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Our research focus

• Very restrictive models of distributed computing
• Local algorithms (constant-time distributed algorithms)

• Algorithms in anonymous networks

• Deterministic algorithms

• Graph problems
• Vertex covers, dominating sets, ...

• Linear programs in graphs

• Approximability
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Outline of today’s talk

• Models of computation
• Local algorithms

• Port-numbering model

• Observations and results
• What is known about these models?

• Case study: vertex cover problem

• Connections to other models of computation

• Constant-depth bounded-fan-in circuits, NC0
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Part I: Models of computation

• Distributed algorithms in general

• Two very limited special cases:
• Local algorithms

• Port-numbering model
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Distributed algorithms
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• Communication graph G

• Node = computer
• e.g., Turing machine, 

finite state machine

• Edge = communication 
link

• computers can
exchange messages

G



Distributed algorithms
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• All nodes are identical,
run the same algorithm

• We can choose
the algorithm

• An adversary chooses
the structure of G

• Our algorithm must 
produce a correct 
output in any graph G

G



Distributed algorithms
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• Usually, computational 
problems are related to 
the structure of the 
communication graph G

• Example: find a maximal 
independent set for G

• The same graph is both 
the input and the system 
that tries to solve the 
problem...

G



Synchronous distributed algorithms
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1. Each node reads its
own local input
• Depends on the problem,

for example:

• node identifier

• node weight

• weights of
incident edges

• May be empty

4
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Synchronous distributed algorithms
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1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
...



Synchronous distributed algorithms
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0

0

1

1

1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
until all nodes
have announced
their local outputs

• Solution of the problem



Synchronous distributed algorithms
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0

0

1

1

1. Each node reads its
own local input

2. Repeat synchronous 
communication rounds
until all nodes
have announced
their local outputs

Example: Find a maximal independent set I

Local output of a node v indicates whether v ∈ I



Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each neighbour



Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each neighbour

(message propagation...)



Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour



Synchronous distributed algorithms
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• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3.updates its own state



Synchronous distributed algorithms
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0

1

• Communication round:
each node

1.sends a message
to each neighbour

2.receives a message
from each neighbour

3.updates its own state

4.possibly stops and 
announces its output



Synchronous distributed algorithms
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• Communication rounds 
are repeated until all 
nodes have stopped and 
announced their outputs

• Running time =
number of rounds

• Worst-case analysis



Synchronous distributed algorithms

• If the nodes have unique identifiers, “everything” 
can be solved in diameter(G) + 1 rounds

• Algorithm: each node
1.gathers full information about G

(including all local inputs)

2.solves the graph problem by brute force

3.chooses its local output accordingly
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Synchronous distributed algorithms

• If the nodes have unique identifiers, “everything” 
can be solved in diameter(G) + 1 rounds

• Natural research problems:
• What can be solved in o(diam(G)) rounds?

• Focus: local algorithms

• What if we do not have unique identifiers?

• Focus: port-numbering model
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Model 1:
Local algorithms

• An extreme version of sublinear-time algorithms:
running time independent of the number of nodes

• Examples:
• running time 100 rounds in any graph

• running time f(Δ) in graphs with maximum degree ≤ Δ

• Our focus: deterministic local algorithms

20



Deterministic local algorithms

• Running time is T ⇐⇒ 
output is a function of input within distance T

21
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“Local neighbourhood”T = 2:



Deterministic local algorithms

• Scalability:
• Can be used in infinitely large (but locally finite) graphs

• Fault tolerance:
• Output can be re-computed repeatedly

• Efficient self-stabilising algorithm,
recovers from any initial configuration,
can be used in dynamic graphs

• Very limited model: what can be computed?
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Model 2:
Port-numbering model
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• No unique identifiers

• A node of degree d can 
refer to its neighbours 
by integers 1, 2, ..., d

• Port-numbering chosen 
by adversary

• Focus: deterministic 
algorithms
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Deterministic algorithms
in the port-numbering model
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• Graph + port numbering
may be symmetric

• Nodes indistinguishable
• Identical inputs,

deterministic 
computation,
identical outputs

• Very limited model:
what can be computed?
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Local algorithms
and the port-numbering model

• Very limited models of distributed computing
• Local algorithms: constant time

• Port-numbering model: anonymous nodes

• Seemingly unrelated
• Why did I choose to introduce both?

