
Distributed Half-Integral Matching and Beyond∗

Sameep Dahal and Jukka Suomela
Aalto University

Abstract

By prior work, it is known that any distributed graph algorithm that finds a
maximal matching requires Ω(log∗ n) communication rounds, while it is possible
to find a maximal fractional matching in O(1) rounds in bounded-degree graphs.
However, all prior O(1)-round algorithms for maximal fractional matching use
arbitrarily fine-grained fractional values. In particular, none of them is able to
find a half-integral solution, using only values from {0, 1

2 , 1}. We show that the
use of fine-grained fractional values is necessary, and moreover we give a complete
characterization on exactly how small values are needed: if we consider maximal
fractional matching in graphs of maximum degree ∆ = 2d, and any distributed graph
algorithm with round complexity T (∆) that only depends on ∆ and is independent
of n, we show that the algorithm has to use fractional values with a denominator at
least 2d. We give a new algorithm that shows that this is also sufficient.

1 Introduction

By prior work, it is known that there is a distributed graph algorithm that finds a maximal
fractional matching (see Section 1.2) in O(∆) rounds in graphs of maximum degree ∆ [3];
in particular, the running time is independent of n and only depends on ∆. However, the
algorithm uses very fine-grained fractional values; when ∆ increases, the denominators
grow exponentially fast. In this work we show that this is necessary: any distributed
graph algorithm that finds a maximal fractional matching in T (∆) rounds, independently
of n, has to use fractional values with a denominator at least 2d (and this is tight). In
particular, there cannot be a T (∆)-rounds algorithm for finding a maximal half-integral
matching.

1.1 Distributed maximal matching is hard

Maximal matching is one of the classic problems in the field of distributed graph algorithms,
studied extensively since the very early days of the field in the 1980s [4, 6–8, 11, 13, 17]. In
the maximal matching problem, the task is to find a matching (a set of edges without
common vertices) that is not a strict subset of another matching. This is something one
can trivially find in a centralized setting (pick independent edges greedily until you are
stuck), but this is a challenging coordination task in a distributed setting, for two reasons:

∗This work was supported in part by the Academy of Finland, Grant 333837.

1

ar
X

iv
:2

30
3.

05
25

0v
1

 [
cs

.D
S]

 9
 M

ar
 2

02
3

1. One has to break symmetry. For example, if the input graph is a cycle, one has to
select some but not all edges—the input is symmetric, but the output is not. The
task is not solvable at all without resorting to, e.g., unique identifiers or randomness,
and even then we cannot solve the task in constant number of rounds; maximal
matching in cycles requires Ω(log∗ n) rounds [14,16].

2. One has to solve a local coordination task. Even if we have a ∆-regular bipartite
graph, with the bipartition given, we still need Ω(∆) rounds to find a maximal
matching, at least in sufficiently large graphs [4].

On the positive side, O(∆ + log∗ n)-round distributed algorithms for finding a maximal
matching in a graph of maximum degree ∆ are known [17]; one can also make different
trade-offs between dependency on ∆ vs. n [6–8], but it is impossible to achieve a running
time of T (∆), independent of n [14, 16]. All of these results hold in the usual LOCAL
model of distributed computing (see Section 2.2 for the details).

1.2 Distributed fractional matching is easier

A matching M ⊆ E in a graph G = (V,E) can be interpreted as a function x that assigns
value x(e) = 1 to each edge e ∈M . If we let

x[v] =
∑

e∈E:v∈e

x(e)

denote the sum of labels on edges incident to node v ∈ V , then we can define that function
x : E → {0, 1} is a matching if x[v] ≤ 1 for all v ∈ V . Moreover, x is a maximal matching
if for each edge {u, v} ∈ E at least one endpoint is saturated, i.e., x[u] = 1 or x[v] = 1.
Finally, x is a maximum matching if it maximizes

∑
e x(e).

Now we can now also consider the fractional relaxation of this integer program. We
say that x : E → [0, 1] is a fractional matching if it satisfies x[v] ≤ 1 for each v ∈ V , it is
a maximal fractional matching if x[u] = 1 or x[v] = 1 for each edge {u, v} ∈ E, and it is a
maximum fractional matching if it maximizes

∑
e x(e). See Fig. 1 for illustrations.

Note that any maximal matching is also a maximal fractional matching, but the
converse is not necessarily true. However, maximal fractional matchings share many
useful properties of maximal matchings. For example, the set of saturated nodes forms a
2-approximation of a minimum vertex cover [5].

When we consider distributed graph algorithms for maximal fractional matchings, one
of the obstacles discussed in Section 1.1 goes away: we do not need to break symmetry. For
example, if the graph is a cycle, we can simply label all edges with 1/2. More generally, if
we have a d-regular graph, we can label all edges with 1/d. The lower bound of Ω(log∗ n)
from [14,16] for symmetry-breaking problems no longer applies.

(a) (b)

1

0

0 0
0.3

0.2

0.7 0.5

(c)

0.5

0

0.5 0.5

Figure 1: (a) A maximal matching. (b) A maximal fractional matching. (c) A maximal
half-integral matching. The orange nodes are saturated.

