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Part 1: Making Predictions

e Fuvaluating Predictive Uncertainty Challenge

e D tasks:
— 2 classification tasks

— 3 regression tasks
e Probabilistic predictions required

Here we will focus on regression tasks. Our rankings:

e ‘Outaouais’ 1st
o ‘Gaze’ 2nd
e ‘Stereopsis’ last



‘Outaouais’ — Amnalysis
Many input variables (37), very many training samples (29 000).
Some input variables were discrete, some were continuous.

Tried k-nearest-neighbour methods with different values of k,
different distance metrics, etc. Very small values of £ produced
relatively good predictions, while larger neighbourhoods did

much worse.

There seemed to be a surprisingly large number of discrete input
variables which were often equal for a pair of nearest neighbours.



‘Outaouais’ — Classification

e We ran a piece of software which tried to form a collection of
input dimensions which could be used to group all data points
into classes.

e Surprising results: We found a set of 23 dimensions which
classified all input into about 3 500 classes, each typically
containing 13 or 14 points. Almost all classes contained both
training and test points!

e For each class, the data points looked as if they were time series
data. There was one dimension which we identified as “time”.
The target values typically changed slowly with time within each

class.



‘Outaouais’ — Classification
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‘Outaouais’ — Statistics

e We could have just fitted a smooth curve within each class.

However, in this challenge we needed probabilistic predictions.

e We had 29 000 training points. We were able to calculate
empirical error distributions for pairs of samples within one class,

conditioned on the discretised distance in the “time” dimension.

e L.e., we first answered this question:

— If we know that two points, 1 and x5, are in the same class,
and that the “time” passed between measuring x; and x5 is

roughly 7T', what is the expected distribution of the difference
of target values y; and ys?



‘Outaouais’ — Statistics




‘Outaouais’ — Predictions

e We calculated 27 (actually 14 + mirror images) empirical
distributions, one for each discretised time interval.

e Prediction: Pick 1-NN value within the same class. Calculate
distance in the “time” dimension. Discretise distance. Get the
corresponding pre-calculated error distributions. Predict the
target value of the neighbour plus the error distribution.

e This way we got highly non-Gaussian predictions, kurtosis
6...22. We submitted the results as a set of quantiles.



‘Outaouais’ — Results

e Our mean square error (0.056) was higher than what some other
competitors had achieved (0.038). However, the NLPD loss was
the lowest (-0.88 for us, -0.65 for the second place). Thus, our

predictive distributions were more accurate.

e What can we learn? At least one thing: Surprisingly naive
methods may work f you can use large amounts of real data to

estimate probability distributions.

e Did we model the phenomenon or abuse the data set?



‘Gaze’ — Input Data
e Input data is 12-dimensional and contains 450 training samples.

e Visual inspection of (z;,y) for input dimensions i =1,...,12
reveals clear dependence of y on x; and x3. Other dimensions

seem less useful = throw them away.

e Some x3 outliers in validation == replace with sample mean.
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‘Gaze’ — Local Linear Regression

e One-dimensional LLR on linearly transformed input
2z = w1x1 + wzxrg, where w chosen by cross-validation.

e LLR gives point estimates; for probabilistic prediction, we

assume (Gaussian error.
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point est
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e Error variance estimate = average square residual in training
data; tried local and global averaging, global was good enough.
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‘Gaze’ — Shaping the Predictions

e Initial idea: N(u,0?) where yu is the point prediction from LLR.

e But targets are integers in the range of 122...1000.

e Discretise the Gaussian into 6 quantiles.

e Replace highest bracket by narrow peaks on integers
(peak width = 210713, density = 1.5 - 1019).
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‘Stereopsis’ — Input Data
e The data set only had 4 input dimensions.

e Visual inspection of the data showed a clear, regular structure
and the name of the data set was an additional hint: “stereopsis”

means stereoscopic vision.

e Based on studies, we formed a hypothesis of the physical

phenomenon used to create the data.
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‘Stereopsis’ — Model
Assumed model:

e The input data consists of two coordinate pairs, (z1,y1) and
(x2,1y2). Each pair corresponds to the location of the image of a

calibration target, as seen by a video camera.

e The training targets correspond to the distance z between the
calibration target and a fixed surface.

e The calibration target is moved in a 10 x 10 x 10 grid. The grid is
almost parallel to the surface from which distances are measured.

No idea if this model is correct, but having some visual model of the
data helps in choosing the methods.
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‘Stereopsis’ — Prediction
Having a physical model in mind, we proceeded in two phases.

1. Classify data into 10 distance classes. Each class corresponds to
one 10 x 10 surface in the grid. Distances (training target values)
within each class are close to each other.

e This part seemed trivial. We used a linear transformation to
reduce dimensionality to 1, and used 9 threshold values to tell

one class from another.

2. Within each class, fit a low-order surface to training points. The
physical model guided the selection of the parametrisation of

each surface.
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‘Stereopsis’ — Probabilities

There are two error sources in these predictions:

1. Classification error. We assumed that the classifications were
correct (when trained by only using training points, all validation
samples were classified correctly and with large margins). This

assumption turned out to be our fatal mistake.

2. The distance between the surface and the true target. We
assumed that this error would primarily be Gaussian noise in
measurements. Variance was estimated for each surface by using

the training samples.

Thus, we submitted simple GGaussian predictions.
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‘Stereopsis’ — Results
e Huge NLPD loss.

e It turned out that 499 out of 500 test samples were predicted
well. 1 out of 500 samples was completely incorrect. This was a
classification mistake. We obviously shouldn’t have trusted the

simple classification method too much.
What else we can learn?

e Does the method model the expected physical phenomenon or

artefacts of the calibration process?

e One needs to be careful when choosing the training and test
data. E.g. random points in continuous space instead of a grid

could have helped to avoid this problem.
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Part 2: Scoring Predictions
Contents:

e Scoring in Challenges
e Examples of Scoring Methods: NLPD and CRPS

e Properties of Scoring Methods
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Notation
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Scoring in Challenges
Goals of scoring:

1. The scoring rule should encourage experts to work seriously in
order to find a good method.

2. The final score should reflect how good the method is.

Indirect methods are possible, but the setting may be considerably
simplified by using proper scoring rules. Properness means that
making honest predictions is rational.

Properness is good but not enough. There are large families of proper

scoring rules. Which one to choose?

Two examples follow.
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Scoring Methods: NLPD and CRPS

Logarithmic score (negative log estimated predictive density, NLPD,

is the corresponding loss function):

S(P,x) =log P(x).
Continuous ranked probability score (CRPS):
S(P.z) = — /(P(X <) — Ry(X <)) g(u) du

where

IA

R.( i)=0 foralli<uz,
(X <i)=1 foralli>z.

X
R (X
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Scoring Methods: NLPD and CRPS

a)
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Scoring Methods: NLPD and CRPS

Key properties:
e NLPD is local, while CRPS is distance sensitive.

e NLPD is not bounded, while CRPS is always at most 0.

Observations follow.
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Distance Sensitivity
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Information Which Is of Little Use
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Special Values, Known Targets, etc.
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Samples as Predictions

One could interpret a finite sample literally as a probability
distribution with a finite set of point masses.

The NLPD loss would be meaningless. However, the CRPS score
would approximate the score of the corresponding quantile
prediction, but with considerably less complexity.

7 7474
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Summary

e We presented some methods for probabilistic prediction in

regression tasks.

e There are some problems with the NLPD score. We propose
using the CRPS score instead of (or in addition to) NLPD score
in future challenges.

e CRPS score also makes it possible to present probabilistic

predictions very easily as a finite sample.
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