Models of distributed computing: port numbering and local algorithms

Jukka Suomela

Adaptive Computing Group Helsinki Institute for Information Technology HIIT University of Helsinki

FMT seminar, 26 February 2010

Our research focus

- Very restrictive models of distributed computing
 - Local algorithms (constant-time distributed algorithms)
 - Algorithms in anonymous networks
 - Deterministic algorithms
- Graph problems
 - Vertex covers, dominating sets, ...
 - Linear programs in graphs
- Approximability

Outline of today's talk

- Models of computation
 - Local algorithms
 - Port-numbering model
- Observations and results
 - What is known about these models?
 - Case study: vertex cover problem
- Connections to other models of computation
 - Constant-depth bounded-fan-in circuits, NC⁰

Part I: Models of computation

- Distributed algorithms in general
- Two very limited special cases:
 - Local algorithms
 - Port-numbering model

Distributed algorithms

- Communication graph G
- Node = computer
 - e.g., Turing machine, finite state machine
- Edge = communication link
 - computers can exchange messages

Distributed algorithms

- All nodes are identical, run the same algorithm
- We can choose the algorithm
- An *adversary* chooses the structure of *G*
- Our algorithm must produce a correct output in any graph *G*

Distributed algorithms

- Usually, computational problems are related to the structure of the communication graph *G*
 - Example: find a maximal independent set for *G*
 - The same graph is both the input and the system that tries to solve the problem...

- 1. Each node reads its own local input
 - Depends on the problem, for example:
 - node identifier
 - node weight
 - weights of incident edges
 - May be empty

- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds

- 1. Each node reads its own local input
- 2. Repeat synchronous communication rounds until all nodes have announced their local outputs
 - Solution of the problem

- 1. Each node reads its own **local input**
- 2. Repeat synchronous communication rounds until all nodes have announced their local outputs

Example: Find a maximal independent set ILocal output of a node v indicates whether $v \in I$

- Communication round: each node
 - 1. sends a message to each neighbour

- Communication round: each node
 - 1. sends a message to each neighbour
 - (message propagation...)

- Communication round: each node
 - 1. sends a message to each neighbour
 - 2. receives a message from each neighbour

- Communication round: each node
 - 1. sends a message to each neighbour
 - 2. receives a message from each neighbour
 - 3. updates its own state

- Communication round: each node
 - 1. sends a message to each neighbour
 - 2. receives a message from each neighbour
 - 3. updates its own state
 - 4. possibly stops and announces its output

- Communication rounds are repeated until all nodes have stopped and announced their outputs
- Running time = number of rounds
- Worst-case analysis

- If the nodes have unique identifiers, "everything" can be solved in diameter(G) + 1 rounds
- Algorithm: each node
 - 1. gathers full information about *G* (including all local inputs)
 - 2. solves the graph problem by brute force
 - 3. chooses its local output accordingly

- If the nodes have unique identifiers, "everything" can be solved in diameter(G) + 1 rounds
- Natural research problems:
 - What can be solved in *o*(diam(*G*)) rounds?
 - Focus: local algorithms
 - What if we do not have unique identifiers?
 - Focus: port-numbering model

Model 1: Local algorithms

- An extreme version of sublinear-time algorithms: running time independent of the number of nodes
- Examples:
 - running time 100 rounds in any graph
 - running time $f(\Delta)$ in graphs with maximum degree $\leq \Delta$
- Our focus: deterministic local algorithms

Deterministic local algorithms

• Running time is $T \Leftrightarrow$ output is a function of input within distance T

Deterministic local algorithms

- Scalability:
 - Can be used in infinitely large (but locally finite) graphs
- Fault tolerance:
 - Output can be re-computed repeatedly
 - Efficient self-stabilising algorithm, recovers from any initial configuration, can be used in dynamic graphs
- Very limited model: what can be computed?

Model 2: Port-numbering model

- No unique identifiers
- A node of degree *d* can refer to its neighbours by integers 1, 2, ..., *d*
- Port-numbering chosen by adversary
- Focus: deterministic algorithms

Deterministic algorithms in the port-numbering model

- Graph + port numbering may be symmetric
- Nodes indistinguishable
 - Identical inputs, deterministic computation, identical outputs
- Very limited model: what can be computed?