2

While the case of non-regular graphs is much more challenging, it is nevertheless
possible to design distributed algorithms that find a maximal fractional matching in O(∆)
rounds, independently of n [3]. It is also known that the local coordination challenge does
not disappear; o(∆)-round algorithms do not exist [10].

1.3 What about half-integral matchings?

The fractional matching polytope is half-integral (see e.g. [19, Section 30.3]). That is,
there exists a maximum fractional matching in which x(e) ∈ {0, 1

2
, 1} for every edge e ∈ E.

There is also a simple distributed strategy that at first seems to lead to half-integral
solutions (see e.g. [2]). First, construct the bipartite double cover G′ = (V ′, E ′) of the
graph G = (V,E): for each node v ∈ V we have two nodes v1 and v2 in V ′, and for each
edge {u, v} ∈ E we have two edges {u1, v2} and {u2, v1} in E ′. Now G′ is bipartite, and
we know the bipartition, with nodes v1 on one side and nodes v2 on the other side. We
can now apply any algorithm that finds a matching x′ in the bipartite graph G′, and this
can be mapped into a half-integral matching x by setting

x[{u, v}] =
x′[{u1, v2}] + x′[{u2, v1}]

2
. (1)

Hence, we could use any distributed algorithm designed for bipartite graphs—there is a
very simple algorithm that finds a maximal matching in bipartite graphs in O(∆) rounds
independently of n. Then by applying (1) we could turn it into a fractional matching.

There is, unfortunately, a catch: while (1) will preserve feasibility (given a matching
x′ it will result in a fractional matching x), it will not preserve maximality: even if
x′ is a maximal matching, it is not necessarily the case that x is a maximal fractional
matching. Could we nevertheless find a half-integral matching efficiently with a distributed
algorithm?

If we consider prior distributed algorithms for maximal fractional matching [2, 3], they
are very far from being able to produce half-integral matchings. For example, [2] uses
fractional values with denominators as large as 2∆−1 and [3] is even worse. In this work
we show that denominators exponential in ∆ are necessary, but we can still do better
than prior work.

1.4 Contributions

Our main result is a full characterization of exactly how fine-grained fractional values are
necessary:

Theorem 1.1 (Upper bound). There is a T (∆)-round distributed algorithm that finds a
maximal fractional matching in graphs of maximum degree ∆ ≤ 2d+1 using only fractional
numbers of the form a/b where a = 0, 1, . . . , 2d and b = 2d.

Theorem 1.2 (Lower bound). There is no T (∆)-round distributed algorithm for any
function T that finds a maximal fractional matching in graphs of maximum degree ∆ ≤ 2d+
2 using only fractional numbers of the form a/b where a = 0, 1, . . . , 2d and b = 1, 2, . . . , 2d.

We emphasize that the upper bound only uses multiples of 1/2d, while the lower bound
also excludes the possibility of finding a maximal matching using, e.g., values that are
multiples of 1/∆.

As a corollary of these results, we also have a full characterization of the complexity
of half-integral matchings:

3

Corollary 1.3. It is possible to find a maximal half-integral matching in graphs of
maximum degree ∆ = 3 in O(1) rounds.

Corollary 1.4. It is not possible to find a maximal half-integral matching in graphs of
maximum degree ∆ = 4 in O(1) rounds.

For larger values of ∆, the range of fractional numbers we use is much smaller than
in prior work. In our algorithm, the denominators is approximately 2∆/2, while in prior
work [2] it is approximately 2∆.

1.5 Key new ideas

While the upper bound Theorem 1.1 is a relatively simple adaptation of ideas from prior
work, the lower bound Theorem 1.2 requires a development of a new proof strategy.

Prior lower-bound techniques in this area tend to fall in one of these categories, each
unsuitable for us:

1. The lower-bound construction is a regular graph [4,12]. In a ∆-regular graphs we
can trivially find a fractional matching using the value 1/∆, which is exponentially
far from the lower bound in Theorem 1.2 that we aim at proving.

2. The lower-bound result aims at establishing that one needs some specific number of
rounds, e.g., Ω(∆) rounds [4,10,12]. However, in Theorem 1.2 we aim at proving
that even if the round complexity is, say, exponential in ∆, one cannot avoid using
fine-grained fractional values.

Our proof strategy superficially resembles the one used in [10, 12] in the sense that we
start with one node and k self-loops, which represents the local view of a node in the
middle of a regular graph, and then we start unfolding the loops. At each point of the
process we see what is the output the algorithm commits to, and then we continue the
process until we are left with a concrete lower-bound graph. However, there are major
differences; see Fig. 2:

• In [10, 12] they start with a pair of nodes. The nodes have self-loops, and each
self-loop represents an undirected edge; the entire argument relies on the fact that
an algorithm cannot break symmetry between two ends of such an edge. At each
step they unfold a relevant loop, doubling the number of nodes, and then they mix
elements from two instances, resulting in another pair of instances. In each iteration
they lose one self-loop but force the algorithm to look one step further.

