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What is this talk about!?

Developing fault-tolerant distributed
algorithms for consensus-like problems using
computational techniques.



Verification vs synthesis

Verification:
“Check that given A satisfies the specification S.”

Synthesis:
“Construct an A that satisfies a specification S.”



The model problem

The synchronous counting problem:
® Closely related to consensus

® Self-stabilization

® Byzantine fault tolerance

® Hard to come up with correct algorithms



Our work

Prior work: Are there efficient and

compact deterministic algorithms!?
Dolev et al. (SSS 2013)

Recent work: Developing and evaluating
different synthesis techniques



Synchronous
counting



The model

1 2

® n processors

® s states per node

® arbitrary initial state

——



The model

1 2

® n processors

® s states per node

® arbitrary initial state

——

Synchronous step:
|. send state to all neighbours
2. update state



The model

1 2

® n processors

® s states per node

® arbitrary initial state

——

Synchronous step: algorithm
|. send state to all neighbors > =

2. update state transition function




Self-stabilizing counting
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Self-stabilizing counting

A simple algorithm solves the problem



Self-stabilizing counting

Solution: Follow the leader.
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Self-stabilizing counting

Solution: Follow the leader.
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Tolerating Byzantine failures

‘ can send different messages to non-faulty nodes!

Note: Easy if self-stabilization is not required!



Fault-tolerant counting
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The model with failures

2 ® n processors

® s states

® arbitrary initial state

@ ® at most f Byzantine nodes



Some basic facts

® How many states (per node) do we need?
- §>12
® How many faults can we tolerate!

- f<nl/3

® How fast can we stabilize?

- t> f'
Pease et al., 1980

Fischer & Lynch, 1982




Solving synchronous counting

Deterministic solutions with large s known for
similar problems (e.g. D. Dolev & Hoch, 2007)

Randomized solutions for counting with small s and
large t in expectation (e.g. S. Dolev: Self-stabilization)

We have synthesized deterministic algorithms with
small s and t for the case f=| (SSS’13)




Finding an algorithm
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Finding an algorithm

The size of the search space is s> where b = ns".

parameters search space
n=4
264 ~ 109
s=2
n=4 3324 ~ | (54
s=3

We need a clever way to do the search!



Main results, f = |

f4 <n<25:

® |ower bound: no 2-state algorithm

® upper bound: 3 states suffice

If n > 6:

® 2 states always suffice



Synthesis techniques



Our initial approach

® Fixnsandf

® The existence of an algorithm is a finite
combinatorial decision problem

® Apply SAT solvers to a base case that implies a
general solution



Generalizing from a base case

For any fixed s, f and t:

There is an algorithm A for n nodes

\

There is an algorithm B for n+| nodes
with same s, f and t




Verification is easy

® | et F be a set of faulty nodes, |F| < f

® Construct a state graph Gr from A:

Nodes = actual states

Edges = possible state transitions
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Verification is easy

A is correct = Every Gris good

no deadlocks = Gr is loopless

All nodes have

stabilization
< a pathto 0

counting & {0,1} is the only cycle



From verification to synthesis

The encoding uses the following variables:

s Aj(u)=s

Li w,s
€q,r

Pq,r

Lg w,s

& edge (q,7) exists

& path g ~> 1 exists

:> €q,r

> Dg,r



The SAT approach

® Solver is a black box: no domain-knowledge
® Relatively easy to setup

® Size of instances blows up:



The SAT approach

® Solver is a black box: no domain-knowledge
® Relatively easy to setup

® Size of instances blows up:

instance: n,s, t variables clauses

4310 6k 31k
5310 45k 36k
6310 403k 1M




Counter-example guided search

® A problem-specific synthesis algorithm

® CEGAR-inspired search

® Uses SAT solver to find counter-examples

® | earn constraints on-the-fly



A high-level overview

While algorithm candidates exist:

® Guess an algorithm A
® Use a SAT solver to check if A is correct

® |f not, solver gives a counter-example. Learn
new constraints that forbid bad algorithms

How to learn useful constraints from
counter-examples!?




Some experiments



Experiment setup

® SAT encoding: MiniSAT and lingeling solvers

® ‘symsync’: the guided search algorithm

® same instance on |00 processors in parallel,
different random seeds
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orange = fast
algorithm

blue = some
algorithm

SAT: finds

best solutions
faster

guided search:
finds some
solution faster
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Thanks!



