
ar
X

iv
:2

30
5.

07
35

1v
2

 [
cs

.D
C

]
 1

5
M

ay
 2

02
3

Distributed derandomization revisited

Sameep Dahal · Aalto University, Finland

Francesco d’Amore · Aalto University, Finland

Henrik Lievonen · Aalto University, Finland

Timothé Picavet · Aalto University, Finland · ENS de Lyon, France

Jukka Suomela · Aalto University, Finland

Abstract. One of the cornerstones of the distributed complexity theory is the derandomiza-
tion result by Chang, Kopelowitz, and Pettie [FOCS 2016]: any randomized LOCAL algorithm
that solves a locally checkable labeling problem (LCL) can be derandomized with at most ex-
ponential overhead. The original proof assumes that the number of random bits is bounded
by some function of the input size. We give a new, simple proof that does not make any such
assumptions—it holds even if the randomized algorithm uses infinitely many bits. While at it,
we also broaden the scope of the result so that it is directly applicable far beyond LCL problems.

1 Introduction

Distributed derandomization. A long line of recent work has led to a near-complete un-
derstanding of the distributed computational complexity of locally checkable labeling problems

(LCLs) [Suo20]. These are graph problems that can be defined by giving a finite list of feasible
local neighborhoods [NS95]; for example, c-coloring in graphs of maximum degree ∆ (for some
fixed c and ∆) is an LCL problem.

We are in particular interested in the round complexity of LCLs in two standard models
of distributed computing: deterministic and randomized versions of the LOCAL model [Lin92,
Pel00]. One of the cornerstones of the distributed complexity theory is the derandomization
result by Chang, Kopelowitz, and Pettie [CKP19, Theorem 3.1]:

Theorem 1 (Chang, Kopelowitz, and Pettie). Let Arand be a randomized LOCAL algorithm that

solves an LCL problem P in Trand(n) communication rounds in n-node graphs with probability

at least 1− 1/n. Then there is a deterministic LOCAL algorithm Adet that solves P in Tdet(n)

rounds, where Tdet(n) = Trand

(

2n
2)

.

But what do we mean, precisely, when we say that Arand is a randomized algorithm in the
LOCAL model? Chang, Kopelowitz, and Pettie [CKP19] assume that there is some upper bound
r(n) on the number of random bits used by a node. This is a non-standard definition; while
many reasonable algorithms naturally satisfy this, formally speaking it is not compatible with
e.g. a randomized algorithm in which each node picks a number from a geometric distribution
by repeated Bernoulli trials. All other results that build on Theorem 1 are also influenced by
this assumption; the foundations of the field are on a bit shaky ground.

New result: unbounded randomness. In this short note we prove a stronger version of
Theorem 1. Our proof does not need to assume anything about the number of random bits
consumed by a node. Hence, we can now safely conclude that all corollaries of Theorem 1 also
hold in the standard randomized LOCAL model, in which local computation—including the
number of random bits generated—is unbounded.

Similar to [CKP19], we assume that n and Trand (or sufficiently tight bounds on them)
are known. Similar to [CKP19], the proof is constructive and Adet is a uniform, computable,
deterministic algorithm. The only difference is that we assume less about Arand.

1

http://arxiv.org/abs/2305.07351v2

Prior
work

This
work

Arand[f]

Arand[f] Anorm

Find f

Find Anorm

Run Arand[f]

Run Anorm

Existence proof

One-time local
computation:

0 rounds

Distributed
computation:

Trand

(

2n
2)

rounds

Figure 1: Proof strategy in this work and prior work [CKP19].

Key new ideas. Exactly like Chang, Kopelowitz, and Pettie [CKP19, Theorem 3.1], we start

by defining N = 2n
2

. Then even though we are working in an n-node graph, we lie to Arand

that we have a graph with N nodes. The running time increases to Trand(N), but the success
probability improves to 1 − 1/N , which is large enough to show that there exists a mapping f
from unique identifiers to random bits that works for every n-node graph.

At this point our paths deviate—see Figure 1 for an illustration. In [CKP19, Theorem 3.1],
Adet is constructed as follows: Each node checks each possible mapping f , and picks the first
one that works for every n-node graph; then Adet simply simulates Arand with random bits from
f . This is where they make use of bounded randomness: for a fixed n there are only finitely
many possible functions f to check.

We proceed as follows—instead of looking at the internal behavior of the algorithm we look
at its external behavior :

1. Since a good mapping f exists, we could in principle hard-code this specific mapping to
obtain a deterministic algorithm A = Arand[f]. At this point we merely know that A
exists—this step is non-constructive, and A might not even be computable.

