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Abstract. Balliu et al. (DISC 2020) classified the hardness of solving binary la-
beling problems with distributed graph algorithms; in these problems the task is to
select a subset of edges in a 2-colored tree in which white nodes of degree d and
black nodes of degree δ have constraints on the number of selected incident edges.
They showed that the deterministic round complexity of any such problem is Od,δ(1),
Θd,δ(log n), or Θd,δ(n), or the problem is unsolvable. However, their classification
only addresses complexity as a function of n; here Od,δ hides constants that may
depend on parameters d and δ.

In this work we study the complexity of binary labeling problems as a function of
all three parameters: n, d, and δ. To this end, we introduce the family of structurally
simple problems, which includes, among others, all binary labeling problems in which
cardinality constraints can be represented with a context-free grammar. We classify
possible complexities of structurally simple problems. As our main result, we show
that if the complexity of a problem falls in the broad class of Θd,δ(log n), then the
complexity for each d and δ is always either Θ(logd n), Θ(logδ n), or Θ(log n).

To prove our upper bounds, we introduce a new, more aggressive version of the
rake-and-compress technique that benefits from high-degree nodes.
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1 Introduction

In this work we take the first steps towards characterizing possible distributed computational
complexities of graph problems as a function of two parameters: the number of nodes and the
maximum degree of the graph. We study so-called binary labeling problems [2], previously only
studied for constant-degree graphs, and we extend their classification so that it is parameterized
also by the degrees of the nodes. To do that, we also introduce a new version of the rake-and-
compress technique [16] that benefits from high-degree nodes.

1.1 Broader context

The key goal in the field of distributed graph algorithms is understanding how fast a given graph
problem can be solved in a distributed setting. In this work we focus on the LOCAL model of
distributed computing (see Section 1.8): in each round all nodes can exchange messages with
each of their neighbors, and the running time of the algorithm is the number of communication
rounds until all nodes stop and announce their own part of the solution (say, their own color).

Landscape of distributed complexity. While a lot of early work in the field focused on
individual problems, modern theory of distributed graph algorithms makes a heavy use of struc-
tural results that apply to a broad family of graph problems. The best-known example is locally
checkable labeling problems (LCLs), first introduced by Naor and Stockmeyer [17]. These are
problems in which the task is to label nodes or edges with labels from some finite set, subject
to some local constraints—examples of such problems include vertex coloring, edge coloring,
maximal independent set, and maximal matching.

By now, we have a very good understanding of the landscape of possible round complexities
that any LCL problem may have, in settings like cycles, grids, trees, and general graphs [1, 4, 5, 7–
10, 12, 13, 20]. For example, there is no LCL problem with a time complexity between ω(log∗ n)
and o(log n) in the deterministic LOCAL model. Gap result like this are powerful tools in
proving lower bounds and upper bounds. For example, as soon as we have an algorithm that
solves some LCL problem in o(log n) rounds, we can immediately speed it up to O(log∗ n) rounds
for free.

However, there is one key limitation: the landscape of complexities is currently understood
well only as a function of the number of nodes n, for a constant maximum degree ∆ = O(1).
For example, there are problems with complexities of the form Θ(log∆ n), and problems with
complexities of the form Θ(log n), but we do not have a more fine-grained understanding of all
possible complexity classes as a function of both n and ∆.

Beyond constant degrees: fundamental challenges. LCLs as they were originally intro-
duced by Naor and Stockmeyer [17] only pertain to graphs of some constant maximum degree.
To generalize beyond constant ∆, we need a meaningful definition of the problem family.

Unfortunately, many natural generalizations lead to uninteresting results. If the local con-
straints may depend on the degrees in arbitrarily complicated ways, we can construct artificial
problems with complexities of the form Θ(logf(∆) n) for virtually any function f(∆) = O(∆).
For example, we could start with a problem that has complexity Θ(log∆ n), and modify the
problem definition so that nodes of degree d will ignore up to d − f(d) adjacent leaf nodes; in
essence, we turn nodes of degree d into nodes of degree f(d), and adjust the complexity ac-
cordingly. However, this way we will learn nothing about the complexities that natural graph
problems might have.

