a selfreturning walk of length k

Algorithm: ???

solvable in
 O(log* n) rounds

"Flexible": for all $k \geq k_{0}$ there is a selfreturning walk of length k

solvable in
 O(log* n) rounds

Algorithm:

- split in blocks of length $\geq k_{0}$
- use the flexible configuration at each block boundary
- fill in between boundaries by following a self-returning walk
"Flexible":for all $k \geq k_{0}$there is a self-returning walk

solvable in
 O(log* n) rounds

Proof: Not flexible \rightarrow must use the same non-flexible configuration
at least twice far from each other; the same non-flexible configuration
at least twice far from each other; not compatible for all distances \rightarrow global coordination needed
\rightarrow not possible in o(n) rounds

independent set

2-coloring

distance-2 coloring

distance-2 coloring

$O\left(\log ^{*} n\right)$

distance-2 coloring

$O(1)$ independent set

$O\left(\log ^{*} n\right)$

Fully automatic

- Write down the specification of any locally checkable problem X
-Then you can find efficiently
- distributed round complexity of X
- asymptotically optimal distributed algorithm for X

$X=\{001,010$, 100, 101$\}$

This algorithm solves X in time $O\left(\log ^{*} n\right)$

Can we generalize beyond directed cycles?

Cycles, paths

Cycles, paths

Grids

Cycles, paths

solution \approx
execution history of a finite automaton

Grids

Cycles, paths

solution \approx
execution history of a finite automaton

Grids

solution \approx
execution history of
a Turing machine

Cycles, paths

solution \approx
execution history of a finite automaton

Grids

solution \approx
execution history of
a Turing machine

Many questions (efficiently) decidable

Cycles, paths

solution \approx
execution history of a finite automaton

Many questions (efficiently) decidable

Grids

solution \approx
execution history of
a Turing machine

Many questions undecidable

Undecidable

$$
\neq
$$

hopeless

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable problem X fast can be written as $\boldsymbol{A}=B \circ C_{k}$

- $C_{k}=$ distance $-k$ coloring
- $B=$ finite function that maps colored neighborhoods to local outputs

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable problem X fast can be written as $\boldsymbol{A}=B \circ C_{k}$

- $C_{k}=$ distance $-k$ coloring
- $B=$ finite function that maps colored neighborhoods to local outputs

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable problem X fast can be written as $\boldsymbol{A}=B \circ C_{k}$

- $C_{k}=$ distance $-k$ coloring
- $B=$ finite function that maps colored neighborhoods to local outputs

Proof idea: Coloring \approx locally unique identifiers.
If A fails with such fake identifiers, it also fails in some small graph with some real identifiers.

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable problem X fast can be written as $\boldsymbol{A}=B \circ C_{k}$

- $C_{k}=$ distance $-k$ coloring
- $B=$ finite function that maps colored neighborhoods to local outputs

For each $\boldsymbol{k}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$:

- check all possible candidate functions B
- if any of them is good \rightarrow fast algorithm found!

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable problem X fast can be written as $\boldsymbol{A}=B \circ C_{k}$

- $C_{k}=$ distance $-k$ coloring
- $B=$ finite function that maps colored neighborhoods to local outputs
For each $\boldsymbol{k}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$:
- check all possible candidate functions B
- if any of them is good \rightarrow fast algorithm found!

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable probler ${ }^{2}$ rite A

- $C_{k}=$ Finite computation for
- $B=$ a given candidate B : no worries about the halting problem
For eacrin
- check all pusible candidate functions B
- if any of them is good \rightarrow fast algorithm found!

Normal forms

Undecidability:

don't know when to stop if fast algorithms don't exist
ves a locally checkable itten as $\boldsymbol{A}=B \circ C_{k}$
nery orhoods to local outputs
For each $\boldsymbol{k}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$:

- check all possible candidate functions B
- if any of them is good \rightarrow fast algorithm found!

Normal forms

Any algorithm \boldsymbol{A} that solves a locally checkable problem X fast can be written as $\boldsymbol{A}=B \circ C_{k}$

- $C_{k}=$ distance $-k$
- $B=$ finite func Computational complexity: neighborhoods typically doubly-exponential in k
For each $\boldsymbol{k}=\mathbf{1}, \mathbf{2}, \mathbf{3}$, ..
- check all possible candidate functions B
- if any of them is good \rightarrow fast algorithm found!

Sometimes doable!

- Natural problems often solvable with a small k

Sometimes doable!

- Natural problems often solvable with a small k
- We can make it more feasible in practice:
- more "compact" normal forms,
e.g. distance-k coloring \rightarrow ruling set

Sometimes doable!

- Natural problems often solvable with a small k
- We can make it more feasible in practice:
- more "compact" normal forms, e.g. distance-k coloring \rightarrow ruling set
- represent "candidate B is good for this value of $k^{\prime \prime}$ as a Boolean formula and use modern SAT solvers to find such a B

Sometimes doable!

-Example: 4-coloring in grids

- Computers were much faster than human beings in figuring out that this is solvable in $O\left(\log ^{*} n\right)$ rounds

Cycles, paths

solution \approx
execution history of a finite automaton

Many questions (efficiently) decidable

Grids

solution \approx
execution history of
a Turing machine

Many questions undecidable (but there is hope!)

Cycles, paths

solution \approx
execution history of a finite automaton

Grids + beyond

solution \approx execution history of a Turing machine

Bad news apply to any graph family that contains large grids

Cycles, paths

What is here between paths and grids?

Big picture:
 meta-computational questions and algorithms synthesis

Meta questions

- Designing algorithms that design algorithms?
- Studying the computational complexity of studying computational complexity?
- Using computation (in practice) to understand computation (in theory)?

Verification \& synthesis

- Algorithm verification:
- given problem P and algorithm A
- does A solve P ?
- Algorithm synthesis:
- given problem P
- find an algorithm A that solves P ?

Verification \& synthesis

- Algorithm verification often hard
- recall: halting problem
- Algorithm synthesis can be easier!
- verification must handle arbitrary algorithms
- synthesis can produce "nice" algorithms

Conclusions

Take-home messages

- Algorithm design can be made systematic and mechanical, even computers can do it!
- we need the right representations for
computational problems \& algorithms
- this is not machine learning - but is this Al?
- Key concepts:
- meta-computational problems
- algorithm verification vs. algorithm synthesis

