Distributed Quantum Advantage

Jukka Suomela Aalto University

Classical computer network

Quantum computer network

Send any

number of

qubits

How many **communication rounds** are needed until all computers stop and announce their local outputs?

Compare with centralized, sequential computation:

Classical

Quantum

Classical (exponentially faster and bigger)

GHZ game

Greenberger, Horne, Zeilinger

X + Y + Z	a + b + c mod 2
0	0
1	(forbidden)
2	1
3	(forbidden)

GHZ game

Greenberger, Horne, Zeilinger

X + Y + Z	<i>a</i> + <i>b</i> + <i>c</i> mod 2
0	0
1	0 or 1
2	1
3	0 or 1

X + Y + Z	<i>a</i> + <i>b</i> + <i>c</i> mod 2
0	0
1	0 or 1
2	1
3	0 or 1

 $s + t + u = 0 \mod 2$

 $s + t + u = 0 \mod 2$

n/6 rounds

2 rounds

Balliu, Brandt, Coiteux-Roy, d'Amore, Equi, Le Gall, Lievonen, Modanese, Olivetti, Renou, S, Tendick, Veeren (2024): **Distributed Quantum Advantage for Local Problems**

arXiv:2307.09444 No distributed quantum advantage for approximate graph coloring (STOC 2024)

arXiv:2403.01903 Online locality meets distributed quantum computing

arXiv:2411.03240

Distributed quantum advantage for local problems