Beyond constant degrees: our take. In this work we study the family of binary labeling
problems, as defined by Balliu et al. [2] (see Section 1.2). These are a special case of LCLs; what
is particularly attractive is that the complexity of any given binary labeling problem (in the
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deterministic LOCAL model) can be automatically deduced, and in the constant-degree case
there are only four complexity classes in trees.

Our plan is to see exactly how the characterization of binary labeling problems can be
generalized in a meaningful manner beyond constant degrees; the hope here is that this will also
guide us when we seek to find the right definitions for generalizing results on all LCLs.

1.2 Binary labeling problems

Let us recall the key definitions from [2]. In a binary labeling problem Π, the task is to choose a
subset of edges X ⊆ E in a tree G = (V,E), subject to local constraints. The problem is defined
as a tuple Π = (d, δ,W,B), where d ∈ {2, 3, . . . } is the white degree, δ ∈ {2, 3, . . . } is the black
degree, W ⊆ {0, 1, . . . , d} is the white constraint and B ⊆ {0, 1, . . . , δ} is the black constraint.
We assume that the input graph is properly 2-colored with colors white and black. We define
that X ⊆ E is a solution to problem Π if the following holds:

• If v is a white node of degree d, and v is incident to k edges in X, then k ∈ W .
• If v is a black node of degree δ, and v is incident to k edges in X, then k ∈ B.

That is, we only care about the labeling incident to white nodes of degree d and black nodes of
degree δ; these nodes are called relevant nodes. It is often useful to imagine that white nodes
represent “nodes” and black nodes represent “edges” (if δ = 2) or “hyperedges” (if δ > 2). We
will usually assume that δ ≤ d (otherwise we can exchange the roles of black and white nodes).

Examples. Here are a couple of examples of binary labeling problems (adapted from [2]):

1. Bipartite splitting: W = {1, 2, . . . , d−1} and B = {1, 2, . . . , δ−1}. Here the task is to split
the set of edges in two classes: “red edges” X and “blue edges” E \X, and all relevant
nodes must be incident to at least one red and at least one blue edge.

2. Bipartite matching: W = B = {1}. If we interpret that each edge {u, v} ∈ X indicates
that u is matched with v, in this problem each relevant node must be matched with exactly
one other node (that may or may not be relevant).

While the problems are well-defined in any 2-colored tree, it is often easiest to consider the
case that the tree consists of only leaf nodes and relevant nodes. For example, then bipartite
matching is the task of finding a matching in which all internal nodes are matched.

Prior work. Given a tuple Π = (d, δ,W,B), we can directly look up the round complexity of
Π in a table given by Balliu et al. [2] (reproduced in Table 1). For example, we immediately
obtain:

1. Bipartite splitting: For d = δ = 2 this problem requires Θ(n) rounds, but for any fixed
constants d > 2, δ ≥ 2 the complexity is Θd,δ(log n).

2. Bipartite matching: For d ≥ δ = 2 this problem requires Θd(n) rounds, but for any fixed
constants d > 2, δ > 2 the complexity is Θd,δ(log n).

However, what their classification does not capture is the complexity as a function of d or δ;
we have made this explicit above by writing Θd,δ, to emphasize that the hidden constants may
depend on d and δ. For example, while there are numerous problems (such as the above two
examples) with a complexity Θd,δ(log n), it is not at all clear what is the base of logarithm in
each case. In particular, which binary labeling problems get easier when d and/or δ grows?
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Deterministic White Black

complexity constraint constraint

unsolvable 100+ 0∗∗+

00+1 ∗∗+0
0∗∗+ 100+

∗∗+0 00+1
000+ ∗∗∗+

∗∗∗+ 000+

Od,δ(1) non-empty 111+

111+ non-empty
1∗∗+ 1∗∗+

∗∗+1 ∗∗+1

Θd,δ(n) 10+1 010
010 10+1
0+1∗ ∗10+

∗10+ 0+1∗

Θd,δ(log n) all other cases

Table 1: The complexity landscape from [2].