2. However, any deterministic LOCAL algorithm can be represented in a normal form as a
function Anorm that maps each possible Trand(N)-radius neighborhood to a local output.
Since A exists, we know that such a function Anorm also exists and solves P correctly in
all n-node graphs.

3. Now Adet simply finds the first valid Anorm, and then simulates Anorm.

This way we can construct a computable, uniform, deterministic algorithm Adet even if we merely
know that Arand exists, and even if Arand is non-computable or non-uniform.

Two extensions. While Theorem 1 was originally presented for LCL problems, our new proof
works for a broader class of problems: we show how to handle labeling problems that are defined
component-wise. The proof is given in Section 3; Theorem 1 then follows as a special case.

We also briefly discuss in Section 4 one extension: how to derandomize algorithms that are
only guaranteed to work in connected graphs. A bit more care is needed when we lie about the
number of nodes in that case.

2 Preliminaries

Let G = (V,E) denote a simple undirected graph. For any two nodes u, v ∈ V , we denote their
distance by d(u, v), i.e., the number edges in a shortest path connecting u to v; if such path
does not exist, then d(u, v) = +∞. Furthermore, by deg(v) we denote the degree of v, i.e., the
number of incident edges.

2

LOCAL model. Let G = (V,E) be any graph with n nodes. In the deterministic LOCAL

model, each node v ∈ V is given a unique identifier id(v) ∈ {1, 2, . . . , nc} for some constant c ≥ 1.
The initial knowledge of a node consists of its own identifier, its degree, the number of nodes n
and (possibly) an input label. Each node runs the same algorithm and computation proceeds
in synchronous rounds. In each round, nodes send messages of arbitrary size to their neighbors,
then receive some messages, and then perform local computations of arbitrary complexity. After
some number of rounds, a node must terminate its computation and decide on its local output.
The running time (or complexity) of a distributed algorithm is defined as the number of rounds
needed by all nodes to decide the local output.

In the randomized LOCAL model, each node is also given access to an infinite random bit
stream, and the bit streams of the nodes are mutually independent. We say that an algorithm
is uniform if the size of the description of the algorithm does not depend on n.

For any fixed locality T , the LOCAL model can also be viewed as a mapping from each
radius-T neighborhood NT [v] of each node v to a local output. Here by NT [v] we mean the
graph (V ′, E′), where V ′ ⊆ V is the set of all nodes u ∈ V (G) with d(v, u) ≤ T and E′ is
the set of edges {s, t} ∈ E with d(v, s) ≤ T − 1 and d(v, t) ≤ T . Each node of NT [v] is also
labeled with its original degree deg(u), unique identifier id(u), local input, and—for randomized
algorithms—its stream of random bits. This is exactly the information node v can gather in T
rounds.

Labeling problems. Let Σin be a finite set of input labels and Σout be a finite set of admissible
output labels. An input labeling of a graph G = (V,E) is a function λin : V → Σin, and an output

labeling is a function λout : V → Σout. A labeling problem P specifies for each graph and each
input labeling a set of feasible output labelings.

We say that P is a component-wise verifiable problem if for each graph G and each connected
component C of G, the set of valid output labelings restricted to C only depends on C.

Let r ∈ N be a constant. We say that P is a locally verifiable problem with verification radius
r if for each graph G and each node v of G, the set of valid output labelings restricted to Nr[v]
only depends on Nr[v].

We note that LCL problems [NS95] are a special case of locally verifiable problems with a
constant bound on the degree of the nodes. Locally verifiable problems are in turn a special case
of component-wise verifiable problems.

3 Main result

We give the derandomization result directly for component-wise verifiable problems; Theorem 1
then follows as a corollary.

Theorem 2. Let Arand be a randomized LOCAL algorithm that solves a component-wise ver-

ifiable problem P in Trand(n) communication rounds in n-node graphs with probability at least

1− 1/n. Then there is a deterministic LOCAL algorithm Adet that solves P in Tdet(n) rounds,

where Tdet(n) = Trand

(

2n
2)

.

Proof. Consider any sufficiently large n, and let N = 2n
2

. In what follows, we lie to algorithm
Arand that the input graph consists of N nodes. Hence, it runs in time T := Trand(N) = Tdet(n)
and succeeds with probability 1− 1/N .

Let Rn = {f : {0, 1}c logn → {0, 1}N} be the family of all possible assignments of random
bits streams to unique identifiers. For f ∈ Rn, we write Arand[f] to denote the deterministic

LOCAL algorithm in which node v runs Arand but uses f(id(v)) as its random bit stream. Note
that Arand is equivalent to the following process: choose f ∈ Rn uniformly at random and apply
Arand[f].

