Locality and
distributed
scheduling

Distributed scheduling

. scheduling:
o encoded as a string
. RAM model, Turing machines
o encoded as a string

. scheduling:

e can mean !

Big data Network

perspective algorithms

- for "How to schedule
my laptop to solve, radio transmissions
I'll have to resort to in a large network

Amazon cloud”
I?”

Big data
perspective

Network
algorithms

Big data
perspective

 Focus:

* Distributed
perspective
us

Network
algorithms

 Focus:

* Distributed
perspective
additional

Big data Network

perspective algorithms
* Fully centralized * No centralized
control control

. perspective - perspective

Big data
perspective

* | know
about input

* | need to know
about

solution

Network
algorithms

* Each node knows its
of input
* e.g. local constraints

« Each node needs Its
of solution

* e.g. when to switch on?

Big data
perspective

» Explicit input

* encoded as a string,

stored on my laptop

 Well-known
network structure

» tightly connected
cluster computer

Network
algorithms

 [mplicit input

 Unknown
network structure

* e.g. entire global
Internet right know

Big data
perspective

Can we divide
problem iIn

that can be solved
?

Network
algorithms

If each node is
only aware of its

can we nevertheless
find a

J

?

Big data
perspective

* Closely related
to

that
can be solved
In parallel

Network
algorithms

« Somewhat related
to
and
property testing

* making decisions

Big data
perspective

» Computationally
intensive problems

* Finding
solutions

Network
algorithms

» Computationally
easy problems

* Finding
solutions

Big data
perspective

* Models of
computing:

* bulk synchronous
parallel ()

Network
algorithms

* Models of
computing:

Big data
perspective

Network
algorithms

Big data
perspective

Network
algorithms

LOCAL model

* |nitial knowledge:
* local input, number of neighbors

« Communication round:
message to each neighbor
message from each neighbor
state
* possibly:

LOCAL model
Equivalent:

* number of synchronous

do we need to look
in the graph

Fast algorithm < highly “localized” solution

Scheduling &
network algorithms

What are relevant and interesting scheduling
problems to study here?

1. What kind of scheduling Ig
networks?

2. What kind of scheduling problems
(efficiently) in networks?

Scheduling &
network algorithms

Not necessarily intersection:

1. We can ask we could solve this
* e.g. what is the power of

2. We can of solvabillity,
without specific applications in mind

e cf.” " In centralized setting

Scheduling &
network algorithms

* Interesting scheduling problems are
usually

* nodes need to take actions, and scheduling
constraints can be represented as (labelled) edges

* Prime example:

Fractional graph coloring

* edge {u, v} = nodes u and v cannot be active
simultaneously

* Each node has to do
* can be generalized to weighted graphs

 Schedule activities,

Fractional graph coloring

* edge {u, v} = nodes u and v cannot be active
simultaneously

e Set of active nodes =
. list of independent sets + time spans
. each node knows its own schedule

[Fractional] graph coloring

1 unit of work can be divided arbitrarily
* |.e.

. atomic jobs
° |.€.
* w.l.0.g. Jobs may start at times O, 1, ... only
» “color” of a node = time slot

[Fractional] graph coloring

. . €.g. scheduling
radio transmissions in a non-interfering manner

. . coordinating activities
of nodes in a distributed algorithm

* e.g.: constructing a maximal independent set

Graph coloring &
network algorithms

* edge {u, v}. nodes u and v interfere with each other

* edge {u, v}. nodes u and v can talk to each other

* Interesting case:

Graph coloring &
network algorithms

* typical:
 worst case: conflict < nodes close to each other

 often not literally true if G = physical network

* but we can interpret H as a , and
efficiently any communication in H by
message-passing in G (with constant overhead)

Graph coloring &
network algorithms

* Toy example:
* you are a node in the middle of a long cycle
* you can talk to your neighbors
. ?ventually you need to announce

b

* how many (parallel)
are needed?