1.3 Overview of contributions and new ideas

Main question. In this work we study parameterized families of binary labeling problems

Π(d, δ) =
(

d, δ,W (d), B(δ)
)

,

and our main question is this: what can we say about the complexity of any such problem family
Π(d, δ), as a function of n, d, and δ?

Key technical challenge. We need to be careful not to make the family too broad—otherwise
we will end up with an uninteresting result stating that there are artificial problems with virtually
any complexity as a function of d and δ, without learning anything about natural graph problems.

Key results and new ideas. The main new insight is that we define the family of structurally
simple problems. This definition captures how W (d) and B(δ) can depend on d and δ. The aim
is to exclude artificial pathological problems.

We then show that this definition is useful in the sense that we can prove strong statements
about the complexity of structurally simple problems. For example, if the complexity as a
function of n is Θd,δ(log n), then for each d and δ the complexity falls in one of these fine-
grained classes: Θ(logd n), Θ(logδ n), or Θ(log n).

Finally, we show that the definition captures a broad family of problems: if the constraints
W (d) and B(δ) can be represented as binary strings in a context-free language, then Π(d, δ) is
structurally simple. We will discuss this in more detail in Section 1.4.

To prove our main result, we also needed to develop a new, more aggressive version of the
rake-and-compress technique. We discuss this in more detail in Section 1.5.

1.4 Contributions in more detail

Key definitions. In a family of binary labeling problems, both W and B are set families of
the form X(k) ⊆ {0, 1, . . . , k}. If we look at these set families in the examples given by Balliu
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et al. [2, Table 3], we observe that they all fall in one of two classes, which we call center-good
and edge-good :

Definition 1.1 (center-good). A set X ⊆ {0, 1, . . . , k} is ε-center-good if there exists an x ∈ X
such that kε ≤ x ≤ k1−ε.

Definition 1.2 (edge-good). A set X ⊆ {0, 1, . . . , k} is C-edge-good if for all x ∈ X we have
x ≤ C or x ≥ k − C.

Now we are ready to give the main definition:

Definition 1.3 (structurally simple). A set family X(k) ⊆ {0, 1, . . . , k} is structurally simple
if there are some constants 0 < ε < 1 and C such that X(k) is either ε-center-good or C-edge-
good for each k. A family of binary labeling problems Π(d, δ) =

(

d, δ,W (d), B(δ)
)

is structurally
simple if both W (d) and B(δ) are structurally simple.

For example, both the bipartite splitting problem and the bipartite matching problem are
structurally simple, and so are all problems in [2, Table 3]; in the bipartite splitting problem,
W (d) and B(δ) are center-good, while in the bipartite matching problem, W (d) and B(δ) are
edge-good. To give a pathological example of a set family that is not structurally simple, consider,
for example, X(k) = {⌊log k⌋}.

Main result. Our main result is a complete classification of structurally simple problems in
the logarithmic region:

Theorem 1.4. Let Π(d, δ) be a structurally simple family of binary labeling problems and assume
that the complexity of Π(d, δ) in trees is Θd,δ(log n). Then the complexity of Π(d, δ) in trees for
each d and δ falls in one of these classes, as long as δ ≤ d = O(n1−α) for some α > 0:

1. Θ(log n),
2. Θ(logδ n),
3. Θ(logd n).

Remark 1.5. A few clarifying remarks are in order that help one to interpret the result:

1. Our result is constructive in the sense that we also show how to classify Π(d, δ) for any
given d and δ (see Figure 3 on page 17).

2. The complexity class may depend on d and δ. For example, we might have a problem in
which for even values of d the complexity is Θ(logd n) and for odd values of d it is Θ(log n).

3. Throughout this work, Θ-notation only hides constants that only depend on problem family
Π, and not on d and δ; we write Θd,δ explicitly if we are hiding constants that may depend
on d and δ.

Language-theoretic justification. A set X ⊆ {0, 1, . . . , k} can be also represented as a
binary string X̂ of length k+1: we index the bits with i = 0, 1, . . . , k and for each i ∈ X, the bit
at index i in X̂ is 1, and otherwise 0. Given a set family X(k), we can then define a language
of binary strings

X̂ =
{

X̂(2), X̂(3), X̂(4), . . .
}

.