• What can be said about these models?
• Certainly plenty of negative results,

but do we have anything positive?
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Part II: Observations and results

• Similarities between local algorithms
and the port-numbering model

• Case study: vertex cover problem
• Joint work with Matti Åstrand

• Examples of other positive results
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Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Port numbering Unique IDs

• Orthogonal models

• All 4 combinations are reasonable

• All 4 combinations are distinct
• Simple (contrived) examples...



Local algorithms
and the port-numbering model
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Any running time

Local algorithms Constant function

Port numbering Unique IDs

• All 4 combinations are distinct

• Trivial problems can be solved in any model



Local algorithms
and the port-numbering model
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Any running time

Local algorithms Constant function Find triangles

Port numbering Unique IDs

• All 4 combinations are distinct

• Identifying all triangles (3-cycles):
• Local information is sufficient,

but unique IDs are needed to distinguish
between a cycle and a long path



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Path colouring

Constant function Find triangles

Port numbering Unique IDs

• All 4 combinations are distinct

• 2-colouring edges of paths:
• Port numbering is sufficient, but

the worst-case running time is
necessarily θ(diam(G))



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Path colouring Spanning trees

Constant function Find triangles

Port numbering Unique IDs

• All 4 combinations are distinct

• Spanning tree construction:
• Non-local problem

• Unique IDs needed to detect cycles



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Port numbering Unique IDs

• All 4 combinations are distinct

• However, there are surprising similarities between
local algorithms and the port-numbering model

• Not fully understood yet!



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Port numbering Unique IDs

• There are problems where both models
seem to be equally strong

• Best algorithm in port-numbering model is local

• Best local algorithm uses the port-numbering model



Local algorithms
and the port-numbering model

34

Any running time

Local algorithms

Port numbering Unique IDs

• Example: minimum vertex cover
• Find a minimum-size subset C of nodes

that “covers” all edges: each edge
incident to at least one node in C

• Classical NP-hard optimisation problem



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Port numbering Unique IDs

• Example: minimum vertex cover

• Best possible approximation ratio?
• Focus on bounded-degree graphs



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

≥ 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Trivial lower bound
• Cycles, optimum n/2

• Solution with < n nodes requires symmetry-breaking



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

≥ 2

≥ 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Non-trivial lower bound
• Cycles

• Czygrinow et al. 2008, Lenzen & Wattenhofer 2008



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

≥ 2

≤ 2 ≥ 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Matching positive result
• Bounded-degree graphs

• One algorithm for both models



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

2 1

2 2

Port numbering Unique IDs

• Example: minimum vertex cover

• Best possible approximation ratios
in bounded-degree graphs



Local algorithms
and the port-numbering model
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Any running time

Local algorithms

Port numbering Unique IDs

• Naturally, we can study running time with
a finer granularity than O(1) vs. arbitrary...

• However, anything larger-than-constant
seems to lead to a very different model



Local algorithms
and the port-numbering model
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O(n)

O(log n)

O(log* n)

O(1)

Port numbering Unique IDs

• Slightly non-constant running time together with 
unique IDs already makes a huge difference

Iterated logarithm
≈ inverse of tetration

(power tower)



Local algorithms
and the port-numbering model
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O(n)

O(log n)

O(log* n)

O(1)

Cole–Vishkin 1986

Linial 1992

Port numbering Unique IDs

• Slightly non-constant running time together with 
unique IDs already makes a huge difference

Deterministic symmetry 
breaking in cycles

Negative 
result



Local algorithms
and the port-numbering model
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O(n)

O(log n)

O(log* n)

O(1)

2

2

2 ≤ 4/3

2 2

Port numbering Unique IDs

• E.g., vertex cover in cycles becomes
easier to approximate

Greedy



Local algorithms
and the port-numbering model
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O(n)

O(log n)

O(log* n)

O(1)

2

2

2 ≤ 1 + ε

2 2

Port numbering Unique IDs

• E.g., vertex cover in cycles becomes much
easier to approximate

Clustering



Local algorithms
and the port-numbering model

45

O(n)

O(log n)

O(log* n)

O(1)

Port numbering Unique IDs

• Hence the focus: strictly constant time
and/or anonymous nodes



Case study:
2-approximation of vertex cover
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• Lower bound result (for cycles):
• There is no local algorithm with

approximation factor 2 − ε for any ε > 0

• I’ll sketch Czygrinow et al.’s (2008) proof,
which is a nice application of Ramsey’s theorem

