
Synthesizing fault-tolerant
distributed algorithms

Janne H. Korhonen	

Matti Järvisalo 	

University of Helsinki & HIIT

July 24, 2014	

FRIDA 2014, Vienna, Austria

*000

*001

*002

*010

*011

*012

*020

*021

*022

*100
*101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211

*212

*220

*221

*222

*000

*001

*002

*010

*011

*012

*020

*021

*022

*100

*101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211

*212

*220

*221

*222

Danny Dolev 	

Hebrew University of Jerusalem	

Christoph Lenzen 	

MPI Saarbrücken

Keijo Heljanko	

Joel Rybicki 	

Jukka Suomela 	

Siert Wieringa 	

Aalto University & HIIT

Ulrich Schmid	

TU Wien

What is this talk about?

Developing fault-tolerant distributed
algorithms for consensus-like problems using

computational techniques.

Verification vs synthesis

!
Verification:

“Check that given A satisfies the specification S.”	

!
Synthesis:

“Construct an A that satisfies a specification S.”	

The model problem

• Closely related to consensus	

• Self-stabilization	

• Byzantine fault tolerance	

• Hard to come up with correct algorithms

The synchronous counting problem:

Our work

Recent work: Developing and evaluating
different synthesis techniques

Prior work: Are there efficient and
compact deterministic algorithms?	

Dolev et al. (SSS 2013)

Synchronous
counting

The model

• n processors	

• s states per node 	

• arbitrary initial state

1 2

3 4

The model

• n processors	

• s states per node	

• arbitrary initial state

Synchronous step:	

1. send state to all neighbours	

2. update state

1 2

3 4

The model

• n processors	

• s states per node	

• arbitrary initial state

Synchronous step:	

1. send state to all neighbors	

2. update state

algorithm 	

=

 transition function

1 2

3 4

Self-stabilizing counting

Stabilization Counting
4

3

2

1

Self-stabilizing counting
A simple algorithm solves the problem

Self-stabilizing counting
Solution: Follow the leader.

4

3

2

1

Self-stabilizing counting
Solution: Follow the leader.

4

3

2

1

Self-stabilizing counting
Solution: Follow the leader.

4

3

2

1

Self-stabilizing counting
Solution: Follow the leader.

4

3

2

1

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

1 2

3 4

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

1 2

3 4

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

1 2

3 4

Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.

1 2

3 4

Tolerating Byzantine failures

can send different messages to non-faulty nodes!

1 2

3 4

Tolerating Byzantine failures

can send different messages to non-faulty nodes!

Note: Easy if self-stabilization is not required!

1 2

3 4

Fault-tolerant counting

Stabilization Counting
4

3

2

1

The model with failures

• n processors	

• s states	

• arbitrary initial state 	

• at most f Byzantine nodes

1 2

3 4

Some basic facts

• How many states (per node) do we need? 	

- s ≥ 2	

• How many faults can we tolerate?	

- f < n/3	

• How fast can we stabilize?	

- t > f
Pease et al., 1980
Fischer & Lynch, 1982

Solving synchronous counting

Deterministic solutions with large s known for
similar problems (e.g. D. Dolev & Hoch, 2007)

We have synthesized deterministic algorithms with
small s and t for the case f = 1 (SSS ’13)

Randomized solutions for counting with small s and
large t in expectation (e.g. S. Dolev: Self-stabilization)

Finding an algorithm

The size of the search space is sb where b = nsn.

n = 4	

s = 2 264 ≈ 1019

parameters search space

Finding an algorithm

The size of the search space is sb where b = nsn.

n = 4	

s = 2

n = 4	

s = 3

264 ≈ 1019

3324 ≈ 10154

parameters search space

We need a clever way to do the search!

