*221

Synthesizing fault-tolerant

B
Danny Dolev

Hebrew University of Jerusalem

Keijo Heljanko
Joel Rybicki

Jukka Suomela
Siert Wieringa
Aalto University & HIIT

July 24,2014
FRIDA 2014,Vienna,

- distributed algorithms

Christoph Lenzen
MPI Saarbricken

Janne H. Korhonen

Matti Jarvisalo
University of Helsinki & HIIT

Ulrich Schmid
TU Wien

Austria

What is this talk about!?

Developing fault-tolerant distributed
algorithms for consensus-like problems using
computational techniques.

Verification vs synthesis

Verification:
“Check that given A satisfies the specification S.”

Synthesis:
“Construct an A that satisfies a specification S.”

The model problem

The synchronous counting problem:
® Closely related to consensus

® Self-stabilization

® Byzantine fault tolerance

® Hard to come up with correct algorithms

Our work

Prior work: Are there efficient and

compact deterministic algorithms!?
Dolev et al. (SSS 2013)

Recent work: Developing and evaluating
different synthesis techniques

Synchronous
counting

The model

1 2

® n processors

® s states per node

® arbitrary initial state

——

The model

1 2

® n processors

® s states per node

® arbitrary initial state

——

Synchronous step:
|. send state to all neighbours
2. update state

The model

1 2

® n processors

® s states per node

® arbitrary initial state

——

Synchronous step: algorithm
|. send state to all neighbors > =

2. update state transition function

Self-stabilizing counting

® _—~—/ / _
@_/ __/ ./ __
@v_/__/__
@ ~ \/ ./ _

Stabilization Counting

Self-stabilizing counting

A simple algorithm solves the problem

Self-stabilizing counting

Solution: Follow the leader.

Self-stabilizing counting

Solution: Follow the leader.

QO
2

@x

@ _

Self-stabilizing counting

Solution: Follow the leader.

O \/
@___/

@J
@ _/

Self-stabilizing counting

Solution: Follow the leader.

O \/ \/ \/
@___/ ./ ./ _
@—/ ./ ./

@ _/ ./ L/

Tolerating Byzantine failures

F——

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

F——

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

Tolerating Byzantine failures

‘ can send different messages to non-faulty nodes!

Tolerating Byzantine failures

‘ can send different messages to non-faulty nodes!

Note: Easy if self-stabilization is not required!

Fault-tolerant counting

® _—~/ /
@_/ __/ S _
O—~_—~/ \/ _
O_ X XX XX XA

Stabilization Counting

The model with failures

2 ® n processors

® s states

® arbitrary initial state

@ ® at most f Byzantine nodes

Some basic facts

® How many states (per node) do we need?
- §>12
® How many faults can we tolerate!

- f<nl/3

® How fast can we stabilize?

- t> f'
Pease et al., 1980

Fischer & Lynch, 1982

Solving synchronous counting

Deterministic solutions with large s known for
similar problems (e.g. D. Dolev & Hoch, 2007)

Randomized solutions for counting with small s and
large t in expectation (e.g. S. Dolev: Self-stabilization)

We have synthesized deterministic algorithms with
small s and t for the case f=| (SSS’13)

Finding an algorithm

The size of the search space is s> where b = ns".

parameters

search space

n
S

4
2

264 ~ 109

Finding an algorithm

The size of the search space is s> where b = ns".

parameters search space
n=4
264 ~ 109
s=2
n=4 3324 ~ | (54
s=3

We need a clever way to do the search!

Main results, f = |

f4 <n<25:

® |ower bound: no 2-state algorithm

® upper bound: 3 states suffice

If n > 6:

® 2 states always suffice

Synthesis techniques

Our initial approach

® Fixnsandf

® The existence of an algorithm is a finite
combinatorial decision problem

® Apply SAT solvers to a base case that implies a
general solution

Generalizing from a base case

For any fixed s, f and t:

There is an algorithm A for n nodes

\

There is an algorithm B for n+| nodes
with same s, f and t

Verification is easy

® | et F be a set of faulty nodes, |F| < f

® Construct a state graph Gr from A:

Nodes = actual states

Edges = possible state transitions

loop

deadlock

cycle
s
// *200
// (
7 e
*020

livelock
\
//

Verification is easy

A is correct = Every Gris good

no deadlocks = Gr is loopless

All nodes have

stabilization
< a pathto 0

counting & {0,1} is the only cycle

From verification to synthesis

The encoding uses the following variables:

s Aj(u)=s

Li w,s
€q,r

Pq,r

Lg w,s

& edge (q,7) exists

& path g ~> 1 exists

:> €q,r

> Dg,r

The SAT approach

® Solver is a black box: no domain-knowledge
® Relatively easy to setup

® Size of instances blows up:

The SAT approach

® Solver is a black box: no domain-knowledge
® Relatively easy to setup

® Size of instances blows up:

instance: n,s, t variables clauses

4310 6k 31k
5310 45k 36k
6310 403k 1M

Counter-example guided search

® A problem-specific synthesis algorithm

® CEGAR-inspired search

® Uses SAT solver to find counter-examples

® | earn constraints on-the-fly

A high-level overview

While algorithm candidates exist:

® Guess an algorithm A
® Use a SAT solver to check if A is correct

® |f not, solver gives a counter-example. Learn
new constraints that forbid bad algorithms

How to learn useful constraints from
counter-examples!?