• Fast local algorithm (for bounded-degree graphs):
• 2-approximation in O(∆) time in unweighted graphs

• Uses LP duality; finds a maximal dual solution using
a combination of greedy increments and graph colouring



Lower-bound result
for vertex cover approximation

• Numbered directed n-cycle:
• directed n-cycle, each node has outdegree = indegree = 1

• node identifiers are a permutation of {1, 2, ..., n}

47

1 4

3 5

6 2

4 5

2 6

1 3



Lower-bound result
for vertex cover approximation

• Fix any ε > 0 and a deterministic local algorithm A
• Assumption: A finds a feasible vertex cover

(at least in any numbered directed cycle)

• Theorem: For a sufficiently large n there is
a numbered directed n-cycle C in which
A outputs a vertex cover with ≥ (1 − ε)n nodes

• Corollary: Approximation ratio of A is
at least 2 − 2ε

48



Lower-bound result
for vertex cover approximation

• Let T be the running time of A, let k = 2T + 1

• The output of a node is a function f’ of
a sequence of k integers (unique IDs)

49

11 93 56 72

T = 2, k = 5:

output = f’(3, 11, 9, 5, 2)

output = f’(11, 9, 5, 2, 7)



Lower-bound result
for vertex cover approximation

• Lets focus on increasing sequences of IDs

• Then the output of a node is a function f of
a set of k integers

50

6 73 112 2113

k = 5:

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})



Lower-bound result
for vertex cover approximation

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}

51

6 73 112 2113

output = f({3, 6, 7, 11, 13})

output = f({6, 7, 11, 13, 21})k = 5:



Lower-bound result
for vertex cover approximation

• Hence we have assigned a colour f(X) ∈ {0, 1}
to each k-subset X ⊂ {1, 2, ..., n}

• Fix a large m (depends on k and ε)

• Ramsey: If n is sufficiently large,
we can find an m-subset A ⊂ {1, 2, ..., n}
s.t. all k-subset X ⊂ A have the same colour
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Lower-bound result
for vertex cover approximation

• That is, if the ID space is sufficiently large...

53

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30



Lower-bound result
for vertex cover approximation

• That is, if the ID space is sufficiently large,
we can find a monochromatic subset of m IDs...
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

f({2, 3, 6, 7, 11}) = f({2, 3, 6, 7, 13}) =
f({2, 3, 6, 7, 21}) = f({2, 3, 6, 11, 13}) =
... = f({6, 7, 11, 13, 21})



Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 

55

12 3 4 56 7 8

9

10

11

12
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14151617181920

21

2223242526
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Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 

56

12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

f({2, 3, 6, 7, 11}) =
f({3, 6, 7, 11, 13}) = ...

Same output



Lower-bound result
for vertex cover approximation

• Construct a numbered directed cycle:
monochromatic subset as consecutive nodes 

57

12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

Same output
... and it must be 1



Lower-bound result
for vertex cover approximation

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 1
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12 3 4 56 7 8

9

10

11

12

13

14151617181920

21

2223242526

27

28

29

30

output 1 output 0 or 1



Lower-bound result
for vertex cover approximation

• Hence there is an n-cycle with a chain of
m − 2T nodes that output 1

• We can choose as large m as we want
• Good, more “black” nodes that output 1 

• However, n increases rapidly if we increase m
• Bad, more “grey” nodes that might output 0

• Trick: choose “unnecessarily large” n so that
we can apply Ramsey’s theorem repeatedly
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Lower-bound result
for vertex cover approximation

• Huge ID space...
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31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30



Lower-bound result
for vertex cover approximation

• Find a monochromatic subset of size m...
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31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30



Lower-bound result
for vertex cover approximation

• Delete these IDs...
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31 32 34 35 36 37 38 39 40

41 42 43 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 3 4 5 6 7 8 9 10

11 12 13 14 16 17 19 20

21 22 23 24 25 26 28 29 30



Lower-bound result
for vertex cover approximation

• Still sufficiently many IDs to apply Ramsey...
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31 32 34 35 36 37 38 39 40

41 42 43 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 3 4 5 6 7 8 9 10

11 12 13 14 16 17 19 20

21 22 23 24 25 26 28 29 30



Lower-bound result
for vertex cover approximation

• Repeat...
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31 34 35 36 37 38 40