Note that X̂ is by construction thin: it contains at most one word of any given length [18].

Example 1.6. If X(k) = {1, 2, . . . , k−1}, then X̂(k) = 01k−10 and X̂ = {010, 0110, 01110, . . . } =
01+0. If X(k) = {1}, then X̂(k) = 010k−1 and X̂ = {010, 0100, 01000, . . . } = 010+. Here we
use 1ℓ to denote a sequence of ℓ 1s, and 1+ to denote the sequence of one or more 1s.
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Equipped with this notation, we can study families of binary labeling problems from a
language-theoretic perspective: any given problem family Π(d, δ) can be specified by giving a
pair of languages (Ŵ , B̂). As long as these are languages over the binary alphabet, and there
is exactly one string of each length 2, 3, . . . , such a pair of languages can be interpreted as a
parameterized problem family Π(d, δ).

Many example problems in prior work [2] correspond to regular languages. For example,
bipartite splitting is (01+0, 01+0), and bipartite matching is (010+, 010+), while the sinkless
orientation problem [7] is (11+0, 011+). We take one step beyond regular languages and consider
the case of context-free languages. The key observation is summarized in the following lemma:

Lemma 1.7. Let X(k) ⊆ {0, 1, . . . , k} be a family of sets. If X̂ is a context-free language, then
X(k) is structurally simple.

Corollary 1.8. Let Π(d, δ) = (d, δ,W (d), B(δ)) be a family of binary labeling problems. If Ŵ
and B̂ are context-free languages, then Π(d, δ) is structurally simple.

This is the main justification for focusing on structurally simple problems: we have only
excluded some pathological cases that are so complicated that they cannot be expressed with
context-free grammars (this is also the reason why we call them structurally simple).

1.5 Key building block: a new rake-and-compress variant

A key tool for designing O(log n)-time algorithms for binary labeling problems in trees has been
the rake-and-compress technique [16]. A typical application of this technique proceeds as follows;
we alternate between two steps:

1. Eliminate leaf nodes and isolated nodes.
2. Eliminate sufficiently long paths.

If we apply these steps for O(log n) times, in a tree of any shape, we will eliminate all nodes.
Then we can construct a solution by working backwards: repeatedly put back one layer of nodes
and construct a solution that makes these nodes happy; see [2] for more detailed examples.

From our perspective, the main drawback of the rake-and-compress technique is that it does
not benefit from high-degree nodes. For example, if we apply it in a tree in which all internal
nodes have degree s, the worst-case complexity is still Θ(log n), not Θ(logs n).

We introduce a new version of the technique that strictly benefits from high-degree nodes.
Let us first rephrase the usual rake-and-compress procedure as follows (note that nodes in the
middle of long paths are also nodes that are not close to higher-degree nodes):

1. Eliminate leaf nodes and isolated nodes.
2. Eliminate nodes that are not close to any node of degree 3 or more.

We generalize this as follows, so that we are much more aggressive with the compression step:

1. Eliminate leaf nodes and isolated nodes.
2. Eliminate nodes that are not close to any node of degree s or more.

We show that this leads to a procedure that completes in O(logs n) rounds, and we show that
we can use this more aggressive version of rake-and-compress to solve many binary labeling
problems. This is the key building block that leads to the upper bounds O(logd n) and O(logδ n)
in Theorem 1.4.

We believe that our new rake-and-compress technique will find applications also beyond
binary labeling problems.
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Broad class Fine-grained classes Reference

Od,δ(1) O(1) Proposition 5.1

Θd,δ(log n) Θ(logd n) Theorem 1.4
Θ(logδ n)
Θ(log n)

Θd,δ(n) Θ(n/(d+ δ)) Corollary 5.6

unsolvable unsolvable

Table 2: Summary of our results for structurally simple problems (for precise technical assump-
tions please refer to the theorem statements).

