Models of distributed computing: port numbering and local algorithms

Jukka Suomela

Adaptive Computing Group

Helsinki Institute for Information Technology HIIT
University of Helsinki
FMT seminar, 26 February 2010

Our research focus

- Very restrictive models of distributed computing
- Local algorithms (constant-time distributed algorithms)
- Algorithms in anonymous networks
- Deterministic algorithms
- Graph problems
- Vertex covers, dominating sets, ...
- Linear programs in graphs
- Approximability

Outline of today's talk

- Models of computation
- Local algorithms
- Port-numbering model
- Observations and results
- What is known about these models?
- Case study: vertex cover problem
- Connections to other models of computation
- Constant-depth bounded-fan-in circuits, NC^{0}

Part I: Models of computation

- Distributed algorithms in general
- Two very limited special cases:
- Local algorithms
- Port-numbering model

Distributed algorithms

- Communication graph G

- Node = computer
- e.g., Turing machine, finite state machine
- Edge = communication link
- computers can exchange messages

Distributed algorithms

- All nodes are identical, run the same algorithm
- We can choose the algorithm
- An adversary chooses the structure of G
- Our algorithm must produce a correct output in any graph G

Distributed algorithms

- Usually, computational problems are related to the structure of the communication graph G
- Example: find a maximal independent set for G
- The same graph is both the input and the system that tries to solve the problem...

Synchronous distributed algorithms

1. Each node reads its own local input

- Depends on the problem, for example:
- node identifier
- node weight
- weights of incident edges
- May be empty

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds until all nodes have announced their local outputs

- Solution of the problem

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds until all nodes have announced their local outputs

Example: Find a maximal independent set /
Local output of a node v indicates whether $v \in I$

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each neighbour

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each neighbour
(message propagation...)

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each neighbour
2. receives a message from each neighbour

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each neighbour
2. receives a message from each neighbour
3. updates its own state

Synchronous distributed algorithms

- Communication round: each node

1. sends a message to each neighbour
2. receives a message from each neighbour
3. updates its own state
4. possibly stops and announces its output

Synchronous distributed algorithms

- Communication rounds are repeated until all nodes have stopped and announced their outputs
- Running time = number of rounds
- Worst-case analysis

Synchronous distributed algorithms

- If the nodes have unique identifiers, "everything" can be solved in diameter $(G)+1$ rounds
- Algorithm: each node

1. gathers full information about G (including all local inputs)
2. solves the graph problem by brute force
3. chooses its local output accordingly

Synchronous distributed algorithms

- If the nodes have unique identifiers, "everything" can be solved in diameter $(G)+1$ rounds
- Natural research problems:
- What can be solved in o(diam $(G))$ rounds?
- Focus: local algorithms
- What if we do not have unique identifiers?
- Focus: port-numbering model

Model 1: Local algorithms

- An extreme version of sublinear-time algorithms: running time independent of the number of nodes
- Examples:
- running time 100 rounds in any graph
- running time $f(\Delta)$ in graphs with maximum degree $\leq \Delta$
- Our focus: deterministic local algorithms

Deterministic local algorithms

- Running time is $T \Leftrightarrow$ output is a function of input within distance T
$T=2: \quad$ "Local neighbourhood"

Deterministic local algorithms

- Scalability:
- Can be used in infinitely large (but locally finite) graphs
- Fault tolerance:
- Output can be re-computed repeatedly
- Efficient self-stabilising algorithm, recovers from any initial configuration, can be used in dynamic graphs
- Very limited model: what can be computed?

Model 2:

Port-numbering model

- No unique identifiers
- A node of degree d can refer to its neighbours by integers 1, 2, ..., d
- Port-numbering chosen by adversary
- Focus: deterministic algorithms

Deterministic algorithms in the port-numbering model

- Graph + port numbering may be symmetric
- Nodes indistinguishable
- Identical inputs, deterministic computation, identical outputs
- Very limited model: what can be computed?

Local algorithms and the port-numbering model

- Very limited models of distributed computing
- Local algorithms: constant time
- Port-numbering model: anonymous nodes
- Seemingly unrelated
- Why did I choose to introduce both?
- What can be said about these models?
- Certainly plenty of negative results, but do we have anything positive?

