\square A local 2-approximation algorithm for the vertex cover problem

Matti Åstrand • Patrik Floréen • Valentin Polishchuk Joel Rybicki • Jukka Suomela • Jara Uitto

HIIT • University of Helsinki • Finland

DISC, Elche, Spain, 23 September 2009

\square Vertex cover

Given a graph $\mathcal{G}=(V, E)$, find a smallest
$C \subseteq V$ that covers every edge of \mathcal{G}

- i.e., each edge $e \in E$ incident to at least one node in C

Classical NP-hard optimisation problem

\square Vertex cover in a distributed setting

Node $=$ computer, edge $=$ communication link, each node must decide whether it is in the cover C

Goals:

- deterministic algorithm
- running time independent of $n=|V|$ (but may depend on maximum degree Δ)
- the best possible approximation ratio

\square Prior work

Kuhn et al. (2006):

- $(2+\epsilon)$-approximation in $O\left(\log \Delta / \epsilon^{4}\right)$ rounds

Czygrinow et al. (2008), Lenzen \& Wattenhofer (2008):

- ($2-\epsilon$)-approximation requires $\Omega\left(\log ^{*} n\right)$ rounds, even if $\Delta=2$

What about 2-approximation?
Is it possible in $f(\Delta)$ rounds, for some f ?

\square Prior work

Kuhn et al. (2006):

- $(2+\epsilon)$-approximation in $O\left(\log \Delta / \epsilon^{4}\right)$ rounds

Czygrinow et al. (2008), Lenzen \& Wattenhofer (2008):

- ($2-\epsilon$)-approximation requires $\Omega\left(\log ^{*} n\right)$ rounds, even if $\Delta=2$

What about 2-approximation?
Is it possible in $f(\Delta)$ rounds, for some f ? - Yes!

\square Contribution

Deterministic 2-approximation algorithm for vertex cover

- Running time $(\Delta+1)^{2}$ synchronous rounds

No O-notation needed here...

\square Contribution

Deterministic 2-approximation algorithm for vertex cover

- Running time $(\Delta+1)^{2}$ synchronous rounds

Surprise: node identifiers not needed

- Negative result for $(2-\epsilon)$-approximation holds even if there are unique node identifiers
- Our algorithm can be used in anonymous networks

\square Background: maximal matching

In a centralised setting,
2-approximation is easy:
find a maximal matching, take all matched nodes

But matching requires
$\Omega\left(\log ^{*} n\right)$ rounds and unique identifiers

- symmetry breaking!

\square Background: maximal edge packing

Edge packing = edge weights from $[0,1]$, for each node $v \in V$, total weight on incident edges ≤ 1

Maximal, if no weight can be increased

\square Background: maximal edge packing

Maximal matching \Longrightarrow maximal edge packing
(matched: weight 1 , unmatched: weight 0)

\square Background: maximal edge packing

Maximal matching requires symmetry breaking
Maximal edge packing does not

\square Background: maximal edge packing

Node saturated if total weight on incident edges $=1$
Saturated nodes: 2-approximation of vertex cover (proof: LP duality)

\square Finding an edge packing

Construct a 2-coloured bipartite double cover
Each original node simulates two nodes of the cover

\square Finding an edge packing

Find a maximal matching in the 2-coloured graph
Easy in $O(\Delta)$ rounds

\square Finding an edge packing

Give $\frac{1}{2}$ units of weight to each edge in matching

15/29

\square Finding an edge packing

Many possibilities. . .

16/29

\square Finding an edge packing

Many possibilities. . .

17/29

\square Finding an edge packing

Many possibilities. . .

18/29

\square Finding an edge packing

Always: weight $\frac{1}{2}$ paths and cycles and weight 1 edges
Valid edge packing

\square Finding a maximal edge packing

Not necessarily maximal - but all unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

\square Finding a maximal edge packing

In any graph:
Unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

$\Delta=3$

\square Finding a maximal edge packing

In any graph:
Unsaturated edges adjacent to two weight $\frac{1}{2}$ edges

Delete saturated edges

$$
\Delta=3 \rightarrow \Delta=2
$$

\square Finding a maximal edge packing

Each node has lost at least one neighbour

Remaining capacity of each node is exactly $\frac{1}{2}$

$$
\Delta=3 \rightarrow \Delta=2
$$

\square Finding a maximal edge packing

Repeat

24 / 29

\square Finding a maximal edge packing

Delete saturated edges

\square Finding a maximal edge packing

Each node has lost at least one neighbour

Remaining capacity of each node is

exactly $\frac{1}{4}$

$$
\Delta=2 \rightarrow \Delta=1
$$

\square Finding a maximal edge packing

Repeat...
$\Delta=1$

\square Finding a maximal edge packing

Repeat...
Maximum degree decreases
on each iteration
Everything saturated in
Δ iterations

\square Summary

Maximal edge packing in $(\Delta+1)^{2}$ rounds
\Longrightarrow 2-approximation of vertex cover

