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Edge dominating sets

• Simple undirected graph G = (V, E)

• Edge dominating set D ⊆ E: each edge is
in D or adjacent at least one edge in D
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Edge dominating sets

• Any maximal matching 
is an edge dominating set

• x
x

• But edge dominating sets
are not necessarily matchings
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Edge dominating sets

• Any minimum maximal matching 
is a minimum edge dominating set

• Allan & Laskar 1978,
Yannakakis & Gavril 1980

• But minimum edge dominating sets
are not necessarily matchings
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Edge dominating sets

• NP-hard (and APX-hard) optimisation problem

• Simple 2-approximation algorithm:
find any maximal matching
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Edge dominating sets

• NP-hard (and APX-hard) optimisation problem

• Simple 2-approximation algorithm:
find any maximal matching

• What about distributed approximation algorithms?

• In very weak models of distributed computing
• Deterministic algorithms, port-numbering model

• Can’t find maximal matchings…
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Port-numbering model
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• Identical nodes,
no unique identifiers

• Port numbers:
• Node of degree d can

refer to its neighbours
by integers 1, 2, ..., d

• Worst-case analysis:
• Port-numbering chosen

by adversary
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Port-numbering model
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• Focus:
• Deterministic distributed algorithms

• Port-numbering model

• No restrictions on message size,
local computation, …

• Weak model:
• Can’t break symmetry in cycles

• Can’t find graph colouring, maximal matching, …
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Edge dominating sets
in port-numbering model

• Problem simple to state:
exactly how well can we approximate
minimum edge dominating sets

• using deterministic distributed algorithms,
in the port-numbering model

• But why would we care?

• Let’s have a look at some classical
graph problems from this perspective…
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Some classical graph problems
in port-numbering model
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Node-based Edge-based

CoveringCovering
problems

Packing
problems

vertex cover edge cover

dominating set edge dominating set

independent set matching



Some classical graph problems
in port-numbering model
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Node-based Edge-based

CoveringCovering
problems

Packing
problems

vertex cover edge cover

dominating set edge dominating set

independent set matching

Many packing problems are
unsolvable for trivial reasons

(impossibility of symmetry breaking in cycles)



Some classical graph problems
in port-numbering model
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Node-based Edge-based

CoveringCovering
problems

Packing
problems

vertex cover edge cover

dominating set edge dominating set

independent set matching

Many non-trivial 
positive results
(SPAA 2008, DISC 2008, 
DISC 2009, SPAA 2010,

DISC 2010, …)

But trivial
lower bounds!

(cycles, cliques, etc.)



Some classical graph problems
in port-numbering model
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Node-based Edge-based

CoveringCovering
problems

Packing
problems

vertex cover edge cover

dominating set edge dominating set

independent set matching

But do we know
anything about

edge-based
covering problems

in this setting?



Edge-based covering problems
in port-numbering model
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• Minimum edge cover seems to be a bit too simple:
factor 2 approximation is trivial and tight

• But what about minimum edge dominating sets?

• Surprise: both upper bounds and
lower bounds are non-trivial!

• Contribution: full characterisation of
approximability of edge dominating sets
in regular graphs and bounded-degree graphs



Edge dominating sets: deterministic 
algorithms in port-numbering model

Graph familyGraph family Approximation ratio

d-regular d = 1, 3, ...d-regular
graphs d = 2, 4, ...

graphs with Δ = 3, 5, ...graphs with
degree ≤ Δ Δ = 2, 4, ...

4 − 6/(d + 1)

4 − 2/d

4 − 2/(Δ − 1)

4 − 2/Δ
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Tight results: these are
both lower bounds and upper bounds



Edge dominating sets: deterministic 
algorithms in port-numbering model

Graph familyGraph family Approximation ratio Time

d-regular d = 1, 3, ...d-regular
graphs d = 2, 4, ...

graphs with Δ = 3, 5, ...graphs with
degree ≤ Δ Δ = 2, 4, ...

4 − 6/(d + 1) O(d2)

4 − 2/d O(1)

4 − 2/(Δ − 1) O(Δ2)

4 − 2/Δ O(Δ2)
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Tight approximation ratios achievable in f(Δ) time,
f(n)-time algorithms cannot do any better



Edge dominating sets: deterministic 
algorithms in port-numbering model

Graph familyGraph family Approx.

d-regular d = 1d-regular
graphs d = 2

d = 3

d = 4

d = 5

d = 6

d = ∞

1

3

2.5

3.5

3

3.666…
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Graph familyGraph family Approx.

graphs with Δ = 1graphs with
degree ≤ Δ Δ = 2

Δ = 3

Δ = 4

Δ = 5

Δ = 6

Δ = ∞

1

3

3

3.5

3.5

3.666…
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Lower bound construction:
some key ideas
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• Case: d-regular graphs, d = 2k

• Complete bipartite graph Kd,d−1

• k extra edges (optimal solution)



Lower bound construction:
some key ideas
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• Idea: show that there is a port-numbering
s.t. any deterministic algorithm has to
output a spanning 2-regular subgraph

• I.e., a 2-factor (spanning set of disjoint cycles)



Lower bound construction:
some key ideas
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• Petersen (1891): any 2k-regular graph admits
a 2-factorisation (partition in 2-factors)

= + +



Lower bound construction:
some key ideas
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• Use 2-factorisation to assign port numbers:
• 1, 2, 1, 2, … in each cycle of 1st factor,

3, 4, 3, 4, … in each cycle of 2nd factor, etc.

= + +
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Lower bound construction:
some key ideas
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• Then we can use covering maps to argue
that any algorithm must take all or nothing
from each 2-factor

! + +
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Lower bound construction:
some key ideas
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• Then we can use covering graphs to argue
that any algorithm must take all or nothing
from each 2-factor

• That’s it for even degrees —
the case of odd degrees is more difficult

• There is always some amount of symmetry-breaking
information in port-numbered graphs of odd degree
(recall Naor & Stockmeyer 1995)
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Lower bound:
3-regular
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Lower bound:
5-regular
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Algorithm: ≥ 45
(case 1)
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Algorithm: ≥ 45
(case 2)
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Optimum: 15



Upper bounds: some key ideas
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• Exploit all possible sources of
symmetry-breaking information:

• Different node degrees: interpret degrees as colours

• Odd degrees: there is a “distinguishable neighbour”

• And when symmetry can’t be broken,
find a 2-matching (paths and cycles)

• On average 1 edge per node

• Tricky part: show that this is enough!



Upper bounds: some key ideas
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• Some intuition…

• A really bad case:
• 4 edges in algorithm output

• 1 edge in optimal solution

• What if we had this kind of
configuration “everywhere”
in a regular graph?

• Approximation factor = 4?

algorithm

optimum



Upper bounds: some key ideas
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• This could happen
in an infinite graph
but not in a finite graph!

• Simple counting argument,
different types of endpoints

• We can always achieve
better than 4-approximation

• General case: a bit tedious
case analysis, double-counting…

algorithm

optimum



Distributed algorithms for
edge dominating sets — summary

• Small edge dominating sets,
port-numbering model,
deterministic algorithms

• Best possible approximation
factors, exactly matching
upper and lower bounds

• Open problem:
• Can you do better in time f(∆)

if you have unique identifiers
instead of mere port numbering?

32