Graph coloring &
network algorithms

* Toy example:

» Simple randomized algorithm

Graph coloring &
network algorithms

* Toy example:

» Simple randomized algorithm:
» everybody picks a random color from {1, 2, 3}
» check with your neighbors, stop if good for you
* O(log n) rounds until everybody stops w.h.p.

Graph coloring &
network algorithms

* Toy example:
» Simple randomized algorithm: O(log n)

* No deterministic algorithm: why?

Graph coloring &
network algorithms

* Toy example:
» Simple randomized algorithm: O(log n)

* No deterministic algorithm:

everyone has the

— everyone sends the
— everyone receives the
— everyone has the

Graph coloring &
network algorithms

* Toy example:
» Simple randomized algorithm: O(log n)

* No deterministic algorithm — unless some
information is provided

» Standard assumption:

Graph coloring &
network algorithms

* Toy example:

 Assume each node has a
from {1, 2, ..., poly(n)}
* e.g. IP address, MAC address, ...
 we will assume a
* note: random identifiers are unique w.h.p.

Graph coloring &
network algorithms

* Toy example:
 \We have now a

* input: coloring with (unique IDs)
 output: coloring with

Graph coloring &
network algorithms

* Toy example:
 \We have now a

* input: coloring with
 output: coloring with

Graph coloring &
network algorithms

* Toy example:

 \We can

* 1 round:
* 1 round:
* 1 round:

* Approx.

color reduction steps:
colors — 12 colors
colors — 4 colors
colors — 3 colors

rounds: kK — 3 colors

Graph coloring &
network algorithms

« distributed complexity rounds
» upper bound: Cole & Vishkin (1986)
 lower bound: Linial (1992)

* even if we promise that the cycle is even,
we will need rounds

Graph coloring &
network algorithms

e 2 colors: rounds
e 3 colors: rounds
e 4 colors: rounds ...

. time units: rounds [not practical]

Graph coloring &
network algorithms
* Graph coloring in 2D grids:
» 3 colors: ©(n) rounds
* 4 colors: ©(log” n) rounds [surprisel]
» 5 colors: ©(log* n) rounds ...

* Fractional graph coloring in 2D grids:
e 5+¢ time units: O(1) rounds [not practical]

Graph coloring &
network algorithms

* Graph coloring, max degree < A:
» A colors: polylog(n) rounds [assuming A = 3]
« A+1 colors: O(log® n) rounds [assuming A= O(1)]

* Fractional graph coloring:
o A+1+¢ time units: O(1) rounds [not practical]

Examples
of scheduling
problems

Scheduling &
network algorithms

» Graph coloring

* vertex coloring with colors, A colors

* edge coloring with colors, colors
* coloring trees with 3 colors

» “defective” and "weak” colorings

* large cuts ...

Scheduling &
network algorithms

» Graph coloring
* note that we do not try to find e.g. optimal colorings

* we are usually happy with a
that

* typically coloring is used as a subroutine
» overall running time =

f ,)

Scheduling &
network algorithms

» Graph coloring

 Fractional coloring

* finding a schedule of length

Scheduling &
network algorithms

» Graph coloring
 Fractional coloring

» List coloring

* coloring with lists of length

Scheduling &
network algorithms

» schedule = list of + time spans

* nodes can also “cover” their neighbors

» each node has to be “covered” all the time

* each node can be active for only 1 time unit in total
* e.g. battery-powered sensors

Scheduling &
network algorithms

» schedule = list of + time spans
. e
» optimal schedule length <

 can find solutions of length

Scheduling &
network algorithms

* input: “configurations” A and B

» output: schedule for “smoothly” switching from A
to B without interfering with the network operation

« example:

Recoloring problems

* Input: A and B

* Output: schedule that tells how to turn
coloring A into coloring B

 at each time step, only non-adjacent nodes can
change their colors

* each intermediate step has to be a

Recoloring problems

* Input: A and B

* Output: schedule that tells how to turn
coloring A into coloring B

* Typically hard, global problems

* relax the constraints slightly...

