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What is this talk about?

Developing fault-tolerant distributed 
algorithms for consensus-like problems using 

computational techniques.



Verification vs synthesis

!
Verification: 

“Check that given A satisfies the specification S.”	


!
Synthesis: 

“Construct an A that satisfies a specification S.”	




The model problem

• Closely related to consensus	


• Self-stabilization	


• Byzantine fault tolerance	


• Hard to come up with correct algorithms

The synchronous counting problem:



Our work

Recent work: Developing and evaluating 
different synthesis techniques

Prior work: Are there efficient and 
compact deterministic algorithms?	


Dolev et al. (SSS 2013)



Synchronous 
counting



The model

• n processors	


• s states per node 	


• arbitrary initial state
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The model

• n processors	


• s states per node	


• arbitrary initial state

Synchronous step:	

1. send state to all neighbors	

2. update state

algorithm 	

= 

 transition function
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Self-stabilizing counting

Stabilization Counting
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Self-stabilizing counting
A simple algorithm solves the problem



Self-stabilizing counting
Solution: Follow the leader.
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Tolerating Byzantine failures

Assume that at most f nodes may be Byzantine.
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Tolerating Byzantine failures

can send different messages to non-faulty nodes!
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Tolerating Byzantine failures

can send different messages to non-faulty nodes!

Note: Easy if self-stabilization is not required!
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Fault-tolerant counting

Stabilization Counting
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The model with failures

• n processors	


• s states	


• arbitrary initial state 	


• at most f Byzantine nodes

1 2

3 4



Some basic facts

• How many states (per node) do we need? 	


- s ≥ 2	


• How many faults can we tolerate?	


- f < n/3	


• How fast can we stabilize?	


- t > f
Pease et al., 1980
Fischer & Lynch, 1982



Solving synchronous counting

Deterministic solutions with large s known for 
similar problems (e.g. D. Dolev & Hoch, 2007)

We have synthesized deterministic algorithms with 
small s and t for the case f = 1 (SSS ’13)

Randomized solutions for counting with small s and 
large t in expectation (e.g. S. Dolev: Self-stabilization)
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parameters search space



Finding an algorithm

The size of the search space is sb where b = nsn.

n = 4	

s = 2

n = 4	

s = 3

264 ≈ 1019

3324 ≈ 10154

parameters search space

We need a clever way to do the search!



Main results, f = 1

• lower bound: no 2-state algorithm	


• upper bound: 3 states suffice

If 4 ≤ n ≤ 5:

If n ≥ 6:

• 2 states always suffice



Synthesis techniques



Our initial approach

• Fix n, s and f	


• The existence of an algorithm is a finite 
combinatorial decision problem	


• Apply SAT solvers to a base case that implies a 
general solution	




Generalizing from a base case
For any fixed s, f and t:

⇒There is an algorithm A for n nodes

There is an algorithm B for n+1 nodes	

with same s, f and t



Verification is easy

• Let F be a set of faulty nodes, |F| ≤ f	


• Construct a state graph GF from A:

Nodes = actual states	

Edges  = possible state transitions
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Verification is easy

Every GF is good

no deadlocks GF is loopless ⇔

stabilization All nodes have 	

a path to 0⇔

counting {0,1} is the only cycle ⇔

A is correct ⇔



From verification to synthesis

xi,u,s Ai(u) = s

The encoding uses the following variables:

eq,r exists(q, r)

pq,r q  r

xi,u,s eq,r pq,r

⇔

⇔ edge

⇔ path exists
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• Solver is a black box: no domain-knowledge	
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The SAT approach

• Solver is a black box: no domain-knowledge	


• Relatively easy to setup	


• Size of instances blows up:

variables clausesinstance: n, s, t
4 3 10 6k 31k
5 3 10 45k 36k
6 3 10 403k 4M



Counter-example guided search

• A problem-specific synthesis algorithm	


• CEGAR-inspired search	


• Uses SAT solver to find counter-examples 	


• Learn constraints on-the-fly



A high-level overview

• Guess an algorithm A 

• Use a SAT solver to check if A is correct	


• If not, solver gives a counter-example. Learn 
new constraints that forbid bad algorithms 

While algorithm candidates exist:

How to learn useful constraints from	

 counter-examples?



Some experiments



Experiment setup

!

• SAT encoding: MiniSAT and lingeling solvers	


• ‘symsync’: the guided search algorithm 	


• same instance on 100 processors in parallel, 
different random seeds  





CNF 
encoding



guided 
search 
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Thanks!