41 42 43 47 49 50

51 52 53 54 55 56 57 58 59 60

1 3 5 6 7 8 9 10

11 12 13 14 16 19 20

21 22 24 25 26 28 29 30



Lower-bound result
for vertex cover approximation

• Repeat until stuck
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31 34 35 36 37 38 40

41 42 43 47 49 50

51 52 53 54 55 56 57 58 59 60

1 3 5 6 7 8 9 10

11 12 13 14 16 19 20

21 22 24 25 26 28 29 30



Lower-bound result
for vertex cover approximation

• Several monochromatic subsets + some leftovers
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31 32 34 35 36 37 38 39 40

41 42 43 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

1 3 4 5 6 7 8 9 10

11 12 13 14 16 17 19 20

21 22 23 24 25 26 28 29 30

33

44 45

2

15 18
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Lower-bound result
for vertex cover approximation
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32

35

36

39

42

46

47

48

50515253 5455

56

57

58

59

60

13

4

5

9

17 2333 44 452 15 18 27

1 1 1 1 1 1

Large enough m:
at most εn/2 nodes
near the boundaries

Large enough n:
at most εn/2 nodes

in the grey area 1

1

1



Lower-bound result
for vertex cover approximation
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17 2333 44 452 15 18 27

• Thus A outputs a vertex cover with ≥ (1 − ε)n nodes



Lower-bound result
for vertex cover approximation
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• Thus A outputs a vertex cover with ≥ (1 − ε)n nodes

• In the proof, n is huge — and this is necessary
• Using an upper bound on Ramsey numbers, the same

proof would give a negative result for T = o(log* n)

• With T = Θ(log* n), we could do better!

• We have seen that (2 − ε)-approximation
is not possible in time independent of n

• Now let’s see how to find a 2-approximation



Local 2-approximation algorithm
for vertex cover

• Convenient to study a more general problem:
minimum-weight vertex cover

• Minimum-cardinality vertex cover: all weights = 1

70

Notation:
w(v) = weight of v

51
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Local 2-approximation algorithm
for vertex cover: background

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: for each node v,

the total weight of edges incident to v is at most w(v)

71
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Local 2-approximation algorithm
for vertex cover: background

• Edge packing: weight y(e) ≥ 0 for each edge e
• Packing constraint: for each node v,

the total weight of edges incident to v is at most w(v)

72
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3 + 0 + 4 + 0 + 0 + 2 ≤ 9



Local 2-approximation algorithm
for vertex cover: background

• In linear programming, these are dual problems:
• minimum-weight

(fractional) vertex cover

• maximum-weight
edge packing

73
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Local 2-approximation algorithm
for vertex cover: background

• Saturated node v: the total weight on edges 
incident to v is equal to w(v)

74
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Local 2-approximation algorithm
for vertex cover: background

• Saturated edge e:
at least one endpoint of e is saturated
⇐⇒ edge weight y(e) can’t be increased

75
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2 + ε would violate
a packing constraint



Local 2-approximation algorithm
for vertex cover: background

• Maximal edge packing: all edges saturated
⇐⇒ none of the edge weights y(e) can be increased
⇐⇒ saturated nodes form a vertex cover
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Local 2-approximation algorithm
for vertex cover: background

• Minimum-weight vertex cover C* difficult to find:
• Centralised setting: NP-hard

• Distributed setting: integer problem,
symmetry-breaking issues

• Maximal edge packing y easy to find:
• Centralised setting: trivial greedy algorithm

• Distributed setting: linear problem,
no symmetry-breaking issues (?)
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Local 2-approximation algorithm
for vertex cover: background

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• w(C(y)) ≤ 2w(C*)

• Notation: w(C) = total weight of the nodes v ∈ C

• Proof: LP-duality, relaxed complementary slackness
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Local 2-approximation algorithm
for vertex cover: background

• Minimum-weight vertex cover C* difficult to find

• Maximal edge packing y easy to find?

• Saturated nodes C(y) in y: 2-approximation of C*
• w(C(y)) ≤ 2w(C*)

• Constant 2: C(y) covers edges at most twice,
C* at least once

• Immediate generalisation to hypergraphs

79

1 Introduction

In this work, we present deterministic distributed approximation algorithms for two classical prob-
lems: minimum-weight vertex cover and minimum-weight set cover.