Part II: Observations and results

- Similarities between local algorithms and the port-numbering model
- Case study: vertex cover problem
- Joint work with Matti Åstrand
- Examples of other positive results

Local algorithms and the port-numbering model

- Orthogonal models
- All 4 combinations are reasonable
- All 4 combinations are distinct
- Simple (contrived) examples...

Any running time		
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- All 4 combinations are distinct
- Trivial problems can be solved in any model

Any running time		
Local algorithms	Constant function	
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- All 4 combinations are distinct
- Identifying all triangles (3-cycles):
- Local information is sufficient, but unique IDs are needed to distinguish between a cycle and a long path

Any running time		
Local algorithms	Constant function	Find triangles
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- All 4 combinations are distinct
- 2-colouring edges of paths:
- Port numbering is sufficient, but the worst-case running time is necessarily $\theta(\operatorname{diam}(G))$

Any running time	Path colouring	
Local algorithms	Constant function	Find triangles
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- All 4 combinations are distinct
- Spanning tree construction:
- Non-local problem
- Unique IDs needed to detect cycles

Any running time	Path colouring	Spanning trees
Local algorithms	Constant function	Find triangles
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- All 4 combinations are distinct
- However, there are surprising similarities between local algorithms and the port-numbering model
- Not fully understood yet!

Any running time		
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- There are problems where both models seem to be equally strong
- Best algorithm in port-numbering model is local
- Best local algorithm uses the port-numbering model

Any running time		
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Example: minimum vertex cover
- Find a minimum-size subset C of nodes that "covers" all edges: each edge incident to at least one node in C

- Classical NP-hard optimisation problem

Any running time		
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Example: minimum vertex cover
- Best possible approximation ratio?
- Focus on bounded-degree graphs

Any running time		
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Example: minimum vertex cover
- Trivial lower bound
- Cycles, optimum n/2
- Solution with < n nodes requires symmetry-breaking

Any running time	≥ 2	
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Example: minimum vertex cover
- Non-trivial lower bound
- Cycles
- Czygrinow et al. 2008, Lenzen \& Wattenhofer 2008

Any running time	≥ 2	
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Example: minimum vertex cover
- Matching positive result
- Bounded-degree graphs
- One algorithm for both models

Any running time	≥ 2	
Local algorithms	≤ 2	≥ 2
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Example: minimum vertex cover
- Best possible approximation ratios in bounded-degree graphs

Any running time	2	1
Local algorithms	2	2
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Naturally, we can study running time with a finer granularity than $O(1)$ vs. arbitrary...
- However, anything larger-than-constant seems to lead to a very different model

Any running time		
Local algorithms		
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Slightly non-constant running time together with unique IDs already makes a huge difference

Local algorithms and the port-numbering model

- Slightly non-constant running time together with unique IDs already makes a huge difference

$O(n)$	Deterministic symmetry breaking in cycles	
$O(\log n)$		
$O\left(\log ^{*} n\right)$	Negative result	Cole-Vishkin 1986
O(1)		Linial 1992
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- E.g., vertex cover in cycles becomes easier to approximate

$O(n)$	2	
$O(\log n)$	2	Greedy
$O\left(\log ^{*} n\right)$	2	$\leq 4 / 3$
$O(1)$	2	2
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- E.g., vertex cover in cycles becomes much easier to approximate

$O(n)$	2	
$O(\log n)$	2	Clustering
$O\left(\log ^{*} n\right)$	2	$\leq 1+\varepsilon$
$O(1)$	2	2
	Port numbering	Unique IDs

Local algorithms and the port-numbering model

- Hence the focus: strictly constant time and/or anonymous nodes

Case study:
 2-approximation of vertex cover

- Lower bound result (for cycles):
- There is no local algorithm with approximation factor $2-\varepsilon$ for any $\varepsilon>0$
- I'll sketch Czygrinow et al.'s (2008) proof, which is a nice application of Ramsey's theorem
- Fast local algorithm (for bounded-degree graphs):
- 2-approximation in $O(\Delta)$ time in unweighted graphs
- Uses LP duality; finds a maximal dual solution using a combination of greedy increments and graph colouring

