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A local 2-approximation algorithm
for the vertex cover problem



Given a graph G = (V, E), find a smallest
C ⊆ V that covers every edge of G

• i.e., each edge e ∈ E incident to
at least one node in C

Classical NP-hard optimisation problem
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Vertex cover



Node = computer, edge = communication link,
each node must decide whether it is in the cover C

Goals:

• deterministic algorithm

• running time independent of n = |V|
(but may depend on maximum degree ∆)

• the best possible approximation ratio

3 / 29

Vertex cover in a distributed setting



Kuhn et al. (2006):

• (2 + ε)-approximation in O(log ∆/ε4) rounds

Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

• (2− ε)-approximation requires
Ω(log∗ n) rounds, even if ∆ = 2

What about 2-approximation?

Is it possible in f (∆) rounds, for some f ?
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Prior work



Kuhn et al. (2006):

• (2 + ε)-approximation in O(log ∆/ε4) rounds

Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

• (2− ε)-approximation requires
Ω(log∗ n) rounds, even if ∆ = 2

What about 2-approximation?

Is it possible in f (∆) rounds, for some f ? – Yes!
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Prior work



Deterministic 2-approximation algorithm for vertex cover

• Running time (∆ + 1)2 synchronous rounds

No O-notation needed here. . .
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Contribution



Deterministic 2-approximation algorithm for vertex cover

• Running time (∆ + 1)2 synchronous rounds

Surprise: node identifiers not needed

• Negative result for (2− ε)-approximation holds
even if there are unique node identifiers

• Our algorithm can be used in
anonymous networks
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Contribution



In a centralised setting,
2-approximation is easy:
find a maximal matching,
take all matched nodes

But matching requires
Ω(log∗ n) rounds
and unique identifiers

• symmetry breaking!
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Background: maximal matching
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Edge packing = edge weights from [0, 1],
for each node v ∈ V, total weight on incident edges ≤ 1

Maximal , if no weight can be increased
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Background: maximal edge packing
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Maximal matching =⇒ maximal edge packing

(matched: weight 1, unmatched: weight 0)
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Background: maximal edge packing
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Maximal matching requires symmetry breaking

Maximal edge packing does not
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Background: maximal edge packing
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Node saturated if total weight on incident edges = 1

Saturated nodes: 2-approximation of vertex cover
(proof: LP duality)
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Background: maximal edge packing



Construct a 2-coloured bipartite double cover

Each original node simulates two nodes of the cover
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Finding an edge packing



Find a maximal matching in the 2-coloured graph

Easy in O(∆) rounds
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Finding an edge packing
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Give 1
2 units of weight to each edge in matching
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Finding an edge packing
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Many possibilities. . .
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Finding an edge packing
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Finding an edge packing
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Finding an edge packing
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Always: weight 1
2 paths and cycles and weight 1 edges

Valid edge packing
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Finding an edge packing



0

0

1
2

1
2

1
2

1
2

Not necessarily maximal – but all unsaturated edges
adjacent to two weight 1

2 edges
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Finding a maximal edge packing



∆ = 3

In any graph:

Unsaturated edges
adjacent to two
weight 1

2 edges
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Finding a maximal edge packing



∆ = 3 → ∆ = 2

In any graph:

Unsaturated edges
adjacent to two
weight 1

2 edges

Delete
saturated edges
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Finding a maximal edge packing



∆ = 3 → ∆ = 2

Each node has lost
at least one neighbour

Remaining capacity
of each node is
exactly 1

2
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Finding a maximal edge packing



∆ = 2

Repeat
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Finding a maximal edge packing



∆ = 2 → ∆ = 1

Delete saturated edges
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Finding a maximal edge packing



∆ = 2 → ∆ = 1

Each node has lost
at least one neighbour

Remaining capacity
of each node is
exactly 1

4
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Finding a maximal edge packing



∆ = 1

Repeat. . .
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Finding a maximal edge packing



Repeat. . .

Maximum degree decreases
on each iteration

Everything saturated in
∆ iterations
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Finding a maximal edge packing



∆ = 3

+ 1
2 ·

∆ = 2

+ 1
4 ·

∆ = 1

Maximal edge packing in (∆ + 1)2 rounds

=⇒ 2-approximation of vertex cover
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Summary


