A local 2-approximation algorithm for the vertex cover problem

Matti Åstrand · Patrik Floréen · Valentin Polishchuk Joel Rybicki · <u>Jukka Suomela</u> · Jara Uitto

HIIT · University of Helsinki · Finland

DISC, Elche, Spain, 23 September 2009

Given a graph $\mathcal{G} = (V, E)$, find a smallest $C \subseteq V$ that covers every edge of \mathcal{G}

 i.e., each edge e ∈ E incident to at least one node in C

Classical NP-hard optimisation problem

Node = computer, edge = communication link, each node must decide whether it is in the cover C

Goals:

- deterministic algorithm
- running time independent of n = |V| (but may depend on maximum degree Δ)
- the best possible approximation ratio

Prior work

Kuhn et al. (2006):

• $(2 + \epsilon)$ -approximation in $O(\log \Delta / \epsilon^4)$ rounds

Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

• $(2 - \epsilon)$ -approximation requires $\Omega(\log^* n)$ rounds, even if $\Delta = 2$

What about 2-approximation?

Is it possible in $f(\Delta)$ rounds, for some f?

Prior work

Kuhn et al. (2006):

• $(2 + \epsilon)$ -approximation in $O(\log \Delta / \epsilon^4)$ rounds

Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

• $(2 - \epsilon)$ -approximation requires $\Omega(\log^* n)$ rounds, even if $\Delta = 2$

What about 2-approximation?

Is it possible in $f(\Delta)$ rounds, for some f? – Yes!

Deterministic 2-approximation algorithm for vertex cover

• Running time $(\Delta + 1)^2$ synchronous rounds

No O-notation needed here...

Deterministic 2-approximation algorithm for vertex cover

• Running time $(\Delta + 1)^2$ synchronous rounds

Surprise: node identifiers not needed

- Negative result for (2ϵ) -approximation holds even if there are unique node identifiers
- Our algorithm can be used in *anonymous networks*

Background: maximal matching

In a centralised setting, 2-approximation is easy: find a *maximal matching*, take all matched nodes

But matching requires $\Omega(\log^* n)$ rounds and unique identifiers

symmetry breaking!

Edge packing = edge weights from [0, 1], for each node $v \in V$, total weight on incident edges ≤ 1

Maximal, if no weight can be increased

Background: maximal edge packing

Maximal matching \implies maximal edge packing (matched: weight 1, unmatched: weight 0)

Background: maximal edge packing

Maximal matching requires symmetry breaking

Maximal edge packing does not

Background: maximal edge packing

Node *saturated* if total weight on incident edges = 1

Saturated nodes: 2-approximation of vertex cover (proof: LP duality)

Construct a 2-coloured *bipartite double cover*

Each original node simulates two nodes of the cover

Find a maximal matching in the 2-coloured graph Easy in $O(\Delta)$ rounds

Give $\frac{1}{2}$ units of weight to each edge in matching

Many possibilities...

Many possibilities...

Many possibilities...

Always: weight $\frac{1}{2}$ paths and cycles and weight 1 edges Valid edge packing

Not necessarily maximal – but all unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

In any graph:

Unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

$$\Delta = 3$$

In any graph:

Unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

Delete saturated edges

$$\Delta = 3 \rightarrow \Delta = 2$$

Each node has lost at least one neighbour

Remaining capacity of each node is exactly $\frac{1}{2}$

$$\Delta = 3 \rightarrow \Delta = 2$$

Repeat

Delete saturated edges

Each node has lost at least one neighbour

Remaining capacity of each node is exactly $\frac{1}{4}$

$$\Delta = 2 \rightarrow \Delta = 1$$

Repeat...

Repeat...

Maximum degree decreases on each iteration

Everything saturated in Δ iterations

Summary

Maximal edge packing in $(\Delta + 1)^2$ rounds

 \implies 2-approximation of vertex cover