- Very limited models of distributed computing
 - Local algorithms: constant time
 - Port-numbering model: anonymous nodes
- Seemingly unrelated
 - Why did I choose to introduce both?
- What can be said about these models?
 - Certainly plenty of negative results, but do we have anything positive?

Part II: Observations and results

- Similarities between local algorithms and the port-numbering model
- Case study: vertex cover problem
 - Joint work with Matti Åstrand
- Examples of other positive results

- Orthogonal models
- All 4 combinations are reasonable
- All 4 combinations are distinct
 - Simple (contrived) examples...

Any running time		
Local algorithms		
	Port numbering	Unique IDs

- All 4 combinations are distinct
- Trivial problems can be solved in any model

Any running time		
Local algorithms	Constant function	
	Port numbering	Unique IDs

- All 4 combinations are distinct
- Identifying all triangles (3-cycles):
 - Local information is sufficient, but unique IDs are needed to distinguish between a cycle and a long path

Any running time		
Local algorithms	Constant function	Find triangles
	Port numbering	Unique IDs

- All 4 combinations are distinct
- 2-colouring edges of paths:
 - Port numbering is sufficient, but the worst-case running time is necessarily θ(diam(G))

Any running time	Path colouring	
Local algorithms	Constant function	Find triangles
	Port numbering	Unique IDs

- All 4 combinations are distinct
- Spanning tree construction:
 - Non-local problem
 - Unique IDs needed to detect cycles

Any running time	Path colouring	Spanning trees
Local algorithms	Constant function	Find triangles
	Port numbering	Unique IDs

- All 4 combinations are distinct
- However, there are surprising similarities between local algorithms and the port-numbering model
 - Not fully understood yet!

Any running time		
Local algorithms		
	Port numbering	Unique IDs

- There are problems where both models seem to be equally strong
 - Best algorithm in port-numbering model is local
 - Best local algorithm uses the port-numbering model

Any running time		
Local algorithms		
	Port numbering	Unique IDs

- Example: minimum vertex cover
 - Find a minimum-size subset *C* of nodes that "covers" all edges: each edge incident to at least one node in *C*

• Classical NP-hard optimisation problem

Any running time		
Local algorithms		
	Port numbering	Unique IDs

- Example: minimum vertex cover
- Best possible approximation ratio?
 - Focus on bounded-degree graphs

Any running time		
Local algorithms		
	Port numbering	Unique IDs

- Example: minimum vertex cover
- Trivial lower bound
 - Cycles, optimum *n*/2
 - Solution with < *n* nodes requires symmetry-breaking

Any running time	≥ 2	
Local algorithms		
	Port numbering	Unique IDs

- Example: minimum vertex cover
- Non-trivial lower bound
 - Cycles
 - Czygrinow et al. 2008, Lenzen & Wattenhofer 2008

Any running time	≥ 2	
Local algorithms		≥ 2
	Port numbering	Unique IDs

- Example: minimum vertex cover
- Matching positive result
 - Bounded-degree graphs
 - One algorithm for both models

Any running time	≥ 2	
Local algorithms	≤ 2	≥ 2
	Port numbering	Unique IDs

- Example: minimum vertex cover
- Best possible approximation ratios in bounded-degree graphs

Any running time	2	1
Local algorithms	2	2
	Port numbering	Unique IDs

- Naturally, we can study running time with a finer granularity than O(1) vs. arbitrary...
- However, anything larger-than-constant seems to lead to a very different model

Any running time		
Local algorithms		
	Port numbering	Unique IDs

 Slightly non-constant running time together with unique IDs already makes a huge difference

 Slightly non-constant running time together with unique IDs already makes a huge difference

• E.g., vertex cover in cycles becomes easier to approximate

<i>O</i> (<i>n</i>)	2	
O(log n)	2	Greedy
0(log* n)	2	✓< 4/3
<i>O</i> (1)	2	2
	Port numbering	Unique IDs

• E.g., vertex cover in cycles becomes much easier to approximate

<i>O</i> (<i>n</i>)	2	
O(log n)	2	Clustering
0(log* n)	2	≤ 1 + <i>ε</i>
<i>O</i> (1)	2	2
	Port numbering	Unique IDs

• Hence the focus: strictly constant time and/or anonymous nodes

<i>O</i> (<i>n</i>)		
O(log n)		
0(log* n)		
<i>O</i> (1)		
	Port numbering	Unique IDs