Main results, f = 1

• lower bound: no 2-state algorithm	

• upper bound: 3 states suffice

If 4 ≤ n ≤ 5:

If n ≥ 6:

• 2 states always suffice

Synthesis techniques

Our initial approach

• Fix n, s and f	

• The existence of an algorithm is a finite
combinatorial decision problem	

• Apply SAT solvers to a base case that implies a
general solution	

Generalizing from a base case
For any fixed s, f and t:

⇒There is an algorithm A for n nodes

There is an algorithm B for n+1 nodes	

with same s, f and t

Verification is easy

• Let F be a set of faulty nodes, |F| ≤ f	

• Construct a state graph GF from A:

Nodes = actual states	

Edges = possible state transitions

1 2

3 4

*000

*021
*110

*002

*111

*000

*001

*002

*010*011

*012

*020

*021

*022

*100 *101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

*000

*001

*002

*010*011

*012

*020

*021

*022

*100 *101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

*002

*010

*012

*020

*021

*022

*101

*102

*110

*121

*122

*202

*210

*211 *212

*220

*221

*222

*000

*001

*011

*100

*111

*112

*120

*200

*201

execution = walk

*000

*001

*002

*010*011

*012

*020

*022

*100 *101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

*021

deadlock = loop

*000

*001

*002

*010

*012

*020

*022

*100

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

*011

*101

*021

livelock = cycle

*000

*001

*002

*010*011

*012

*020

*021

*022

*100 *101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

*000

*001

*002

*010*011

*012

*020

*021

*022

*100 *101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

Even

*000

*001

*002

*010*011

*012

*020

*021

*022

*100 *101

*102

*110

*111

*112

*120

*121

*122

*200

*201

*202

*210

*211 *212

*220

*221

*222

Odd

Verification is easy

Every GF is good

no deadlocks GF is loopless ⇔

stabilization All nodes have 	

a path to 0⇔

counting {0,1} is the only cycle ⇔

A is correct ⇔

From verification to synthesis

xi,u,s Ai(u) = s

The encoding uses the following variables:

eq,r exists(q, r)

pq,r q r

xi,u,s eq,r pq,r

⇔

⇔ edge

⇔ path exists

The SAT approach

• Solver is a black box: no domain-knowledge	

• Relatively easy to setup	

• Size of instances blows up:

The SAT approach

• Solver is a black box: no domain-knowledge	

• Relatively easy to setup	

• Size of instances blows up:

variables clausesinstance: n, s, t
4 3 10 6k 31k
5 3 10 45k 36k
6 3 10 403k 4M

Counter-example guided search

• A problem-specific synthesis algorithm	

• CEGAR-inspired search	

• Uses SAT solver to find counter-examples 	

• Learn constraints on-the-fly

A high-level overview

• Guess an algorithm A

• Use a SAT solver to check if A is correct	

• If not, solver gives a counter-example. Learn
new constraints that forbid bad algorithms

While algorithm candidates exist:

How to learn useful constraints from	

 counter-examples?

Some experiments

Experiment setup

!

• SAT encoding: MiniSAT and lingeling solvers	

• ‘symsync’: the guided search algorithm 	

• same instance on 100 processors in parallel,
different random seeds

CNF
encoding

guided
search

fast
algorithm

some
algorithm

blue = some
algorithm

orange = fast
algorithm

blue = some
algorithm

orange = fast
algorithm

SAT: finds	

best solutions	

 faster

guided search:
finds some 	

solution faster

blue = some
algorithm

orange = fast
algorithm

blue = some
algorithm

orange = fast
algorithm

SAT: finds	

best solutions	

 faster

guided search:
finds some 	

solution faster

 UNSAT
instances

Summary
!

• Synthesis a tool for theory of distributed computing 	

• Results: optimal fault-tolerant algorithms	

• Complementary approaches for fast synthesis

Summary
!

• Synthesis a tool for theory of distributed computing 	

• Results: optimal fault-tolerant algorithms	

• Complementary approaches for fast synthesis

Synthesis in our other work:

• local graph coloring	

• finding large cuts arXiv:1402.2543

Summary
!

• Synthesis a tool for theory of distributed computing 	

• Results: optimal fault-tolerant algorithms	

• Complementary approaches for fast synthesis

Synthesis in our other work:

• local graph coloring 	

• finding large cuts arXiv:1402.2543

Thanks!