Lower-bound result for vertex cover approximation

- Numbered directed n-cycle:
- directed n-cycle, each node has outdegree $=$ indegree $=1$
- node identifiers are a permutation of $\{1,2, \ldots, n\}$

Lower-bound result for vertex cover approximation

- Fix any $\varepsilon>0$ and a deterministic local algorithm A
- Assumption: A finds a feasible vertex cover (at least in any numbered directed cycle)
- Theorem: For a sufficiently large n there is a numbered directed n-cycle C in which A outputs a vertex cover with $\geq(1-\varepsilon) n$ nodes
- Corollary: Approximation ratio of A is at least $2-2 \varepsilon$

Lower-bound result for vertex cover approximation

- Let T be the running time of A, let $k=2 T+1$
- The output of a node is a function f ' of a sequence of k integers (unique IDs)

Lower-bound result for vertex cover approximation

- Lets focus on increasing sequences of IDs
- Then the output of a node is a function f of a set of k integers
$k=5:$

$$
\text { output }=f(\{6,7,11,13,21\})
$$

Lower-bound result for vertex cover approximation

- Hence we have assigned a colour $f(X) \in\{0,1\}$ to each k-subset $X \subset\{1,2, \ldots, n\}$
$k=5:$

$$
\text { output }=f(\{6,7,11,13,21\})
$$

Lower-bound result for vertex cover approximation

- Hence we have assigned a colour $f(X) \in\{0,1\}$ to each k-subset $X \subset\{1,2, \ldots, n\}$
- Fix a large m (depends on k and ε)
- Ramsey: If n is sufficiently large, we can find an m-subset $A \subset\{1,2, \ldots, n\}$
s.t. all k-subset $X \subset A$ have the same colour

Lower-bound result for vertex cover approximation

- That is, if the ID space is sufficiently large...

Lower-bound result for vertex cover approximation

- That is, if the ID space is sufficiently large, we can find a monochromatic subset of m IDs...

$$
\begin{aligned}
& f(\{2,3,6,7,11\})=f(\{2,3,6,7,13\})= \\
& f(\{2,3,6,7,21\})=f(\{2,3,6,11,13\})= \\
& \ldots=f(\{6,7,11,13,21\})
\end{aligned}
$$

Lower-bound result for vertex cover approximation

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for vertex cover approximation

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for vertex cover approximation

- Construct a numbered directed cycle: monochromatic subset as consecutive nodes

Lower-bound result for vertex cover approximation

- Hence there is an n-cycle with a chain of $m-2 T$ nodes that output 1

Lower-bound result for vertex cover approximation

- Hence there is an n-cycle with a chain of $m-2 T$ nodes that output 1
- We can choose as large m as we want
- Good, more "black" nodes that output 1
- However, n increases rapidly if we increase m
- Bad, more "grey" nodes that might output 0
- Trick: choose "unnecessarily large" n so that we can apply Ramsey's theorem repeatedly

Lower-bound result for vertex cover approximation

- Huge ID space...

Lower-bound result for vertex cover approximation

- Find a monochromatic subset of size m...

Lower-bound result for vertex cover approximation

- Delete these IDs...

Lower-bound result for vertex cover approximation

- Still sufficiently many IDs to apply Ramsey...

Lower-bound result for vertex cover approximation

- Repeat...

Lower-bound result for vertex cover approximation

- Repeat until stuck

Lower-bound result for vertex cover approximation

- Several monochromatic subsets + some leftovers

Lower-bound result for vertex cover approximation

Lower-bound result for vertex cover approximation

- Thus A outputs a vertex cover with $\geq(1-\varepsilon) n$ nodes

Lower-bound result for vertex cover approximation

- Thus A outputs a vertex cover with $\geq(1-\varepsilon) n$ nodes
- In the proof, n is huge - and this is necessary
- Using an upper bound on Ramsey numbers, the same proof would give a negative result for $T=O\left(\log ^{*} n\right)$
- With $T=\Theta\left(\log ^{*} n\right)$, we could do better!
- We have seen that $(2-\varepsilon)$-approximation is not possible in time independent of n
- Now let's see how to find a 2-approximation

