## Jukka Suomela <br> Aalto University

## Locality <br> in online, dynamic, sequential, and distributed graph algorithms

## Joint work with:

- Amirreza Akbari
- Navid Eslami
- Henrik Lievonen
- Darya Melnyk
-Joona Särkijärvi


## arxiv.org/abs/2109.06593

Informal introduction to locality

## Coloring paths locally?

- Given: a path graph



## Coloring paths locally?

- Given: a path graph
-Find: a proper 2-coloring


## Coloring paths locally?

- Given: a path graph
-Find: a proper 2-coloring

-Restriction: the color of each node only depends on its local neighborhood
- say, radius-o(n) neighborhood


## Coloring paths locally?

- Given: a path graph
-Find: a proper 2-coloring

-Restriction: the color of each node only depends on its local neighborhood
-say, radius-o(n) neighborhood



## Coloring paths locally?

- Given: a path graph
-Find: a proper 2-coloring

-Restriction: the color of each node only depends on its local neighborhood
- say, radius-o(n) neighborhood



## Conclusion:

Paths can't be 2-colored with any local strategy
... and it doesn't really depend on exactly how we define "local"

## 3-coloring paths locally?

- Given: a path graph
- Find: a proper 3-coloring

-Restriction: the color of each node only depends on its local neighborhood


## 3-coloring paths locally?

- Given: a path graph
-Find: a proper 3-coloring

- Restriction: the color of each node only depends on its local neighborhood



## 3-coloring paths locally?

- Given: a path graph
-Find: a proper 3-coloring

- Restriction: the color of each node only depends on its local neighborhood



## 3-coloring paths locally?

- Given: a path graph
- Find: a proper 3-coloring

-Restriction: the color of each node only depends on its local neighborhood


## 3-coloring paths locally?

- Given: a path graph
- Find: a proper 3-coloring

-Restriction: the color of each node only depends on its local neighborhood


Conclusion:
We need some way
to break local symmetry

## Conclusion:

## We need some way

 to break local symmetry- randomness
- unique node identifiers
- sequential ordering ...


## 3-coloring paths locally

Nodes labeled with (small) unique identifiers:

## locality $\approx 1 / 2$ log* $n$

## 3-coloring paths locally

Nodes labeled with (small) unique identifiers:

## locality $\approx 1 / 2$ log* $n$

Nodes labeled with random bit strings:
locality $\approx 1 / 2 \log * n$

## 3-coloring paths locally

Nodes labeled with (small) unique identifiers:

## locality $\approx 1 / 2$ log* $n$

Nodes labeled with random bit strings:

## locality $\approx 1 / 2$ log* $n$

[Cole \& Vishkin 1986, Linial 1992, Naor 1991]

## Four models of computing

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

# online LOCAL <br> centralized 

## dynamic LOCAL

centralized

## SLOCAL <br> distributed sequential

online LOCAL centralized
dynamic LOCAL

LOCAL
distributed, parallel


- picks its output based on this information
(nodes have unique identifiers)


## SLOCAL <br> distributed sequential

online LOCAL centralized
dynamic LOCAL

## SLOCAL

distributed, sequential
online LOCAL centralized

# SLOCAL 

distributed, sequential

Each node in a sequential, adversarial order:

- looks at its radius-T neighborhood
- picks its output \& state based on this information


## SLOCAL

distributed, sequential
online LOCAL centralized

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

dynamic LOCAL
centralized

## Graph constructed by an adversary that adds nodes and edges one by one <br> We can see everything

We can change our output only within distance $T$ from a point of change

## dynamic LOCAL

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

dynamic LOCAL
centralized

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

# online LOCAL <br> centralized 

## dynamic LOCAL

centralized

## Some unknown input graph is

 revealed piece by piece:- adversary points at a node $v$
- we can see the radius-T neighborhood of $v$
- we have to choose the label for $v$

We can remember everything

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

# online LOCAL <br> centralized 

## dynamic LOCAL

centralized

## Genuinely different models

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

# online LOCAL <br> centralized 

## dynamic LOCAL

centralized

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

# online LOCAL <br> centralized 

## dynamic LOCAL

centralized

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

## online LOCAL <br> centralized

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

cycle detection
dynamic LOCAL centralized

## online LOCAL <br> centralized

## Closely related models

## SLOCAL

distributed, sequential

## LOCAL <br> distributed, parallel

# online LOCAL <br> centralized 

## dynamic LOCAL

centralized

## SLOCAL

centralized

## SLOCAL





# Collapse in rooted trees 

## LCLs in rooted trees

- Rooted regular trees
- Locally checkable labelings (LCLs)
- solution valid if it "looks good everywhere"
- example: 3-coloring
- In this setting all models equally strong!


## LCLs in rooted trees

## SLOCAL <br>  <br> online LOCAL

## Case study: grids

## Coloring grids



## Coloring grids

-5-coloring: local in all models (easy to see)

## Coloring grids

-5-coloring: local in all models (easy to see)
-4-coloring: local in all models (hard to see)

## Coloring grids

- 5-coloring: local in all models (easy to see)
-4-coloring: local in all models (hard to see)
-3-coloring:
- LOCAL, SLOCAL: global


## Coloring grids

- 5-coloring: local in all models (easy to see)
-4-coloring: local in all models (hard to see)
-3-coloring:
- LOCAL, SLOCAL: global
- online-LOCAL: O(log n)


## Coloring grids

-5-coloring: local in all models (easy to see)
-4-coloring: local in all models (hard to see)
-3-coloring:

- LOCAL, SLOCAL: global
- online-LOCAL: $O(\log n)$ - is this tight?


## Coloring grids

-5-coloring: local in all models (easy to see)
-4-coloring: local in all models (hard to see)
-3-coloring:

- LOCAL, SLOCAL: global
- online-LOCAL: O(log $n$ ) - is this tight?
- dynamic-LOCAL: open