• In this work we start with a single node. The node has self-loops, but this time
each self-loop represents a long directed path; our argument relies on the fact that
an algorithm cannot break local symmetry between two nodes near the middle of
the path. At each step we unfold a relevant loop, but this will turn one node into a
directed path of length Θ(T). We are interested in the behavior of the algorithm
both in the middle of the path and at the endpoints of the path. In each iteration we
lose one self-loop but force the algorithm to use at least twice as large denominators.

4

(a)

(b)

≈ ≈

≈ ≈

Figure 2: (a) In prior work [10,12], all the heavy lifting is done in a so-called EC model,
in which edges are undirected but colored. Self-loops represent undirected edges. For
example, a node with 2 self-loops represents a node in the middle of a 2-regular tree,
i.e., a long path. (b) In this work, we work in the PO model. Self-loops represent long
directed paths. For example, a node with 2 self-loops represents a node in the middle of a
4-regular tree in which all nodes have indegree 2 and outdegree 2.

2 Preliminaries

2.1 Graphs and self-loops

For a graph G = (V,E), we write ∆(G) to denote the maximum degree of the graph. We
use just ∆ when G is clear from the context. For any natural number d ∈ N, we use Gd to
represent the family of graphs such that G ∈ Gd if ∆(G) ≤ d. Throughout this work, we
will assume that the maximum degree of the input graph G is a globally known constant.

In what follows, we will refer to a self-loop simply as a loop. Each loop counts as
one incoming and one outgoing edge (in particular, in G2d a node can have at most d
self-loops). We call a graph loopy if each vertex of the graph has at least one loop.

2.2 Model of computing

Our main results Theorems 1.1 and 1.2 hold in the usual LOCAL model [14, 18]. For
simplicity, we will focus here is on deterministic algorithms (even though the results are
not hard to extend to randomized algorithms).

However, to prove the lower bound result, it will be convenient to first prove the lower
bound in a weaker model (called PO here, following [10]) and then extend the result from
the PO model to the LOCAL model. It will be easiest to define everything we need by
starting with the deterministic port-numbering model (PN).

PN model (port numbering) [1,20]. Let G = (V,E) be the input graph. In the PN
model, each node v ∈ V is a computer and each edge {u, v} ∈ E is a communication link
between two computers. Initially, each computer is only aware of its degree; nodes of the
same degree start with the same initial state.

The endpoints of the edges are labeled with port numbers ; a node of degree d can refer
to its incident edges with the numbers 1, 2, . . . , d; see Fig. 3. The port numbering comes

5

from an adversary; a distributed algorithm in the PN model has to work correctly for any
given port numbering.

Computation proceeds in synchronous communication rounds. In each round, each
node can

1. send a message to each neighbor,
2. receive a message from each neighbor, and
3. update its local state based on the current state and the messages it received.

After each round, each node can decide whether it stops and announces its own part of
the output—in the case of the maximal fractional problem, the output of a node indicates
the fractional value assigned to each incident edge. The running time of the algorithm is
the number of rounds until all nodes have stopped and announced their local outputs.

PO model (port numbering and orientation) [10, 15]. Algorithms in the PO
model behave in exactly the same way as in the PN model. However, there is one
additional piece of information available to the algorithm: each edge {u, v} ∈ E is oriented
(arbitrarily, by the adversary); see Fig. 3. More precisely, each node knows for each
incident edge whether it is “outgoing” or “incoming”.

While an arbitrary orientation may not seem particularly useful, note that the PO
model is strictly stronger than the PN model. For example, if we have a graph G with
two nodes and one edge, it is trivial to find a proper 2-coloring of G in the PO model in 0
rounds, while it is impossible to solve in the PN model in any number of rounds.

LOCAL model [14, 18]. Algorithms in the LOCAL model also behave in exactly the
same way as in the PN model, but there is again one additional piece of information
available to the algorithm: each node is labeled (arbitrarily, by the adversary) with a
unique identifier from a polynomially-sized set; see Fig. 3.

Again, LOCAL model is strictly stronger than the PO model. For example, maximal
matching cannot be found in the PO model if the input graph is a cycle that is consistently
oriented, while the task is solvable in the LOCAL model in O(log∗ n) rounds.

However, it turns out that constant-time algorithms in the LOCAL model are not
much stronger than algorithms in the PO model, see e.g. [9, 10]. This is the idea we will
also make use of in this work: our main goal is to prove a lower bound in the LOCAL
model, but it will be convenient to first study the PO model.

PN PO

1
2

LOCAL

2
1

2 1 1

3

1
2

2
1

2 1 1

3

1
2

2
1

2 1 1

3

7

11

8 5

Figure 3: Models of computing used in this work.

2.3 Applying PO algorithms to loopy graphs

To prove the lower-bound result Theorem 1.2, we will study the output of a PO algorithm
A in some loopy graph G. However, when we consider distributed graph algorithms, we
usually assume that the input graph is loop-free.

6

However, the output of A in loopy graphs is nevertheless well-defined. When we refer
to the output of A on some edge e in G, we refer to the result of the following thought
experiment: Unfold all loops in G, as shown in Fig. 2b, and hence we arrive at a tree
G′. Then apply A in G′ (as the running time of A is independent of the size of the input
graph, this is well-defined). Edge e in G corresponds to infinitely many edges e′ in G′,
but each such edge is symmetric and hence the output of A on each such edge e′ is the
same; hence we can take any such edge e′ and interpret its label as the output of A on e.