Recoloring problems

* Input: A and B

* Output: schedule that tells how to turn
coloring A into coloring B

 at each time step, only non-adjacent nodes can
change their colors

* each intermediate step has to be a

Recoloring problems

* Input: A and B

* Output: schedule that tells how to turn
coloring A into coloring B with ¢ extra colors

* How can we do it (number of rounds)?

 What iIs the ?

Recoloring problems: trees

Schedule Time
length (rounds)

2 0

2 1 O(1) O(n)

3 0 O(n) O(n)

3 1 O(1) O(log n)
3 2 O(1) 0

4 0 O(log n) O(log n)

Examples of
some recent work

Introducing a little bit
of heavy machinery...

Some basic definitions needed first

LCL problems

» Assumption throughout this part:
y (A=0(1))

* O(1) input labels, O(1) output labels

* feasibility checkable locally: solution is globally good
if it looks good in all O(1)-radius neighborhoods

* Naor & Stockmeyer (1995)

LCL problems

« Examples of

« graph coloring with 5 colors
* recoloring in at most 100 steps

* These are LCL problems:
» optimal graph coloring
* fractional graph coloring
* recoloring in general

LCL problems

« Examples of

« graph coloring with 5 colors
* recoloring in at most 100 steps

* These are LCL problems:
 optimal graph coloring: how to verify locally?
» fractional graph coloring: unbounded output size
* recoloring in general: unbounded output size

LCL problems

* Rich theory of LCL problems,
lots of recent progress

* Let’'s see how it helps with the following
problem:
* clearly an

* highly problem — try to design
an efficient algorithm in the LOCAL model!

Approach 1: gap theorems

* Theorem: In , time complexity of
any LCL problem is , , Or

(Brandt et al. 2017)

Approach 1: gap theorems

* Theorem: In , time complexity of
any LCL problem is , , Or

* Theorem: In bounded-degree graphs,
IS possible In time

(Panconesi & Srinivasan 1995)

Approach 1: gap theorems

* Theorem: In , time complexity of
any LCL problem is , ,or

* Theorem: In bounded-degree graphs,
IS possible In time

» Corollary: IS
possible In time

Approach 2: using computers

* In 2D grids, any LCL problem that can be
solved in ©O(log* n) time can also be solved
with a

1. always the same
2. finite
* We can to find

the problem-specific part!

Recap

* Network algorithms

» Key questions about
scheduling problems:
* |s this problem
* given a solution, can you
* iS it an problem?

it locally?

Big data
perspective

Network
algorithms

Big data
perspective

]
/1N
agagla’

I X
A
Nt/
]

Network
algorithms

e unlimited bandwidth
* unlimited local

computation

* only distance matters

Big data
perspective

]
/1N
agagla’

I X
A
Nt/
]

Network
algorithms

* just like LOCAL,
but with limited

Big data Network

perspective algorithms
* p computers * just Iil_<e L_O_CAL,
» each holds 1/p of input, but with limited

needs 1/p of output

 computers can
talk to each other

* limited

Big data Network

perspective algorithms
* no need for concept * inherently related
of “network”, everyone to networks
can talk to everyone » inherently related
* no need to have to graph problems
graph problems » network structure =
* any input encoded input graph

as a string is fine

Big data Network
perspective algorithms

What if we studied
network algorithms
on

graphs?

Big data Network

perspective algorithms
* a special case of BSP: * a special case of
n processors, CONGEST:
n log n bandwidth network = n-clique

* but we don't care about * input graph is some
local computation subgraph of the clique

Scheduling &
congested clique

* L ots of work related to
« connectivity, shortest paths, subgraph detection ...

 But what is known about
?

* many efficient algorithms need to split “work”
between “workers” in a nontrivial manner

* is this something we could formalize & study?

Summary

* If someone is studying *
’, ask what they mean by it...

11 b

. and
" very different concepts
» focus on computation vs. communication
* some bridging models exist, though
» scheduling relevant in all of these models

14