Case study: 2-approximation of vertex cover

- Lower bound result (for cycles):
 - There is no local algorithm with approximation factor 2 ε for any ε > 0
 - I'll sketch Czygrinow et al.'s (2008) proof, which is a nice application of Ramsey's theorem
- Fast local algorithm (for bounded-degree graphs):
 - 2-approximation in $O(\Delta)$ time in unweighted graphs
 - Uses LP duality; finds a maximal dual solution using a combination of greedy increments and graph colouring

- Numbered directed *n*-cycle:
 - directed *n*-cycle, each node has outdegree = indegree = 1
 - node identifiers are a permutation of {1, 2, ..., n}

- Fix any $\varepsilon > 0$ and a deterministic local algorithm A
 - Assumption: A finds a feasible vertex cover (at least in any numbered directed cycle)
- Theorem: For a sufficiently large n there is

 a numbered directed n-cycle C in which
 A outputs a vertex cover with ≥ (1 − ε)n nodes
- Corollary: Approximation ratio of A is at least 2 – 2ε

- Let T be the running time of A, let k = 2T + 1
- The output of a node is a function f' of a sequence of k integers (unique IDs)

- Lets focus on increasing sequences of IDs
- Then the output of a node is a function *f* of a set of *k* integers

• Hence we have assigned a colour $f(X) \in \{0, 1\}$ to each k-subset $X \subset \{1, 2, ..., n\}$

- Hence we have assigned a colour $f(X) \in \{0, 1\}$ to each k-subset $X \subset \{1, 2, ..., n\}$
- Fix a large m (depends on k and ε)
- Ramsey: If *n* is sufficiently large,
 we can find an *m*-subset A ⊂ {1, 2, ..., n}
 s.t. all k-subset X ⊂ A have the same colour

• That is, if the ID space is sufficiently large...

• That is, if the ID space is sufficiently large, we can find a monochromatic subset of *m* IDs...

$$\begin{array}{l} f(\{2,\ 3,\ 6,\ 7,\ 11\})=f(\{2,\ 3,\ 6,\ 7,\ 13\})=\\ f(\{2,\ 3,\ 6,\ 7,\ 21\})=f(\{2,\ 3,\ 6,\ 11,\ 13\})=\\ \ldots=f(\{6,\ 7,\ 11,\ 13,\ 21\}) \end{array}$$

• Construct a numbered directed cycle: monochromatic subset as consecutive nodes

 Construct a numbered directed cycle: monochromatic subset as consecutive nodes

 Construct a numbered directed cycle: monochromatic subset as consecutive nodes

 Hence there is an *n*-cycle with a chain of *m* – 2*T* nodes that output 1

- Hence there is an *n*-cycle with a chain of *m* – 2*T* nodes that output 1
- We can choose as large *m* as we want
 - Good, more "black" nodes that output 1
- However, *n* increases rapidly if we increase *m*
 - Bad, more "grey" nodes that might output 0
- Trick: choose "unnecessarily large" *n* so that we can apply Ramsey's theorem repeatedly

• Huge ID space...

• Find a monochromatic subset of size m...

• Delete these IDs...

• Still sufficiently many IDs to apply Ramsey...

• Repeat...

• Repeat until stuck

• Several monochromatic subsets + some leftovers

• Thus A outputs a vertex cover with $\geq (1 - \varepsilon)n$ nodes

- Thus A outputs a vertex cover with $\geq (1 \varepsilon)n$ nodes
- In the proof, *n* is huge and this is necessary
 - Using an upper bound on Ramsey numbers, the same proof would give a negative result for T = o(log* n)
 - With $T = \Theta(\log^* n)$, we could do better!
- We have seen that (2ε) -approximation is not possible in time independent of n
- Now let's see how to find a 2-approximation

Local 2-approximation algorithm for vertex cover

- Convenient to study a more general problem: minimum-weight vertex cover
 - Minimum-cardinality vertex cover: all weights = 1

Local 2-approximation algorithm for vertex cover: background

- Edge packing: weight $y(e) \ge 0$ for each edge e
 - Packing constraint: for each node v,
 the total weight of edges incident to v is at most w(v)