In particular, if A finds a maximal fractional matching in any loop-free graph G′, it
will also produce a maximal fractional matching in the loopy graph G (the label of the
loop is counted twice).

3 Lower bound result

In this section we prove the lower-bound result, Theorem 1.2. It turns out that the critical
resource is the number of factors of 2 in the denominators. We start by defining sets of
rational numbers that will precisely capture how fine-grained values are needed.

3.1 Sets of rational numbers

Any natural number x ≥ 1 can be written as x = 2n ·m where n ≥ 0 and m ≡ 1 mod 2.
We refer to e(x) = 2n as the even part of x and o(x) = m as the odd part of x. For x = 0,
we define e(x) = 0 and o(x) = 1.

We extend this notion to rational numbers as follows. If x = p/q in the reduced
form, we define the even part of the denominator ē(x) = e(q) and the odd part of the
denominator ō(x) = o(q). For example, ē(0/1) = ē(1/1) = 1, ē(1/3) = 1 and ē(1/4) = 4.

For each n ≥ 1, we define

Rn =
{
x ∈ Q : 0 ≤ x ≤ 1 and ē(x) = 2n

}
,

R≤n = R0 ∪R1 ∪ · · · ∪Rn,

R≥n = Rn ∪Rn+1 ∪ · · · ,
R>n = Rn+1 ∪Rn+2 ∪ · · · .

For example, we have

R0 =
{

0, 1, 1
3
, 2

3
, 1

5
, 2

5
, 3

5
, 4

5
, . . .

}
,

R1 =
{

1
2
, 1

6
, 5

6
, . . .

}
,

R2 =
{

1
4
, 3

4
, 1

12
, 5

12
, 7

12
, 11

12
, . . .

}
.

Note that for each rational number x ∈ [0, 1] there exists exactly one n such that x ∈ Rn.
For m < n, we have R≤m (R≤n.

3.2 High-level plan

In Section 3.3 we prove the following lemma, which essentially shows that we can without
loss of generality focus on the PO model:

Lemma 3.1. If there exists a t-time algorithm that solves the maximal fractional matching
problem using values in a set R in the LOCAL model on any graph with maximum degree

7

∆, then there exists a t-time algorithm that solves the maximal fractional matching problem
using values in set R in the PO model for any loopy graph G with maximum degree ∆.

Then in Section 3.4 we prove the following lemma, which captures exactly how fine-
grained rational values are needed in the PN model:

Lemma 3.2. Fix natural number d ∈ N. Then, for any natural number T ∈ N, there
does not exist any algorithm in the PO model that uses T rounds and computes a valid
solution for the maximal fractional matching problem using the values from R≤(d−1) for
loopy graphs in graph family G2d.

By putting together Lemma 3.1 and Lemma 3.2, we obtain:

Lemma 3.3. Fix a natural number d ∈ N. Then, for any natural number T ∈ N, there
does not exist any algorithm in the LOCAL model that uses T rounds and computes a
valid solution for the maximal fractional matching problem using the values from R≤(d−1)

for the graph family G2d.

Now Theorem 1.2 directly follows from Lemma 3.3.

3.3 Proof of Lemma 3.1

In [10], a similar result is shown with the exception that the edge labels are arbitrary.
However, the same proof follows when we add the restriction that the edge labels come
from R. This result is a simple extension of [10, Sections 5.3–5.4], where we can see that
the simulation argument does not make changes in the value used for the PO model.

3.4 Proof of Lemma 3.2

Preliminary Observations. We first make a few observations regarding our problem.
First recall the way in which we use loops to represent a node in the middle of a directed
path (Fig. 2).

Observation 3.4. If a node has a loop then it must be saturated.

Proof. If a node with a loop was not saturated, we would have a directed path of
unsaturated nodes and, in particular, edges with unsaturated endpoints.

In a saturated node, the labels of incident edges have to sum up to 1. The following
observation captures a key property related to how the even parts of the denominators
behave when rational numbers sum up to 1.

Observation 3.5. Let n ≥ 1 and k
m·2n ∈ Rn. Consider the equation

2`1 + . . . + 2`r + x1 + . . . + xr′ +
k

m · 2n
= 1,

where each `i and xi can be any non-negative rational number. Then, either `i ∈ R>n or
xi ∈ R≥n for some i. Put otherwise, either some `i has the even part of denominator
larger than 2n or some xi has the even part of denominator at least 2n.

8

Proof. First consider the equation

x1 + . . . + xq +
k

m · 2n
= 1

in which each xi can be any non-negative rational number. We show that there exists an
index i for which xi ∈ R≥n. We can rewrite it as solving the equation

x1 + . . . + xq =
m · 2n − k

m · 2n
,

where m·2n−k
m·2n ∈ Rn. If each xi had the even part of the denominator less than 2n, then

x1 + . . . + xq would also have the even part of the denominator less than 2n. This is
because when we add two rationals a1

b1
and a2

b2
we get

a1

b1

+
a2

b2

=
a1 · (`/b1) + a2 · (`/b2)

`

where ` = lcm(b1, b2), the least common multiple of b1 and b2. The even part of ` will be
bounded above by the maximum of the even parts of b1 and b2. However, if x1 + . . . + xq

has the even part of the denominator less than 2n, then it contradicts the fact that the
sum equals m·2n−k

m·2n .
Now, in order to prove the original statement of Observation 3.5, it is sufficient to

replace xr′+i by 2`i. If xr′+i ∈ R≥n then `i ∈ R>n.