Let Gn be the set of all possible inputs (G, id, λin), where G is an n-node graph, id is a unique
identifier assignment, and λin is an input labeling. We know that

|Gn| ≤ 2(
n

2
) · 2cn log n · |Σin|

n < N = 2n
2

3

for a large enough n. We say that f is good if Arand[f] outputs a valid solution for every input
in family Gn.

Now, we show there exists a good f . Let F be a uniform random variable over Rn. Then

Pr(F is bad) ≤
∑

G∈Gn

Pr(Arand[F] fails on G) =
∑

G∈Gn

Pr(Arand fails on G) ≤
|Gn|

N
< 1.

Therefore, Pr(F is good) > 0. Hence, there exists a good function; let f be any such function.
Thus, there is a deterministic algorithm A = Arand[f] that solves P on all inputs in Gn in at
most T rounds.

Any deterministic T -round algorithm in the LOCAL model defines a mapping Anorm from
radius-T neighborhoods to local outputs. Conversely, such a mapping Anorm can be interpreted
as a T -round algorithm. Furthermore, for a fixed n, there are only finitely many such mappings.

Now Adet works as follows: Given n, each node first enumerates all candidate mappings
Anorm in lexicographic order, checks if Anorm solves P for every Gn, and stops once the first such
Anorm is found. Then Adet uses T rounds so that each node v learns its radius-T neighborhood
NT [v], and finally each node applies mapping Anorm to NT [v] to determine its local output.

4 Technicality: connected graphs

In the proof of Theorem 2, a key step was that we lied about n. The algorithm cannot catch us
lying, as the n-node input graph G is indistinguishable from some hypothetical N -node input
graph G′ in which one connected component is isomorphic to G. As P was assumed to be
component-wise verifiable, an algorithm that succeeds globally in G′ also has to succeed locally
when restricted to G.

The proof heavily exploited graphs that may consist of multiple connected components. In
this section we briefly note that this is not necessary. We can prove the following version
of Theorem 2 that holds even if Arand only works correctly in connected graphs. However,
component-wise problems are too broad class of problems in this case, and we consider locally
verifiable problems instead:

Theorem 3. Let Arand be a randomized LOCAL algorithm that solves a locally verifiable problem

P in Trand(n) communication rounds in n-node connected graphs with probability at least 1−1/n.

Then there is a deterministic LOCAL algorithm Adet that solves P in O(Tdet(n)) rounds, where

Tdet(n) = Trand

(

2n
2)

.

Proof. Let t = Tdet(n) + r, where r is the verification radius of problem P . In algorithm Adet,
each node v first explores its radius-t neighborhood to determine if the entire input graph G is
contained in Nt[v]. If yes, we spend another t rounds to inform all nodes about G. In this case
all nodes have learned G, and we can solve P by brute force and stop.

Otherwise, we can proceed as we did in the proof of Theorem 2. We can now safely lie about
N . To see this, assume that Arand fails in some n-node graph G with probability more than
n/N if we lie that G has N nodes. Then the algorithm also has to fail locally in the radius-r
neighborhood of some node v with probability more than 1/N . Now it is possible to construct
an N -node graph G′ with node v′ such that radius-t neighborhood of v in G is isomorphic to
the radius-t neighborhood of v′ in G′ (here we exploit the fact that radius-t neighborhood of
v does not contain the entire graph G). As radius-t neighborhoods of v and v′ agree, and the
running time of Arand is t − r rounds, the output distributions of Nr[v] and Nr[v

′] also agree.
Now it follows that Arand fails locally in the radius-r neighborhood of v′ in G′ with probability
more than 1/N , and hence it also fails globally in G′ with probability more than 1/N , which
is a contradiction with the assumption that Arand solves P in connected N -node graphs with
probability at least 1− 1/N .

Now as long as we choose a large enough n such that |Gn| < N/n, the rest of the proof of
Theorem 2 goes through.

4

References

[CKP19] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between
randomized and deterministic complexity in the local model. SIAM Journal on Com-

puting, 48(1):122–143, 2019. doi:10.1137/17M1117537.

[Lin92] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

[NS95] Moni Naor and Larry J. Stockmeyer. What can be computed locally? SIAM Journal

on Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000.

[Suo20] Jukka Suomela. Landscape of locality (invited talk). In Proc. SWAT, 2020. URL:
https://jukkasuomela.fi/landscape-of-locality/, doi:10.4230/LIPIcs.SWAT.2020.2.

5

https://doi.org/10.1137/17M1117537
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://jukkasuomela.fi/landscape-of-locality/
https://doi.org/10.4230/LIPIcs.SWAT.2020.2

	1 Introduction
	2 Preliminaries
	3 Main result
	4 Technicality: connected graphs

