Jukka Suomela Aalto University

Locality in online, dynamic, sequential, and distributed graph algorithms

Joint work with:

- Amirreza Akbari
- Navid Eslami
- Henrik Lievonen
- Darya Melnyk
- Joona Särkijärvi

arxiv.org/abs/2109.06593

Informal introduction to locality

• Given: a path graph

• Find: a proper 2-coloring

• Given: a path graph

• Find: a proper 2-coloring

- Restriction: the color of each node only depends on its local neighborhood
 - say, radius–o(n) neighborhood

- Given: a path graph
- Find: a proper 2-coloring
- Restriction: the color of each node only depends on its local neighborhood
 - say, radius-o(n) neighborhood

- Given: a path graph
- Find: a proper 2-coloring
- Restriction: the color of each node only depends on its local neighborhood
 - say, radius–o(n) neighborhood

Conclusion:

Paths can't be 2-colored with any local strategy

... and it doesn't really depend on exactly how we define "local"

- Find: a proper 3-coloring
- Restriction: the color of each node only depends on its local neighborhood

- Find: a proper 3-coloring
- Restriction: the color of each node only depends on its local neighborhood

- Find: a proper 3-coloring
- Restriction: the color of each node only depends on its local neighborhood

- Find: a proper 3-coloring
- Restriction: the color of each node only depends on its local neighborhood

- Find: a proper 3-coloring
- Restriction: the color of each node only depends on its local neighborhood

Conclusion:

We need some way to break local symmetry

Conclusion:

We need some way to break local symmetry

- randomness
- unique node identifiers
- sequential ordering ...

Nodes labeled with (small) unique identifiers:

locality $\approx \frac{1}{2} \log^* n$

Nodes labeled with (small) unique identifiers:

locality $\approx \frac{1}{2} \log^* n$

Nodes labeled with random bit strings:

locality $\approx \frac{1}{2} \log^* n$

Nodes labeled with (small) unique identifiers:

locality $\approx \frac{1}{2} \log^* n$

Nodes labeled with random bit strings:

locality $\approx \frac{1}{2} \log^* n$

[Cole & Vishkin 1986, Linial 1992, Naor 1991]

Four models of computing

LOCAL distributed, parallel

SLOCAL

distributed, sequential

LOCAL distributed, parallel

online LOCAL centralized

LOCAL distributed, parallel

Each node in parallel:

- looks at its radius-T neighborhood
- picks its output based on this information

(nodes have unique identifiers)

SLOCAL

distributed, sequential

LOCAL distributed, parallel

online LOCAL centralized

LOCAL distributed, parallel

online LOCAL centralized

Each node in a sequential, adversarial order:

- looks at its radius-T neighborhood
- picks its output & state based on this information

LOCAL distributed, parallel

online LOCAL centralized

LOCAL distributed, parallel

Graph **constructed** by an adversary that adds nodes and edges one by one

We can see everything

We can **change** our output only within distance *T* from a point of change

LOCAL distributed, parallel

LOCAL distributed, parallel

Some unknown input graph is revealed piece by piece:

- adversary points at a node v
- we can see the radius-T neighborhood of v
- we have to choose the label for v

We can **remember** everything

LOCAL distributed, parallel

Genuinely different models

LOCAL distributed, parallel

coloring

SLOCAL

distributed, sequential

LOCAL distributed, parallel

online LOCAL centralized

dynamic LOCAL

centralized

coloring

SLOCAL

distributed, sequential

LOCAL distributed, parallel

online LOCAL centralized

cycle detection dynamic LOCAL centralized

coloring

SLOCAL

distributed, sequential

LOCAL distributed, parallel

dynamic LOCAL

centralized

online LOCAL

centralized

leader election

cycle detection

Closely related models

dynamic LOCAL centralized

online LOCAL centralized

distributed, sequential

LOCAL distributed, parallel

centralized

dynamic LOCAL

centralized

Collapse in rooted trees

LCLs in rooted trees

- Rooted regular trees
- Locally checkable labelings (LCLs)
 - solution valid if it "looks good everywhere"
 - example: 3-coloring
- In this setting all models equally strong!

LCLs in rooted trees

Case study: grids

• 5-coloring: local in all models (easy to see)

- 5-coloring: local in all models (easy to see)
- 4-coloring: local in all models (hard to see)

- 5-coloring: local in all models (easy to see)
- 4-coloring: local in all models (hard to see)
- 3-coloring:
 - LOCAL, SLOCAL: global

- 5-coloring: local in all models (easy to see)
- 4-coloring: local in all models (hard to see)
- 3-coloring:
 - LOCAL, SLOCAL: global
 - online-LOCAL: O(log n)

- 5-coloring: local in all models (easy to see)
- 4-coloring: local in all models (hard to see)
- 3-coloring:
 - LOCAL, SLOCAL: global
 - online-LOCAL: $O(\log n)$ is this tight?

- 5-coloring: local in all models (easy to see)
- 4-coloring: local in all models (hard to see)
- 3-coloring:
 - LOCAL, SLOCAL: global
 - online-LOCAL: $O(\log n)$ is this tight?
 - dynamic-LOCAL: open