Assumptions. We now proceed to prove Lemma 3.2 by contradiction. For the sake
of contradiction we assume that for any natural number d ∈ N, there exists a natural
number T ∈ N such that the following holds: there exists a PO algorithm A that solves
the maximal fractional matching solution in T rounds using values from the set R≤(d−1)

for graph family G2d.

Properties. Now, our lower bound construction observes the behavior of A on different
kinds of graphs in G2d to reason about the set of values that is used. We will construct
a sequence of loopy graphs G0, G1, . . . , Gd−1 to argue that the further we go, the more
fine-grained value must be used by our algorithm.

For each i = 0, 1, . . . d− 1, we will maintain the following properties:

P1 Gi ∈ G2d.

P2 Graph Gi without loops forms a tree.

P3 Each node of Gi has at least d− i loops.

P4 There is an integer j(i) > i and a node vi in Gi such that A labels at least one loop
of vi with a rational value x ∈ Rj(i).

Base Case. Our first graph G0 consists of a single node v0 with d oriented self loops
(see Fig. 4).

Graph G0 satisfies properties P1, P2 and P3 by construction, so we now need to
verify only P4. Consider that A assigns values a1, . . . , ad to the loops of v0. Since v0

has loops, it must be saturated (recall Observation 3.4), and hence it must satisfy that
2a1 + 2a2 + . . . + 2ad = 1. This is equivalent to solving a1 + a2 + . . . + ad = 1/2 and by
Observation 3.5 we know that there exists an i with ai ∈ R≥1.

9

G0:

0.0

0.5

output of A

0.5 0.5

0.0

G1: 0.5 0.5

0.0

output of A

T Troot node

0.50.5 0.5 0.5

0.00.00.0 0.0 0.0 0.0

≈

??? ? ? ?

? ? ? ?? ? ? ?

G’0:

Figure 4: Construction for d = 2 and T = 3. Graph G0 consists of d self-loops. When we
apply A to G0, at least one of the loops will get labeled by a value in R≥1; in this example
the value was 0.5 ∈ R1. To construct G1, we remove this loop to arrive at graph G′0, take
2T + 3 copies of G′0, and connect them with a directed path. The key observation is that
given the output of A in G0 we also know the output of A around the node in the middle
of G1—this node is called the root node of G1.

Inductive Step. Given Gi−1, we construct Gi as follows; see Fig. 4:

S1 Construct the graph G′i−1 from Gi−1 by removing the loop of vi−1 for which A assigned
a value in Rj(i−1).

S2 Create 2T + 3 copies of G′i−1.

S3 For each k = 1, 2, . . . , 2T + 2, connect node vi−1 in copy number k to node vi−1 in
copy number k + 1; these new edges are called path edges.

S4 Node vi−1 in copy number T + 2 is called the root node of Gi.

This way we form a directed path of length 2T + 3, with the root node in the middle of
the path, as shown in Fig. 4. The key observation is that the output of algorithm A on the
root node of Gi is the same as the output of A for vi−1 in Gi−1, due to the fact that the
radius-T neighborhood of the root node in Gi is isomorphic to the radius-T neighborhoods
of vi−1 in Gi−1 (once we conceptually unfold all loops). This property is illustrated in
Fig. 4: compare the radius-T neighborhood of the black node in the unfolding of G0 with
the radius-T neighborhoods of the root node of G1.

Given Gi−1 satisfies all the properties, we need to show that the same is true for Gi.
P1, P2 and P3 are satisfied by construction. To prove P4, consider the root node of Gi.
Since its behavior is completely characterized, we know that it will label the incident path
edges with values from Rj(i−1).

Recall that by P2 graph Gi without loops forms a tree. We will navigate in this tree,
starting from the root node, and moving away from it until we satisfy P4. We maintain
the following invariant; see Fig. 5:

Definition 3.6 (path invariant). If v is the current node, and P is the unique path from
v to the root, we have already concluded that A labels each edge of P with a value from
R≥j(i−1).

10

G1: 0.5

0.0

vroot node

0.1

0.2 l1

x1

0.5

0.0

0.1

0.2

(a)

0.0

0.9
v

0.5

0.0

0.1

0.2

(b)

0.05

0.8

Figure 5: Inductive step in the proof of Lemma 3.2 (Section 3.4). We have already
concluded that all edges in the path between v and the root node are labeled with values
from R≥1. We now ask how algorithm A will label the other edges around v. (a) One
possible solution: edge x1 is labeled with a value 0.9 ∈ R1. We did not yet establish
property P4, but we can extend the R1-labeled path further away from the root node—
eventually we will encounter a leaf node. (b) Another possible solution: we managed
to label x1 with a less fine-grained value 0.8 ∈ R0. However, this means that loop `1 is
labeled with a more fain-grained value 0.05 ∈ R2. We have established P4.