Local 2-approximation algorithm for vertex cover

- Convenient to study a more general problem: minimum-weight vertex cover
- Minimum-cardinality vertex cover: all weights = 1

Notation:
$w(v)=$ weight of v

Local 2-approximation algorithm for vertex cover: background

- Edge packing: weight $y(e) \geq 0$ for each edge e
- Packing constraint: for each node v, the total weight of edges incident to v is at most $w(v)$

Local 2-approximation algorithm for vertex cover: background

- Edge packing: weight $y(e) \geq 0$ for each edge e
- Packing constraint: for each node v, the total weight of edges incident to v is at most $w(v)$

Local 2-approximation algorithm for vertex cover: background

- In linear programming, these are dual problems:
- minimum-weight (fractional) vertex cover
- maximum-weight edge packing

Local 2-approximation algorithm for vertex cover: background

- Saturated node v : the total weight on edges incident to v is equal to $w(v)$

Local 2-approximation algorithm for vertex cover: background

- Saturated edge e : at least one endpoint of e is saturated \Leftrightarrow edge weight $y(e)$ can't be increased

Local 2-approximation algorithm for vertex cover: background

- Maximal edge packing: all edges saturated \Leftrightarrow none of the edge weights $y(e)$ can be increased \Leftrightarrow saturated nodes form a vertex cover

Local 2-approximation algorithm for vertex cover: background

- Minimum-weight vertex cover C^{*} difficult to find:
- Centralised setting: NP-hard
- Distributed setting: integer problem, symmetry-breaking issues
- Maximal edge packing y easy to find:
- Centralised setting: trivial greedy algorithm
- Distributed setting: linear problem, no symmetry-breaking issues (?)

Local 2-approximation algorithm for vertex cover: background

- Minimum-weight vertex cover C^{*} difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes $C(y)$ in y : 2-approximation of C^{*}
- $w(C(y)) \leq 2 w\left(C^{*}\right)$
- Notation: $w(C)=$ total weight of the nodes $v \in C$
- Proof: LP-duality, relaxed complementary slackness

Local 2-approximation algorithm for vertex cover: background

- Minimum-weight vertex cover C^{*} difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes $C(y)$ in y : 2-approximation of C^{*}
- $w(C(y)) \leq 2 w\left(C^{*}\right)$
- Constant 2: $C(y)$ covers edges at most twice, C^{*} at least once
- Immediate generalisation to hypergraphs
$w(C(y))=\sum_{v \in C(y)} y[v]=\sum_{e \in E} y(e)|e \cap C(y)| \leq 2 \sum_{e \in E} y(e)\left|e \cap C^{*}\right|=2 \sum_{v \in C^{*}} y[v] \leq 2 w\left(C^{*}\right)$

Local 2-approximation algorithm for vertex cover

- Finding a maximal edge packing?
- Basic idea from Khuller et al. (1994) and Papadimitriou and Yannakakis (1993)

Local 2-approximation algorithm for vertex cover: basic idea

- $y[v]=$ total weight of edges incident to node v
- Residual capacity of node $v: r(v)=w(v)-y[v]$
- Saturated node:
$r(v)=0$

Local 2-approximation algorithm for vertex cover: basic idea

Start with a trivial edge packing $y(e)=0$

Local 2-approximation algorithm for vertex cover: basic idea

Each node v offers $r(v) / \operatorname{deg}(v)$ units to each incident edge

Local 2-approximation algorithm for vertex cover: basic idea

Each edge accepts the smallest of the 2 offers it received

Increase $y(e)$ by this amount

- Safe, can't violate packing constraints

Local 2-approximation algorithm for vertex cover: basic idea

Update residuals...

Local 2-approximation algorithm for vertex cover: basic idea

Update residuals, discard saturated nodes and edges...

Local 2-approximation algorithm for vertex cover: basic idea

Update residuals, discard saturated nodes and edges, repeat... Offers...

Local 2-approximation algorithm for vertex cover: basic idea

Update residuals, discard saturated nodes and edges, repeat...
Offers...
Increase weights...

Local 2-approximation algorithm for vertex cover: basic idea

Update residuals, discard saturated nodes and edges, repeat... Offers...