1.1 Maximal edge packings and vertex covers

Let G = (V,E) be a simple, undirected, node-weighted graph; each node v ∈ V is associated with
a positive weight wv. A set C ⊆ V is a vertex cover if each edge has at least one endpoint in C,
and it is a minimum-weight vertex cover if it also minimises its total weight w(C) =

�
v∈C wv.

While vertex cover is a classical NP-hard optimisation problem, there is a simple technique
for obtaining efficient approximation algorithms: find a maximal edge packing (a maximal dual
solution) and output all saturated nodes. For a nonnegative function y : E → [0,+∞), let us define
the shorthand notation

y[v] =
�

e∈E: v∈e

y(e)

for each v ∈ V . We say that y is an edge packing if y[v] ≤ wv for all v ∈ V . A node v ∈ V is
saturated in the edge packing y if y[v] = wv. An edge e = {u, v} ∈ E is saturated if u or v or
both are saturated, i.e., y(e) cannot be increased without violating the constraint y[u] ≤ wu or
y[v] ≤ wv. An edge packing y is maximal if all edges are saturated.

Let C(y) be the set of nodes saturated in y. The classical result by Bar-Yehuda and Even [6]
shows that if y is a maximal edge packing then C(y) is a 2-approximation of a minimum-weight
vertex cover; for the sake of completeness, we give a short proof here. First, observe that C(y) is
a vertex cover by definition: if an edge is not covered by C(y), then y is not maximal. To show
the approximation ratio, let C∗ be a minimum-weight vertex cover. As C(y) contains at most two
endpoints of each edge and C∗ contains at least one endpoint of each edge, we have

w(C(y)) =
�

v∈C(y)

y[v] =
�

e∈E

y(e) |e ∩ C(y)| ≤ 2
�

e∈E

y(e) |e ∩ C∗
| = 2

�

v∈C∗

y[v] ≤ 2w(C∗).

In a centralised setting, a maximal edge packing y is easy to find: for each e ∈ E, in an
arbitrary order, increase the value y(e) until one of the endpoints of e becomes saturated. In this
work, we give an efficient distributed algorithm that finds a maximal edge packing, and hence also
a 2-approximation of a minimum-weight vertex cover.

1.2 Maximal fractional packings and set covers

To deal with the set cover problem in a distributed setting, it is convenient to restate the problem
by using a bipartite graph H = (S ∪ U, A). Each node s ∈ S represents a subset, each node u ∈ U
represents an element of the universe, and an edge {s, u} ∈ A denotes that the element u ∈ U is a
member of the subset s ∈ S. Each subset node s ∈ S is associated with a positive weight ws. A
collection C ⊆ S is a set cover if each element u ∈ U has at least one neighbour in C, and it is a
minimum-weight set cover if it also minimises its total weight w(C) =

�
s∈C ws.

Let y : U → [0,+∞) be a nonnegative function. Define the shorthand notation

y[s] =
�

u∈N(s)

y(u)

for each s ∈ S; here N(s) ⊆ U is the set of elements adjacent to the subset node s. We say that
y is a fractional packing if y[s] ≤ ws for all subset nodes s ∈ S. A subset node s ∈ S is saturated

1



Local 2-approximation algorithm
for vertex cover

• Finding a maximal edge packing?
• Basic idea from Khuller et al. (1994) and

Papadimitriou and Yannakakis (1993)
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Local 2-approximation algorithm
for vertex cover: basic idea

• y[v] = total weight of edges incident to node v

• Residual capacity of node v: r(v) = w(v) − y[v]

• Saturated node:
r(v) = 0
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Local 2-approximation algorithm
for vertex cover: basic idea

Start with a trivial
edge packing y(e) = 0
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Local 2-approximation algorithm
for vertex cover: basic idea

Each node v offers
r(v)/deg(v) units to 
each incident edge
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Local 2-approximation algorithm
for vertex cover: basic idea

Each edge accepts
the smallest of the
2 offers it received

Increase y(e)
by this amount

• Safe, can’t violate 
packing constraints
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Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals...
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Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges...
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Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...
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Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...
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Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals...
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Local 2-approximation algorithm
for vertex cover: basic idea

Update residuals,
discard saturated
nodes and edges,
repeat...

Offers...

Increase
weights...