Local 2-approximation algorithm for vertex cover: background

- **Edge packing:** weight $y(e) \ge 0$ for each edge *e*
 - Packing constraint: for each node v,
 the total weight of edges incident to v is at most w(v)

- In linear programming, these are dual problems:
 - minimum-weight (fractional) vertex cover
 - maximum-weight edge packing

 Saturated node v: the total weight on edges incident to v is equal to w(v)

• Saturated edge e:

at least one endpoint of e is saturated \Leftrightarrow edge weight y(e) can't be increased

Maximal edge packing: all edges saturated
 ⇔ none of the edge weights y(e) can be increased
 ⇔ saturated nodes form a vertex cover

- Minimum-weight vertex cover C* difficult to find:
 - Centralised setting: NP-hard
 - Distributed setting: integer problem, symmetry-breaking issues
- Maximal edge packing y easy to find:
 - Centralised setting: trivial greedy algorithm
 - Distributed setting: linear problem, no symmetry-breaking issues (?)

- Minimum-weight vertex cover C* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes C(y) in y: 2-approximation of C*
 - $w(C(y)) \leq 2w(C^*)$
 - Notation: w(C) = total weight of the nodes $v \in C$
 - Proof: LP-duality, relaxed complementary slackness

- Minimum-weight vertex cover C* difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes C(y) in y: 2-approximation of C*
 - $w(C(y)) \leq 2w(C^*)$
 - Constant 2: C(y) covers edges at most twice,
 C* at least once
 - Immediate generalisation to hypergraphs

$$w(C(y)) = \sum_{v \in C(y)} y[v] = \sum_{e \in E} y(e) |e \cap C(y)| \le 2 \sum_{e \in E} y(e) |e \cap C^*| = 2 \sum_{v \in C^*} y[v] \le 2w(C^*)$$

- Finding a maximal edge packing?
 - Basic idea from Khuller et al. (1994) and Papadimitriou and Yannakakis (1993)

- y[v] = total weight of edges incident to node v
- Residual capacity of node v: r(v) = w(v) y[v]

Each edge **accepts** the smallest of the 2 offers it received

Increase y(e) by this amount

• Safe, can't violate packing constraints

Update **residuals**...

Update residuals, discard saturated nodes and edges...

Update residuals, discard saturated nodes and edges, repeat...

Offers...

This is a simple deterministic distributed algorithm We are making some progress 22/39 towards finding a maximal edge packing – but...

This is a simple deterministic distributed algorithm

We are making some progress towards finding a maximal edge packing — but this is too slow!

64 128 \mathbf{O} $\mathbf{0}$

- Offer is a local minimum:
 - Node will be saturated
 - And all edges incident to it will be saturated as well

- Offer is a local minimum:
 - Node will be saturated
- Otherwise there is a neighbour with a different offer:
 - Interpret the offer sequences as colours
 - Nodes u and v have different colours: {u, v} is multicoloured

- Progress guaranteed:
 - On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
 - Such edges are be discarded; maximum degree ∆ decreases by at least one
 - Hence in ∆ rounds all edges are saturated or multicoloured

- In ∆ rounds all edges are saturated or multicoloured
 - Saturated edges are good we're trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?

- In ∆ rounds all edges are saturated or multicoloured
 - Saturated edges are good we're trying to construct a maximal edge packing
 - Why are the multicoloured edges useful?
 - Let's focus on unsaturated nodes and edges

- Colours are sequences of Δ rational numbers
 - Assume that node weights are integers 1, 2, ..., W
 - Then colours are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W\}$

- Colours are sequences of
 Δ rational numbers
 - Assume that node weights are integers 1, 2, ..., W
 - Then colours are rationals of the form $q/(\Delta!)^{\Delta}$ with $q \in \{1, 2, ..., W\}$
 - $k = (W(\Delta!)^{\Delta})^{\Delta}$ possible colours, replace with integers 1, 2, ..., k

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)

- We have a proper *k*-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
 - Each node assigns its outgoing edges to different forests

• For each forest in parallel...