Increase weights... Update residuals...

Local 2-approximation algorithm for vertex cover: basic idea

Update residuals, discard saturated nodes and edges, repeat...
Offers...
Increase weights...
Update residuals and graph, etc.

Local 2-approximation algorithm for vertex cover: basic idea

This is a simple deterministic distributed algorithm
We are making some progress towards finding a maximal edge packing - but...

Local 2-approximation algorithm for vertex cover: basic idea

This is a simple deterministic distributed algorithm
We are making some progress towards finding a maximal edge packing - but this is too slow!

Local 2-approximation algorithm for vertex cover

- Offer is a local minimum:
- Node will be saturated
- And all edges incident to it will be saturated as well

Local 2-approximation algorithm for vertex cover

- Offer is a local minimum:
- Node will be saturated
- Otherwise there is a neighbour with a different offer:
- Interpret the offer sequences as colours
- Nodes u and v have different colours: $\{u, v\}$ is multicoloured

Local 2-approximation algorithm for vertex cover

- Progress guaranteed:
- On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
- Such edges are be discarded; maximum degree Δ decreases by at least one
- Hence in Δ rounds all edges are saturated or multicoloured

Local 2-approximation algorithm for vertex cover

- In Δ rounds all edges are saturated or multicoloured
- Saturated edges are good we're trying to construct a maximal edge packing
- Why are the multicoloured edges useful?

Local 2-approximation algorithm for vertex cover

- In Δ rounds all edges are saturated or multicoloured
- Saturated edges are good we're trying to construct a maximal edge packing
- Why are the multicoloured edges useful?
- Let's focus on unsaturated nodes and edges

Local 2-approximation algorithm for vertex cover: multicoloured edges

- Colours are sequences of Δ rational numbers
- Assume that node weights are integers 1, 2, ..., W
- Then colours are rationals of the form $q /(\Delta!)^{\Delta}$ with $q \in\{1,2, \ldots, W\}$

$$
(2,2 / 3,1 / 6,1 / 12)
$$

$$
(2,2 / 3,1 / 6,1 / 24)
$$

Local 2-approximation algorithm for vertex cover: multicoloured edges

- Colours are sequences of Δ rational numbers
- Assume that node weights are integers 1, 2, ..., W
- Then colours are rationals of the form $q /(\Delta!)^{\Delta}$ with $q \in\{1,2, \ldots, W\}$
- $k=\left(W(\Delta!)^{\Delta}\right)^{\Delta}$ possible colours, replace with integers 1, 2, ..., k

Local 2-approximation algorithm for vertex cover: multicoloured edges

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)

Local 2-approximation algorithm for vertex cover: multicoloured edges

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
- Each node assigns its outgoing edges to different forests

Local 2-approximation algorithm for vertex cover: multicoloured edges

- For each forest in parallel...

Local 2-approximation algorithm for vertex cover: multicoloured edges

- For each forest in parallel:
- Use Cole-Vishkin (1986) style colour reduction algorithm
- Given a k-colouring, finds a 3-colouring in time $O\left(\log ^{*} k\right)$
- Bit manipulation trick: each step replaces a k-colouring with an $O(\log k)$-colouring

Local 2-approximation algorithm for vertex cover: multicoloured edges

- For each forest and each colour $j=1,2,3$ in sequence:
- Saturate all outgoing edges of colour-j nodes
- Node-disjoint stars, easy to saturate in parallel
- In $O(\Delta)$ rounds we have saturated all edges

Local 2-approximation algorithm for vertex cover: summary

- Total running time:
- All edges are saturated or multicoloured: $O(\Delta)$
- Multicoloured forests are 3-coloured: O(log* k)
- 3-coloured forests are saturated: $O(\Delta)$

- $O\left(\Delta+\log ^{*} k\right)=O\left(\Delta+\log ^{*} W\right)$
- k is huge, but log* grows slowly

Local 2-approximation algorithm for vertex cover: summary

- Maximal edge packing and 2-approximation of vertex cover in time $O\left(\Delta+\right.$ log* $\left.^{*} W\right)$
- $W=$ maximum node weight
- Unweighted graphs: running time simply $O(\Delta)$, independent of n
- Can be implemented in the port-numbering model