Update residuals
and graph, etc.
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Local 2-approximation algorithm
for vertex cover: basic idea

This is a simple 
deterministic 
distributed 
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but...
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Local 2-approximation algorithm
for vertex cover: basic idea

This is a simple 
deterministic 
distributed 
algorithm

We are making
some progress
towards finding
a maximal edge
packing — but
this is too slow!
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Local 2-approximation algorithm
for vertex cover

93

4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• And all edges incident to it
will be saturated as well

2

2 2

2

Residual capacity
was 8, will be 0



Local 2-approximation algorithm
for vertex cover

94

4 3

2

2

5

• Offer is a local minimum:
• Node will be saturated

• Otherwise there is a neighbour
with a different offer:

• Interpret the offer
sequences as colours

• Nodes u and v have
different colours:
{u, v} is multicoloured

1 2
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Local 2-approximation algorithm
for vertex cover

95

4 3

2

2

5

• Progress guaranteed:
• On each iteration, for each node,

at least one incident edge becomes
saturated or multicoloured

• Such edges are be discarded;
maximum degree ∆ decreases
by at least one

• Hence in ∆ rounds all edges
are saturated or multicoloured

1 2

2

2

2



Local 2-approximation algorithm
for vertex cover

96

• In ∆ rounds all edges are 
saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?



Local 2-approximation algorithm
for vertex cover
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• In ∆ rounds all edges are 
saturated or multicoloured

• Saturated edges are good —
we’re trying to construct
a maximal edge packing

• Why are the multicoloured
edges useful?

• Let’s focus on unsaturated
nodes and edges



Local 2-approximation algorithm
for vertex cover: multicoloured edges

98

• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

(2, 2/3, 1/6, 1/24)

(2, 2/3, 1/6, 1/12)



Local 2-approximation algorithm
for vertex cover: multicoloured edges

99

• Colours are sequences of
∆ rational numbers

• Assume that node weights
are integers 1, 2, ..., W

• Then colours are rationals
of the form q/(∆!)∆ with
q ∈ {1, 2, ..., W}

• k = (W(∆!)∆)∆ possible
colours, replace with
integers 1, 2, ..., k 2789

1378



Local 2-approximation algorithm
for vertex cover: multicoloured edges

100

• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher 
colour (acyclic directed graph)

2789

1378



Local 2-approximation algorithm
for vertex cover: multicoloured edges

101

• We have a proper k-colouring
of the unsaturated subgraph

• Orient from lower to higher 
colour (acyclic directed graph)

• Partition in ∆ forests
• Each node assigns its outgoing

edges to different forests

2789

1378



Local 2-approximation algorithm
for vertex cover: multicoloured edges

102

• For each forest in parallel...

2789

1378



Local 2-approximation algorithm
for vertex cover: multicoloured edges

103

• For each forest in parallel:
• Use Cole–Vishkin (1986) style

colour reduction algorithm

• Given a k-colouring,
finds a 3-colouring
in time O(log* k)

• Bit manipulation trick:
each step replaces
a k-colouring with
an O(log k)-colouring

2789

13783

2



Local 2-approximation algorithm
for vertex cover: multicoloured edges

104

• For each forest and each
colour j = 1, 2, 3 in sequence:

• Saturate all outgoing edges
of colour-j nodes

• Node-disjoint stars,
easy to saturate in parallel

• In O(∆) rounds we have
saturated all edges



Local 2-approximation algorithm
for vertex cover: summary

105

• Total running time:
• All edges are saturated or 

multicoloured: O(∆)

• Multicoloured forests
are 3-coloured: O(log* k)

• 3-coloured forests
are saturated: O(∆)

• O(∆ + log* k) = O(∆ + log* W)
• k is huge, but log* grows slowly

2789

13783

2



Local 2-approximation algorithm
for vertex cover: summary

106

• Maximal edge packing and
2-approximation of vertex cover
in time O(∆ + log* W)

• W = maximum node weight

• Unweighted graphs:
running time simply O(∆),
independent of n

• Can be implemented in
the port-numbering model

2789

13783

2



Other examples of positive results

• Local algorithms for dominating sets:
only trivial (∆ + 1)-approximation
possible in general graphs

• However, there is an approximation
scheme for fractional dominating sets
(Kuhn et al. 2006)

• And constant-factor approximation algorithms
for dominating sets in planar graphs
(Czygrinow et al. 2008, Lenzen et al. 2008)

107



Other examples of positive results

108

• Edge dominating sets in
the port-numbering model

• Best possible approximation ratios:

Graph familyGraph family Approximation ratio

d-regular d = 1, 3, ...d-regular
graphs d = 2, 4, ...

graphs with Δ = 3, 5, ...graphs with
degree ≤ Δ Δ = 2, 4, ...