Some experiments

Experiment setup

® SAT encoding: MiniSAT and lingeling solvers

® ‘symsync’: the guided search algorithm

® same instance on |00 processors in parallel,
different random seeds

1.0

s=2,n=7,f=1, cyclic _ positive results

0.4
0.2

cnf-minisat

0.0
1.0

0.4
0.2
0.0

cnf-lingeling

1.0

0.8

0.4r
0.2

0.0

symsync

107

10°

10*

102 10° 10*

(@]
©
—_
()
—
—
—
N
—_
w
N
~J

s=2,n=7,f=1, cyclic _ positive results
T T T T TTTT T L L T L

1.0

cnf-minisat

0.4
0.2

CNF

encoding sl cnf-lingeling |

0.4
0.2

0.0

1.0

guided ost
0.6+
search
04
0.2F
0.0

107

1.0

s=2,n=7,f=1, cyclic _ positive results

0.4
0.2

cnf-minisat

0.0
1.0

0.4
0.2
0.0

cnf-lingeling

1.0

0.8

0.4r
0.2

0.0

symsync

107

10°

10*

102 10° 10*

(@]
©
—_
()
—
—
—
N
—_
w
N
~J

1.0

s=2,n=7,f=1, cyclic _ positive results

0.4
0.2

cnf-minisat

0.0
1.0

0.4
0.2
0.0

cnf-lingeling

fast

algo

rithm

1.0

0.8

0.4r
0.2

0.0

symsync

107

10°

10*

102 10° 10*
I 4 |
10 11 12 13 27

1.0

s=2,n=7,f=1, cyclic _ positive results

0.4
0.2

cnf-minisat

0.0
1.0

0.4
0.2
0.0

cnf-lingeling

1.0

0.8

0.6
0.4r
0.2

0.0

symsync

some V

algorithm

107

10°

10*

10*

27

s=2,n=7,f=1, cyclic _ positive results
T T T T TTTT T L L T L

1.0

orange = fast ' | cnf-minisat

algorithm

blue = some 04y
algorithm

0.0
1.0

T T T TTTT
cnf-lingeling
0.6
0.6 -

0.4

0.0
1.0

symsync

0.6 -

0.4r

0.2

0.0 S
107 10° 10* 102 10° 10*

orange = fast
algorithm

blue = some
algorithm

SAT: finds

best solutions
faster

guided search:
finds some
solution faster

1.0

s=2,n=7,f=1, cyclic _ positive results

0.8 -
0.6 |-
0.4
0.2F
0.0

cnf-minisat

1.0
0.8
0.6 -
0.4
0.2F
0.0

cnf-lingeling

1.0
0.8
0.6 -
0.4+
0.2

0.0

symsync

107

10°

10*

102 10°

10*

(@]
©
—_
()
—
—
—
N

27

s=3,n=05,f=1, cyclic _ positive results
]..O T L L | T T T T T TTT] T LI B B B B L T

Or'ange — fast sl cnf-minisat

algorithm

blue = some 94y

algorithm 77| }

1.0

' L
cnf-lingeling
0.8 -
0.6 -

1.0 T T LN B B N B
symsync

0.6
0.4

0.2

0.0 AT E—
10 10° 10? 102 10° 10*

s=3,n=05,f=1, cyclic _ positive results
]..O T L L | T T T T T TTT] T LI B B B B L T

orange = fast cnf-minisat
0.8

algorithm

blue = some 94
. 2
algorithm °

OO 1 T B B B B 1 T R T R | 1 Lol
1.0

SAT: finds 08f

' L
cnf-lingeling

l

best solutions %°[
faster 04r
0.2F
0.0 v
. Symsync
guided search: (s}]
finds some o6l .
solution faster o4l |
0.2F
0.0 b— il
10! 10° 10* 102 103 10*

()]
~J
(0]
©
—
()

s=2,n=8§,f=1, cyclic _ negative results
]-O T T R T T T T T

UNSAT .| cnf-minisat — _

instances osf]
04+

0.2

0.0
1.0

T T T TTTT
cnf-lingeling

0.4
0.2

0.0
1.0

symsync
0.6 - =

0.4 |
0.2 |

00 1 Lol 1 Lol 1 Lol 1 Lo 1 L
10 10° 10? 102 103 10*

Summary

® Synthesis a tool for theory of distributed computing
® Results: optimal fault-tolerant algorithms

® Complementary approaches for fast synthesis

Summary

® Synthesis a tool for theory of distributed computing
® Results: optimal fault-tolerant algorithms

® Complementary approaches for fast synthesis

Synthesis in our other work:

® |ocal graph coloring

® finding large cuts arXiv:1402.2543

Summary

® Synthesis a tool for theory of distributed computing
® Results: optimal fault-tolerant algorithms

® Complementary approaches for fast synthesis

Synthesis in our other work:

® |ocal graph coloring

® finding large cuts arXiv:1402.2543

Thanks!