- For each forest in parallel:
 - Use Cole-Vishkin (1986) style colour reduction algorithm
 - Given a k-colouring, finds a 3-colouring in time O(log* k)
 - Bit manipulation trick: each step replaces a k-colouring with an O(log k)-colouring

- For each forest and each colour j = 1, 2, 3 in sequence:
 - Saturate all outgoing edges of colour-j nodes
 - Node-disjoint stars, easy to saturate in parallel
- In $O(\Delta)$ rounds we have saturated all edges

- Total running time:
 - All edges are saturated or multicoloured: $O(\Delta)$
 - Multicoloured forests are 3-coloured: O(log* k)
 - 3-coloured forests are saturated: O(Δ)
- $O(\Delta + \log^* k) = O(\Delta + \log^* W)$
 - k is huge, but log* grows slowly

- Maximal edge packing and 2-approximation of vertex cover in time O(Δ + log* W)
 - *W* = maximum node weight
- Unweighted graphs: running time simply $O(\Delta)$, independent of *n*
- Can be implemented in the port-numbering model

Other examples of positive results

- Local algorithms for dominating sets: only trivial (Δ + 1)-approximation possible in general graphs
- However, there is an approximation scheme for fractional dominating sets (Kuhn et al. 2006)

 And constant-factor approximation algorithms for dominating sets in planar graphs (Czygrinow et al. 2008, Lenzen et al. 2008)

Other examples of positive results

• Edge dominating sets in the port-numbering model

• **Best possible** approximation ratios:

Graph family		Approximation ratio
<i>d</i> -regular graphs	<i>d</i> = 1, 3,	4 - 6/(d + 1)
	<i>d</i> = 2, 4,	4 - 2/d
graphs with degree ≤ ∆	Δ = 3, 5,	$4 - 2/(\Delta - 1)$
	Δ = 2, 4,	4 – 2/Δ

Other examples of positive results

- Edge dominating sets in the port-numbering model
- Best possible approximation ratios:

Graph family		Approximation ratio	Time
<i>d</i> -regular graphs	<i>d</i> = 1, 3,	4 - 6/(d + 1)	O (<i>d</i> ²)
	<i>d</i> = 2, 4,	4 – 2/ <i>d</i>	<i>O</i> (1)
graphs with degree ≤ ∆	Δ = 3, 5,	$4 - 2/(\Delta - 1)$	Ο (Δ ²)
	Δ = 2, 4,	4 – 2/Δ	Ο (Δ ²)

Other examples of positive results

- Matchings in 2-coloured graphs, max degree $\leq \Delta$
- Time Ω(*n*):
 - maximum matching
 - stable matching
- Time $f(\Delta, \epsilon)$:
 - $(1 + \varepsilon)$ -approximation of maximum matching
 - "almost stable" matching (fraction ε of unstable edges)

Other examples of positive results

- Matchings in 2-coloured graphs, max degree $\leq \Delta$
- Time Ω(*n*), even with **unique IDs**:
 - maximum matching
 - stable matching
- Time $f(\Delta, \varepsilon)$, in **port-numbering model**:
 - $(1 + \varepsilon)$ -approximation of maximum matching
 - "almost stable" matching (fraction ε of unstable edges)

Part III: Other models of computation

• Can we relate local algorithms to traditional complexity classes such as NC⁰?

A B C	B	BB	A	• • •
-------	---	----	---	-------

- Traditional view:
 - Problem instance encoded as a string

- Distributed algorithms:
 - Problem instance = structure of the system (graph)

- Traditional view:
 - Problem instance encoded as a string
 - Can be interpreted as a path graph with local inputs
- Everything is a graph
- Let's study a simple model of computation...

- Distributed algorithms on path graphs
- Constant-size local input
 - Hence no unique IDs

- **Deterministic local** algorithms on path graphs
- Constant-size local input

(here T = 2)

- Deterministic local algorithms on path graphs
- Constant-size local input

- Deterministic local algorithms on path graphs
- Constant-size local input

Ridiculously restrictive model — let's consider two different extensions...

Non-local connections, different circuits: NC⁰

• NC⁰

• Deterministic local algorithms, port numbering

- NC⁰, NC¹, NC, RNC, ...
- Traditional computational complexity
- Deterministic local algorithms, port numbering
- Distributed algorithms

Conclusions

- Local algorithms & port-numbering model
 - Non-trivial problems can be solved in very simple models of distributed computing
 - Tight, unconditional lower bounds can be proven
- Research directions
 - Better understand the similarities between the two models?
 - Traditional computational complexity studies strings (= path graphs), consider more general graphs?