4 − 6/(d + 1)

4 − 2/d

4 − 2/(Δ − 1)

4 − 2/Δ



Other examples of positive results
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• Edge dominating sets in
the port-numbering model

• Best possible approximation ratios:

Graph familyGraph family Approximation ratio Time

d-regular d = 1, 3, ...d-regular
graphs d = 2, 4, ...

graphs with Δ = 3, 5, ...graphs with
degree ≤ Δ Δ = 2, 4, ...

4 − 6/(d + 1) O(d2)

4 − 2/d O(1)

4 − 2/(Δ − 1) O(Δ2)

4 − 2/Δ O(Δ2)

Local 
algorithms!



Other examples of positive results

110

• Matchings in 2-coloured graphs, max degree ≤ ∆

• Time Ω(n):
• maximum matching

• stable matching

• Time f(Δ, ε):
• (1 + ε)-approximation of maximum matching

• “almost stable” matching
(fraction ε of unstable edges)



Other examples of positive results

111

• Matchings in 2-coloured graphs, max degree ≤ ∆

• Time Ω(n), even with unique IDs:
• maximum matching

• stable matching

• Time f(Δ, ε), in port-numbering model:
• (1 + ε)-approximation of maximum matching

• “almost stable” matching
(fraction ε of unstable edges)



Part III: Other models of computation

• Can we relate local algorithms to
traditional complexity classes such as NC0 ?

112



Distributed algorithms vs.
traditional computational complexity

• Traditional view:
• Problem instance 

encoded as a string

• Distributed algorithms:
• Problem instance =

structure of the system
(graph)

113

A B C B B B A ...



A B C B B B A

Distributed algorithms vs.
traditional computational complexity

• Traditional view:
• Problem instance 

encoded as a string

• Can be interpreted
as a path graph
with local inputs

• Everything is a graph

• Let’s study a simple 
model of computation...

114

A B C B B B A ...



A B C B B B A B C B B A C B A

0 0 0 1 0 1 1 0 0 0 1 0 1 0 1

Distributed algorithms vs.
traditional computational complexity

115

• Distributed algorithms on path graphs

• Constant-size local input
• Hence no unique IDs

Local inputs

Local outputs



A B C B B B A B C B B A C B A

0 0 0 1 ? 1 1 0 0 0 1 0 1 0 1

Distributed algorithms vs.
traditional computational complexity

116

• Deterministic local algorithms on path graphs

• Constant-size local input

(here T = 2)



?

A B C B B B A B C B B A C B A

Distributed algorithms vs.
traditional computational complexity

117

• Deterministic local algorithms on path graphs

• Constant-size local input

bounded-depth,
bounded fan-in
Boolean circuit



? ?

Distributed algorithms vs.
traditional computational complexity

118

• Deterministic local algorithms on path graphs

• Constant-size local input

C1 C2C1 = C2
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C1 C2C1 = C2

Ridiculously restrictive model —
let’s consider two different extensions...
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C1 C2C1 = C2

C1 C2C1 ≠ C2

Non-local connections, different circuits: NC0
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C1 C2

General graphs:

C1

C2

local algorithms



Distributed algorithms vs.
traditional computational complexity

122

• NC0

C1 C2C1 ! C2

C1 C2C1 = C2

C1

C2

• Deterministic local 
algorithms, port numbering



Distributed algorithms vs.
traditional computational complexity

123

• NC0, NC1, NC, RNC, ...

• Traditional computational 
complexity

C1 C2C1 ! C2

C1 C2C1 = C2

C1

C2

• Deterministic local 
algorithms, port numbering

• Distributed algorithms



Conclusions

• Local algorithms & port-numbering model
• Non-trivial problems can be solved in very

simple models of distributed computing

• Tight, unconditional lower bounds can be proven

• Research directions
• Better understand the similarities between

the two models?

• Traditional computational complexity studies strings
(= path graphs), consider more general graphs?
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