Other examples of positive results

- Local algorithms for dominating sets: only trivial ($\Delta+1$)-approximation possible in general graphs
- However, there is an approximation scheme for fractional dominating sets
 (Kuhn et al. 2006)
- And constant-factor approximation algorithms for dominating sets in planar graphs
(Czygrinow et al. 2008, Lenzen et al. 2008)

Other examples of positive results

- Edge dominating sets in the port-numbering model
- Best possible approximation ratios:

Graph family		Approximation ratio
d-regular graphs	$d=1,3, \ldots$	$4-6 /(d+1)$
	$d=2,4, \ldots$	$4-2 / d$
graphs with degree $\leq \Delta$	$\Delta=3,5, \ldots$	$4-2 /(\Delta-1)$
	$\Delta=2,4, \ldots$	$4-2 / \Delta$

Other examples of positive results

- Edge dominating sets in the port-numbering model
- Best possible approximation ratios:

Local algorithms!

Graph family		Approximation ratio	Time
d-regular graphs	$d=1,3, \ldots$	$4-6 /(d+1)$	$O\left(d^{2}\right)$
	$d=2,4, \ldots$	$4-2 / d$	$O(1)$
graphs with degree $\leq \Delta$	$\Delta=3,5, \ldots$	$4-2 /(\Delta-1)$	$O\left(\Delta^{2}\right)$
	$\Delta=2,4, \ldots$	$4-2 / \Delta$	$O\left(\Delta^{2}\right)$

Other examples of positive results

- Matchings in 2-coloured graphs, max degree $\leq \Delta$
- Time $\Omega(n)$:
- maximum matching
- stable matching
- Time $f(\Delta, \varepsilon)$:
- $(1+\varepsilon)$-approximation of maximum matching
- "almost stable" matching (fraction ε of unstable edges)

Other examples of positive results

- Matchings in 2-coloured graphs, max degree $\leq \Delta$
- Time $\Omega(n)$, even with unique IDs:
- maximum matching
- stable matching
- Time $f(\Delta, \varepsilon)$, in port-numbering model:

- (1 $+\varepsilon$)-approximation of maximum matching
- "almost stable" matching (fraction ε of unstable edges)

Part III: Other models of computation

- Can we relate local algorithms to traditional complexity classes such as NC^{0} ?

Distributed algorithms vs. traditional computational complexity

- Traditional view:
- Problem instance encoded as a string
- Distributed algorithms:
- Problem instance = structure of the system (graph)

Distributed algorithms vs. traditional computational complexity

- Traditional view:
- Problem instance encoded as a string
- Can be interpreted as a path graph with local inputs
- Everything is a graph
- Let's study a simple model of computation...

Distributed algorithms vs. traditional computational complexity

- Distributed algorithms on path graphs
- Constant-size local input
- Hence no unique IDs

Local inputs

Local outputs

Distributed algorithms vs. traditional computational complexity

- Deterministic local algorithms on path graphs
- Constant-size local input

(here $T=2$)

Distributed algorithms vs. traditional computational complexity

- Deterministic local algorithms on path graphs
- Constant-size local input

Distributed algorithms vs. traditional computational complexity

- Deterministic local algorithms on path graphs
- Constant-size local input

Ridiculously restrictive model -
let's consider two different extensions...

Non-local connections, different circuits: NC^{0}

General graphs:
local algorithms

Distributed algorithms vs. traditional computational complexity

- NC^{0}
- Deterministic local algorithms, port numbering

Distributed algorithms vs. traditional computational complexity

- $\mathrm{NC}^{0}, \mathrm{NC}^{1}, \mathrm{NC}, \mathrm{RNC}, \ldots$
- Traditional computational complexity
- Deterministic local algorithms, port numbering
- Distributed algorithms

Conclusions

- Local algorithms \& port-numbering model
- Non-trivial problems can be solved in very simple models of distributed computing
- Tight, unconditional lower bounds can be proven
- Research directions
- Better understand the similarities between the two models?
- Traditional computational complexity studies strings (= path graphs), consider more general graphs?