To get started, let e be one of the path edges incident to the root node, and let v be
the other end of e. As we discussed earlier, we know that e is labeled with a value from
Rj(i−1).

Now assume that we have reached some node v this way. Let P be the path from v to
the root, and let e be the first edge of P , let L be the set of loops incident to v, and let
X be the set of non-loop edges incident to v that are different from e. That is, we already
know the label of edge e, but we do not yet know how A will label L and X.

Node v is loopy, so it must be saturated. The saturation condition for v is equivalent
to solving the equation

2`1 + . . . + 2`r + x1 + . . . + xr′ +
k

m · 2n
= 1,

where n ≥ j(i − 1), values `i represent the values assigned to the loops in L, values xi

represent the values assigned to the edges in X, and k
m·2n refers to the value from R≥j(i−1)

assigned to edge e. With the help of Observation 3.5, we know that one of the two cases
must be true:

1. One of the loops in L has the even part of denominator 2n′
for n′ > n. In this case,

we have established P4.

2. One of the edges {u, v} ∈ X has the even part of denominator at least 2n. We have
found another edge labeled with a value from R≥j(i−1), and we can extend the path
P by moving from v to u, still satisfying the path invariant.

Note that this process will eventually terminate, as Gi without loops is a (finite) tree,
and hence we will eventually reach a leaf node with X = ∅. We have established that our
construction of graph Gi satisfies properties P1–P4.

11

Conclusion. When we take i = d− 1, we have a graph Gd−1 ∈ G2d which needs to use
even part of the denominator at least 2d. However, values with denominator 2d are not
present in the set R≤(d−1). Thus, we have our desired contradiction.

This concludes the proof of Lemma 3.2, and hence also the proofs of Lemma 3.3 and
our main lower bound result Theorem 1.2.

4 Upper bound result

Here, we prove the statement of Theorem 1.1. We will use the notation

S(d) =
{ i

2d
: i ∈ {0, 1, . . . , 2d}

}
.

We need to show that there is a T (∆)-round, independent of n, distributed algorithm
that solves maximal fractional matching in graph family G2d+1 using labels from S(d). We
prove the claim by inductions, as follows:

• Base case (Lemma 4.1): S(1) suffices for G2.
• Odd step (Lemma 4.2): if S(d) suffices for G2d, then S(d) also suffices for G2d+1.
• Even step (Lemma 4.3): if S(d) suffices for G2d+1, then S(d + 1) suffices for G2d+2.

We use T (∆) to represent the number of rounds taken by our algorithm for graph
family G∆. We show that in each of the above steps, T (∆) is just a function of ∆ and
is independent of number of nodes n. We will give a PN algorithm, which implies the
existence of a LOCAL algorithm.

Lemma 4.1. There is a constant-time PN algorithm that finds a maximal fractional
matching in G2 using values from S(1).

Proof. In this case, we want to pick x(e) ∈ {0, 1
2
, 1} for each e ∈ E. We can achieve a

simple distributed algorithm with 1 round of communication. Each vertex v, communicates
its degree to its neighbors. Any degree 2 vertex can safely assign the value 1

2
to both of its

incident edges. For a degree 1 vertex, it will assign the value 1
2

to the incident edge if the
other endpoint has degree 2 and will assign the value 1, if the other endpoint is 1 as well.

We can see that for each vertex v, the sum of the values assigned to its incident edges
is at most 1. By the nature of our algorithm, every degree 2 node is saturated. So, every
edge which has a degree 2 endpoint satisfy that one of its endpoint is saturated. The
only remaining scenario is when both of the endpoints are degree 1. In this setting, our
algorithm assigns the edge with value 1 in which case both of its endpoints are saturated
as well. Using 1 round of communication, we have obtained a solution for the maximal
fraction matching using values {0, 1

2
, 1} when ∆ = 2. This gives us T (2) = 1.

Lemma 4.2. Fix d ∈ N. Assuming that S(d) is sufficient to obtain the solution for G2d,
S(d) is sufficient to obtain the solution for G2d+1 as well.

Proof. Assume that A is a PN algorithm that computes the solution for G2d using values
in S(d). We now describe PN algorithm A′ that computes the solution for G ∈ G2d+1

using values in S(d). Algorithm A′ takes the following steps (see Fig. 6 for an illustration):

12

1 1 1

1 1 1

2 2 2

3 3 2

1 3 3

1 1
21 21 1(a)

(b)

1

2 2 2

2

1 1
21 21 1

Mid Mid Mid Mid

End

End

Figure 6: (a) A graph G ∈ G3, with a port numbering. (b) The subgraph G` for label
` = {1, 2}, with the edge types “End” and “Mid” indicated.

