Distributed algorithms for edge dominating sets

Jukka Suomela

Helsinki Institute for Information Technology HIIT University of Helsinki, Finland

Braunschweig,
2 November 2010

Edge dominating sets

- Simple undirected graph $G=(V, E)$
- Edge dominating set $D \subseteq E$: each edge is in D or adjacent at least one edge in D

Edge dominating sets

- Any maximal matching is an edge dominating set

- But edge dominating sets are not necessarily matchings

Edge dominating sets

- Any minimum maximal matching is a minimum edge dominating set
- Allan \& Laskar 1978, Yannakakis \& Gavril 1980
- But minimum edge dominating sets are not necessarily matchings

Edge dominating sets

- NP-hard (and APX-hard) optimisation problem
- Simple 2-approximation algorithm: find any maximal matching

Edge dominating sets

- NP-hard (and APX-hard) optimisation problem
- Simple 2-approximation algorithm: find any maximal matching
- What about distributed approximation algorithms?
- In very weak models of distributed computing
- Deterministic algorithms, port-numbering model
- Can't find maximal matchings...

Port-numbering model

- Identical nodes, no unique identifiers
- Port numbers:
- Node of degree d can
 refer to its neighbours by integers 1, 2, ..., d
- Worst-case analysis:
- Port-numbering chosen by adversary

Port-numbering model

- Focus:
- Deterministic distributed algorithms
- Port-numbering model
- No restrictions on message size, local computation, ...
- Weak model:

- Can't break symmetry in cycles
- Can't find graph colouring, maximal matching, ...

Edge dominating sets in port-numbering model

- Problem simple to state: exactly how well can we approximate minimum edge dominating sets
- using deterministic distributed algorithms, in the port-numbering model
- But why would we care?
- Let's have a look at some classical graph problems from this perspective...

Some classical graph problems in port-numbering model

	Node-based	Edge-based
Covering problems	vertex cover	edge cover
	dominating set	edge dominating set
Packing problems	independent set	matching

Some classical graph problems in port-numbering model

Some classical graph problems in port-numbering model

	Node-based	Many non-trivial
Covering problems	vertex cover	IISC 2008,
		But trivial lower bounds! (cycles, cliques, etc.)
	dominating set	
Packing problems	independent set	

Some classical graph problems in port-numbering model

Edge-based covering problems in port-numbering model

- Minimum edge cover seems to be a bit too simple: factor 2 approximation is trivial and tight
- But what about minimum edge dominating sets?
- Surprise: both upper bounds and lower bounds are non-trivial!
- Contribution: full characterisation of approximability of edge dominating sets in regular graphs and bounded-degree graphs

Edge dominating sets: deterministic algorithms in port-numbering model

Graph family		Approximation ratio
d-regular graphs	$d=1,3, \ldots$	$4-6 /(d+1)$
	$d=2,4, \ldots$	$4-2 / d$
graphs with degree $\leq \Delta$	$\Delta=3,5, \ldots$	$4-2 /(\Delta-1)$
	$\Delta=2,4, \ldots$	$4-2 / \Delta$

Tight results: these are both lower bounds and upper bounds

Edge dominating sets: deterministic algorithms in port-numbering model

Graph family		Approximation ratio	Time
d-regular graphs	$d=1,3, \ldots$	$4-6 /(d+1)$	$O\left(d^{2}\right)$
	$d=2,4, \ldots$	$4-2 / d$	$O(1)$
graphs with degree $\leq \Delta$	$\Delta=3,5, \ldots$	$4-2 /(\Delta-1)$	$O\left(\Delta^{2}\right)$
	$\Delta=2,4, \ldots$	$4-2 / \Delta$	$O\left(\Delta^{2}\right)$

Tight approximation ratios achievable in $f(\Delta)$ time, $f(n)$-time algorithms cannot do any better

Edge dominating sets: deterministic algorithms in port-numbering model

Graph family		Approx.
d-regular graphs	$d=1$	1
	$d=2$	3
	$d=3$	2.5
	$d=4$	3.5
	$d=5$	3
	$d=6$	$3.666 \ldots$
	$d=\infty$	4

Graph family		Approx.
graphs with degree $\leq \Delta$	$\Delta=1$	1
	$\Delta=2$	3
	$\Delta=3$	3
	$\Delta=4$	3.5
	$\Delta=5$	3.5
	$\Delta=6$	$3.666 \ldots$.
	$\Delta=\infty$	4

Lower bound construction: some key ideas

- Case: d-regular graphs, $d=2 k$
- Complete bipartite graph $K_{d, d-1}$
- k extra edges (optimal solution)

Lower bound construction: some key ideas

- Idea: show that there is a port-numbering s.t. any deterministic algorithm has to output a spanning 2 -regular subgraph
- I.e., a 2 -factor (spanning set of disjoint cycles)

Lower bound construction: some key ideas

- Petersen (1891): any $2 k$-regular graph admits a 2-factorisation (partition in 2-factors)

Lower bound construction: some key ideas

- Use 2-factorisation to assign port numbers:
- $1,2,1,2, \ldots$ in each cycle of 1 st factor, $3,4,3,4, \ldots$ in each cycle of $2 n d$ factor, etc.

Lower bound construction: some key ideas

- Then we can use covering maps to argue that any algorithm must take all or nothing from each 2 -factor

Lower bound construction: some key ideas

- Then we can use covering graphs to argue that any algorithm must take all or nothing from each 2 -factor
- That's it for even degrees the case of odd degrees is more difficult
- There is always some amount of symmetry-breaking information in port-numbered graphs of odd degree (recall Naor \& Stockmeyer 1995)

Lower bound:
3-regular

Lower bound:

5-regular

Algorithm: ≥ 45
(case 1)

Algorithm: ≥ 45
(case 2)

Upper bounds: some key ideas

- Exploit all possible sources of symmetry-breaking information:
- Different node degrees: interpret degrees as colours
- Odd degrees: there is a "distinguishable neighbour"
- And when symmetry can't be broken, find a 2-matching (paths and cycles)
- On average 1 edge per node
- Tricky part: show that this is enough!

Upper bounds: some key ideas

- Some intuition...
- A really bad case:
- 4 edges in algorithm output

optimum
- 1 edge in optimal solution
- What if we had this kind of configuration "everywhere" in a regular graph?
- Approximation factor $=4$?

Upper bounds: some key ideas

- This could happen in an infinite graph but not in a finite graph!
- Simple counting argument, different types of endpoints
- We can always achieve better than 4-approximation
- General case: a bit tedious case analysis, double-counting...

Distributed algorithms for edge dominating sets - summary

- Small edge dominating sets, port-numbering model, deterministic algorithms
- Best possible approximation factors, exactly matching upper and lower bounds
- Open problem:
- Can you do better in time $f(\Delta)$ if you have unique identifiers instead of mere port numbering?