1.6 Questions for future work

While our classification is constructive, it also gives rise to a number of new open questions re-
lated to the decidability of complexities for entire problem families; we present here one example:

Question 1.9. Given context-free grammars for thin languages Ŵ and B̂ that define a problem
family Π(d, δ), how hard is it to decide if the complexity of Π(d, δ) is Θ(logd n) for all but finitely
many values of d and δ?

1.7 Roadmap

We first classify structurally simple problems in the logarithmic region:

• In Section 2 we prove lower bounds of the forms Ω(log n), Ω(logd n), and Ω(logδ n).

• In Section 3 we prove upper bounds of the forms O(log n), O(logd n), and O(logδ n). Here
we also introduce and use our new rake-and-compress technique.

• In Section 4 we put together the lower and upper bounds and establish a full classification
in the logarithmic region. This proves the main result, Theorem 1.4.

Then in Section 6 we show that all problems that can be defined with context-free grammars
are indeed structurally simple; this establishes Lemma 1.7 and Corollary 1.8.

In Section 5 we classify problems in the constant and linear complexity classes; this leads to
a complete classification that we summarize in Table 2.

1.8 Model

Let G = (V,E) be a graph with n nodes. We work in the deterministic LOCAL model [15, 19]:
Each node v ∈ V is assigned a unique identifier id(v) ∈ {1, 2, . . . , nc} for some constant c.
Initially each node knows its own identifier, degree, the total number of nodes n, and its input
label (here: its color, black or white). All nodes execute the same algorithm, and computation
proceeds in synchronized rounds. In each round, nodes transmit messages of arbitrary size to
their neighbors, receive messages, and perform local deterministic computations of arbitrary
complexity. Eventually each node must stop and produce its local output (here: which of its
incident edges are in the solution X ⊆ E). The running time, or complexity, of the algorithm
is defined as the number of rounds required by all nodes to make local output decisions. Note
that an algorithm that runs in T rounds can also be interpreted as a mapping from the radius-T
neighborhood of each node to its local output.
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2 Logarithmic lower bounds

We start by proving the main lower bound results. We establish the lower bounds of Ω(logd n),
Ω(logδ n), and Ω(log n), depending on the structure of the problem.

2.1 A general lower bound

We start by showing a general lower bound that holds for any problem:

Lemma 2.1. Let Π(d, δ) be a family of binary labeling problems. For each d and δ the complexity
of Π(d, δ) is either O(1) or Ω(logd n), assuming δ ≤ d.

Proof. As proved by Balliu et al. [2], all binary labeling problems that are not solvable with
locality O(1) have complexity Ωd,δ(log n). They prove this by reducing all such problems to the
forbidden degree or sinkless orientation, which is proved to be a fixed point of round elimination
and not 0-round solvable.

It is known that there exists bipartite graphs with high girth. In particular, for any a, b ∈ N,
there exists (a, b)-biregular graphs with girth Θ(logab n) [11]. By using techniques similar to
Balliu et al. [6] on these graphs, we get an Ω(logd n) lower bound for Π.

2.2 Definitions and problem transformations

To get more fine-grained lower bounds, we first define a few transformations for problems. With
the help of these transformations, we can apply Lemma 2.1 to prove stronger lower bounds.

We start by introducing the switch and the reverse of a problem and observe that they do
not affect the complexity of the problem:

Definition 2.2 (switch of a problem). Let Π(d, δ) = (d, δ,W (d), B(δ)) be a family of problems.
The switch of Π(d, δ) is Πs(δ, d) = (δ, d,B(δ),W (d)).

Definition 2.3 (reverse of a set family). Let X(k) ⊆ {0, . . . , k}. The reverse of X(k) is
Xr(k) = {k − x | x ∈ X}.

Definition 2.4 (reverse of a problem). Let Π(d, δ) = (d, δ,W (d), B(δ)) be a family of problems.
The reverse of Π(d, δ) is Πr(d, δ) = (d, δ,W r(d), Br(δ)).

Lemma 2.5. Binary labeling problem Πs(δ, d) has the same complexity as Π(d, δ).

Proof. Given an algorithm solving Π, we get an algorithm solving Πs by reversing the role of
white and black nodes.

Lemma 2.6. Binary labeling problem Πr(d, δ) has the same complexity as Π(d, δ).