Step 1: Edge labelling. First, we use the port numbers to define a label for each
edge. For each edge e = {u, v}, there exists numbers i, j ≤ ∆(G) such that port
i of u is connected to port j of v. We label this edge with the set {i, j}. Then
L = {{i, j} : 1 ≤ i, j ≤ ∆(G)} denotes the set of possible edge labels. We have
|L| = O(∆2) different edge labels. For each ` ∈ L, we define the subgraph G` of G
that contains all the edges labelled `. We write degG`

(v) for the degree of node v in
graph G`. A key observation is that for each ` and v, we have degG`

(v) ≤ 2, i.e.,
each G` is a collection of paths and cycles.

Step 2: Edge Classification. We classify each edge into two types : “Mid” and “End”.
Consider any edge e = {u, v} and say it had label ` ∈ L. We say that e is of type
“Mid” if degG`

(u) = 2 and degG`
(v) = 2. Put otherwise, all edges that are in the

middle of the path or part of a cycle in G` are classified with type “Mid”. All other
edges are classified as “End”. Note that each node can determine the types of its
incident edges in two rounds of communication.

Step 3: Solve for “Mid” edges. Consider subgraph G′ of G that contains all edges of
type “Mid”. We argue that ∆(G′) ≤ 2d. To see this, consider any vertex v ∈ V . If
degG(v) = 2d + 1, there exists ` ∈ L such that degG`

(v) = 1, and therefore at least
one edge adjacent to v will receive type “End” and not part of G′. Now we have a
subgraph G′ of G with ∆(G′) ≤ 2d, and we can simulate A in G′.

Step 4: Extend for “End” edges. We notice that each edge e ∈ G′ satisfies the max-
imality condition, i.e., at least one endpoint is saturated. Thus, we now need to
ensure the same for edges of type “End”. For a label ` ∈ L, let GEnd

` to be set of
edges labelled ` of type “End”. We know that edges of type “End” can only be part
of paths of length 1 and 2 in GEnd

` . We proceed to satisfy the maximality condition
for edges of type “End” by considering them sequentially on the labels ` ∈ L.
Consider an edge e = {u, v} ∈ GEnd

` . If we assign x(e) = min{1 − x[u], 1 − x[v]}
then we can ensure that e satisfies the maximality condition along with ensuring
that both u and v satisfy the feasibility condition. The only issue that can arise
here is that some other edge adjacent to u or v is trying to update its value in
parallel with edge e. Since we are looking at edge of type “End” and proceeding
sequentially based on label ` ∈ L, the above issue can only be caused by paths of

13

length 2. However, the middle vertex of this path can decide the sequential order in
which the two edges are considered, after which this issue is avoided.

Step 1 and 2 take a constant number of rounds. Step 3 takes T (2d) rounds to run
algorithm A on graph G′. Step 4 considers O(∆2) labels, and for an individual label `, it
takes constant time to assign the values. Overall, the time taken for graph of maximum
degree ∆ = 2d + 1 is given by the function T (∆) ≤ c1 + c2(∆)2 + T (∆ − 1) for some
constants c1 and c2. Since T (∆− 1) is independent of n, T (∆) is independent of n as well.
Thus, we have obtained a valid solution for the maximal fractional matching problem for
graphs in G2d+1 using values from the set S(d).

Lemma 4.3. Fix d ∈ N. If S(d) is sufficient to obtain the solution for G2d+1, then S(d+1)
is sufficient to obtain the solution for G2d+2.

Proof. The proof for this theorem uses the same ideas as done in [2]. Consider any graph
G ∈ G2d+2 and let A be the PN algorithm that uses values in S(d) to compute a valid
solution for graphs in G2d+1. We make use of the following definitions from [2]:

Definition 4.4 (almost-saturating solutions). A half-integral fractional matching x : E →
{0, 1

2
, 1} is almost-saturating if the following conditions hold for each node v:

• If x[v] = 0, then x[u] = 1 for all neighbors u of v.
• If x[v] = 1/2, then x[u] = 1 for at least one neighbor of v.

Definition 4.5 (half-saturated edges). Consider an almost-saturating solution x : E →
{0, 1

2
, 1}. An edge e = {u, v} is:

• half-saturated if x[u] = x[v] = 1/2,
• fully-saturated if x[u] = 1 or x[v] = 1.

In [2] there is an algorithm that finds an almost-saturating solution in O(∆2) rounds.
Let x̄ denote the almost-saturating solution for G, and we let G′ to be the subgraph
induced by the half-saturated edges; note that for each node v there has to be at least
one incident edge that is not half-saturated. Hence G′ ∈ G2d+1, and we can apply A to
produce a solution x′ for G′ using values in set S(d). We can then extend domain of x′

to E by setting x′(e) = 0 for e 6∈ G′. Setting x(e) = x̄(e) + x′(e)/2 now gives a maximal
fractional matching for the graph G. Moreover, x(e) ∈ S(d+1). The number of rounds for
graphs of degree ∆ = 2d+ 2 is given by T (∆) ≤ c1 + c2(∆)2 +T (∆− 1) for some constants
c1 and c2. Since T (∆− 1) is independent of n, T (∆) is also independent of n.

5 Conclusions

Our results give a complete characterization of how fine-grained fractional values are
needed in a distributed algorithm that finds a maximal fractional matching in any running
time T (∆) that only depends on the maximum degree ∆ and is independent of n. The
main open question is if we can achieve this bound in time T (∆) = O(∆), similar to [3],
or if O(∆)-round algorithms need even more fine-grained fractional values.

