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Local algorithms

Local algorithm: output of a node is a function of input

within its constant-radius neighbourhood

(Linial 1992; Naor and Stockmeyer 1995)

2 / 19



Local algorithms

Local algorithm: changes outside the local horizon

of a node do not affect its output

(Linial 1992; Naor and Stockmeyer 1995)
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Local algorithms

Local algorithms are efficient:

◮ Space and time complexity is constant for each node

◮ Distributed constant time – even in an infinite network

. . . and fault-tolerant:

◮ Recovers in constant time

◮ Topology change only affects

a constant-size part of the network

(In this presentation, we assume bounded-degree graphs)
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Local algorithms

Great, but do they exist? Fundamental hurdles:

1. Breaking the symmetry:

e.g., colouring a ring of identical nodes

2. Non-local problems:

e.g., constructing a spanning tree

Strong negative results are known:

◮ 3-colouring of n-cycle not possible,

even if unique node identifiers are given (Linial 1992)

◮ No constant-factor approximation of vertex cover,

dominating set, etc. (Kuhn 2005; Kuhn et al. 2004, 2006)
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Local algorithms

Some previous positive results:

◮ Weak colouring (Naor and Stockmeyer 1995)

◮ Dominating set

(Kuhn and Wattenhofer 2005; Lenzen et al. 2008)

◮ Packing and covering LPs

(Papadimitriou and Yannakakis 1993; Kuhn et al. 2006)

Present work:

◮ Max-min LPs (Floréen et al. 2008a,b,c)
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Max-min linear program

Let A ≥ 0, ck ≥ 0

Objective:

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

Generalisation of packing LP:

maximise c · x

subject to A x ≤ 1,

x ≥ 0
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Max-min linear program

Objective: maximise mink ck · x subject to A x ≤ 1, x ≥ 0

Distributed setting:

◮ one node v ∈ V for each variable xv ,

one node i ∈ I for each constraint ai · x ≤ 1,

one node k ∈ K for each objective ck · x

◮ v ∈ V and i ∈ I adjacent if aiv > 0,

v ∈ V and k ∈ K adjacent if ckv > 0

Key parameters:

◮ ∆I = max. degree of i ∈ I

◮ ∆K = max. degree of k ∈ K
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Example

Task: Fair bandwidth allocation

in a communication network

◮ circle = customer

◮ square = access point

◮ edge = network connection
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Example

Task: Allocate a fair share of bandwidth for

each customer

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}
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Example

Task: Allocate a fair share of bandwidth for

each customer; each access point has a limited capacity

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0
1

2

3

7

8

9

4

5

6

11 / 19



Example

Task: Allocate a fair share of bandwidth for

each customer; each access point has a limited capacity

An optimal solution:

x1 = x5 = x9 = 3/5,

x2 = x8 = 2/5,

x4 = x6 = 1/5,

x3 = x7 = 0
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Old results

“Safe algorithm”:

Node v chooses

xv = min
i : aiv >0

1

aiv |{u : aiu > 0}|

(Papadimitriou and Yannakakis 1993)

Factor ∆I approximation

Uses information only in radius 1 neighbourhood of v

A better approximation ratio with a larger radius?
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New results

The safe algorithm is factor ∆I approximation

Theorem

There is no local algorithm for max-min LPs

with approximation ratio ∆I (1 − 1/∆K )

Theorem

For any ǫ > 0, there is a local algorithm for max-min LPs

with approximation ratio ∆I (1 − 1/∆K ) + ǫ

Degree of a constraint i ∈ I is at most ∆I

Degree of an objective k ∈ K is at most ∆K
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Inapproximability

Regular high-girth graph or regular tree?
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Approximability

Preliminary step 1:

Unfold the graph into an infinite tree
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Approximability

Preliminary step 2:

Apply a sequence of local transformations (and unfold again)

7→ 7→ 7→ 7→

17 / 19



Approximability

Alternating layers of “up” agents

and “down” agents

◮ “up” nodes choose

as small values as possible

◮ “down” nodes choose

as large values as possible

But there is no local algorithm

that chooses the roles in

a globally consistent manner

Key idea: consider both roles,

take averages
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Summary

Max-min linear program: given A, ck ≥ 0,

maximise min
k∈K

ck · x

subject to A x ≤ 1,

x ≥ 0

Local algorithm: constant-time distributed algorithm

Main result: tight characterisation of local approximability

http://www.hiit.fi/ada/geru · jukka.suomela@cs.helsinki.fi
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