14

References

[1] Dana Angluin. Local and global properties in networks of processors. In Proc. 12th
Annual ACM Symposium on Theory of Computing (STOC 1980), pages 82–93. ACM
Press, 1980. doi:10.1145/800141.804655.

[2] Matti Åstrand, Patrik Floréen, Valentin Polishchuk, Joel Rybicki, Jukka Suomela,
and Jara Uitto. A local 2-approximation algorithm for the vertex cover problem.
In Proc. 23rd International Symposium on Distributed Computing (DISC 2009),
volume 5805 of Lecture Notes in Computer Science, pages 191–205. Springer, 2009.
doi:10.1007/978-3-642-04355-0_21.

[3] Matti Åstrand and Jukka Suomela. Fast distributed approximation algorithms for
vertex cover and set cover in anonymous networks. In Proc. 22nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA 2010), pages 294–302. ACM
Press, 2010. doi:10.1145/1810479.1810533.

[4] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and
Jukka Suomela. Lower bounds for maximal matchings and maximal independent sets.
Journal of the ACM, 68(5), 2021. doi:10.1145/3461458.

[5] R Bar-Yehuda and S Even. A linear-time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981. doi:10.1016/

0196-6774(81)90020-1.

[6] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The
locality of distributed symmetry breaking. In 2012 IEEE 53rd Annual Sympo-
sium on Foundations of Computer Science (FOCS 2012), pages 321–330, 2012.
doi:10.1109/FOCS.2012.60.

[7] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The locality
of distributed symmetry breaking. J. ACM, 63(3), 2016. doi:10.1145/2903137.

[8] Manuela Fischer. Improved deterministic distributed matching via rounding. Dis-
tributed Computing, 33, 2020. doi:10.1007/s00446-018-0344-4.

[9] Mika Göös, Juho Hirvonen, and Jukka Suomela. Lower bounds for local approximation.
Journal of the ACM, 60(5), 2013. doi:10.1145/2528405.

[10] Mika Göös, Juho Hirvonen, and Jukka Suomela. Linear-in-∆ lower bounds in
the LOCAL model. Distributed Computing, 30(5):325–338, 2017. doi:10.1007/

s00446-015-0245-8.

[11] Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the distributed
complexity of computing maximal matchings. SIAM Journal on Discrete Mathematics,
15(1):41–57, 2001. doi:10.1137/S0895480100373121.

[12] Juho Hirvonen and Jukka Suomela. Distributed maximal matching: greedy is
optimal. In Proc. 31st Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC 2012), pages 165–174. ACM Press, 2012. doi:

10.1145/2332432.2332464.

15

https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/978-3-642-04355-0_21
https://doi.org/10.1145/1810479.1810533
https://doi.org/10.1145/3461458
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1109/FOCS.2012.60
https://doi.org/10.1145/2903137
https://doi.org/10.1007/s00446-018-0344-4
https://doi.org/10.1145/2528405
https://doi.org/10.1007/s00446-015-0245-8
https://doi.org/10.1007/s00446-015-0245-8
https://doi.org/10.1137/S0895480100373121
https://doi.org/10.1145/2332432.2332464
https://doi.org/10.1145/2332432.2332464

[13] Amos Israeli and A. Itai. A fast and simple randomized parallel algorithm for
maximal matching. Information Processing Letters, 22(2):77–80, 1986. doi:10.1016/
0020-0190(86)90144-4.

[14] Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

[15] Alain Mayer, Moni Naor, and Larry Stockmeyer. Local computations on static
and dynamic graphs. In Proc. 3rd Israel Symposium on the Theory of Computing
and Systems (ISTCS 1995), pages 268–278. IEEE, 1995. doi:10.1109/ISTCS.1995.
377023.

[16] Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring.
SIAM Journal on Discrete Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.

[17] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for
sparse networks. Distributed Computing, 14, 2001. doi:10.1007/PL00008932.

[18] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, 2000. doi:10.1137/1.9780898719772.

[19] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.

[20] Masafumi Yamashita and Tsunehiko Kameda. Computing on anonymous networks:
part I—characterizing the solvable cases. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(1):69–89, 1996. doi:10.1109/71.481599.

16

https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1137/0221015
https://doi.org/10.1109/ISTCS.1995.377023
https://doi.org/10.1109/ISTCS.1995.377023
https://doi.org/10.1137/0404036
https://doi.org/10.1007/PL00008932
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1109/71.481599

	1 Introduction
	1.1 Distributed maximal matching is hard
	1.2 Distributed fractional matching is easier
	1.3 What about half-integral matchings?
	1.4 Contributions
	1.5 Key new ideas

	2 Preliminaries
	2.1 Graphs and self-loops
	2.2 Model of computing
	2.3 Applying PO algorithms to loopy graphs

	3 Lower bound result
	3.1 Sets of rational numbers
	3.2 High-level plan
	3.3 Proof of lem:lower-local
	3.4 Proof of lem:lower-pn

	4 Upper bound result
	5 Conclusions