Proof. Given an algorithm solving Π, we get an algorithm solving Πr by replacing the solution
output with its complement.

We now define a more complicated transformation called shift of a problem; see Table 3 for
an example:

Definition 2.7 (shift of a set family). Let X(d) ⊆ {0, 1, . . . , d}. A shift by k of X(d) is

X←k(d− k) = {0, 1, . . . , d− k} ∩
{

x− i | x ∈ X(d), i ∈ {0, 1, . . . , k}
}

.

Definition 2.8 (shift of a problem). Let Π(d, δ) = (d, δ,W (d), B(δ)) be a family of problems.
The white shift of Π is

Π←W k(d, δ) = (d, δ,W←k(d), B(δ)),

and the black shift of Π is

Π←Bk(d, δ) = (d, δ,W (d), B←k(δ)).
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X(20): · · · · · 5 · · · · · · · · · 15 · · · · ·

X←1(19): · · · · 4 5 · · · · · · · · 14 15 · · · ·
X←2(18): · · · 3 4 5 · · · · · · · 13 14 15 · · ·
X←3(17): · · 2 3 4 5 · · · · · · 12 13 14 15 · ·
X←4(16): · 1 2 3 4 5 · · · · · 11 12 13 14 15 ·
X←5(15): 0 1 2 3 4 5 · · · · 10 11 12 13 14 15
X←6(14): 0 1 2 3 4 5 · · · 9 10 11 12 13 14
X←7(13): 0 1 2 3 4 5 · · 8 9 10 11 12 13

X←10(10): 0 1 2 3 4 5 6 7 8 9 10
X←15(5): 0 1 2 3 4 5

Table 3: Examples of the definition of a shift, assuming X(20) = {5, 15}.

Lemma 2.9. Let Π(d, δ) be a family of problems with complexity f(n, d, δ). Then the white
shift Π←W k has complexity O(f((k + 1)n, d + k, δ)) and the black shift Π←Bk has complexity
O(f((k + 1)n, d, δ + k))

Proof. Let Π(d, δ) = (d, δ,W (d), B(δ)) be family of binary labeling problems. We show that the
white shift Π←W k has complexity O(f((k + 1)n, d + k, δ)); the proof for the black shift Π←Bk

follows by Lemma 2.5.
Fix parameters d, δ and k. Let tree G be an instance for problem Π←W k with n nodes. We

are only interested in black nodes of degree δ and white nodes of degree d as the rest of the
nodes are unrestricted. Let G′ be a copy of G with k additional black leaves attached to each
white node of degree d. Note that G′ has at most n′ = (k + 1)n nodes. Let v be a white node
of G, and let v′ be the corresponding white node in G′. Denote the set of edges incident to v by
EG(v), and edges incident to v′ by EG′(v′).

Suppose that X is a solution for Π(d + k, δ) on G′; such a solution can be computed from
input graph G with locality O(f((k+ 1)n, d+ k, δ)) by assumption. Then X induces a solution
Y = X ∩ E(G) for Π←W k on G. We know that degX(v′) =

∣

∣EG′(v′) ∩X
∣

∣ ∈ W (d+ k). We now
show that degY (v) =

∣

∣EG(v) ∩ Y
∣

∣ ∈ W←k(d).
It is clear that 0 ≤ degY (v) ≤ (d+ k)− k = d. Moreover,

degY (v) = degX(v′)−
∣

∣(EG′(v′) \EG(v)) ∩X
∣

∣, and

0 ≤
∣

∣(EG′(v′) \EG(v)) ∩X
∣

∣ ≤
∣

∣EG′(v′) \ EG(v)
∣

∣ = k.

Therefore, degX(v′)− k ≤ degY (v) ≤ degX(v′). Combining these gives

degY (v) ∈ {0, 1, . . . , d} ∩
{

degX(v′)− k, . . . ,degX(v′)
}

⊆ W←k(d),

completing the proof.

With the help of these transformations, we are now ready to prove lower bounds for problems.
Indeed, if we can show that some problem Π←W k(d, δ) has complexity Ω(f(n, d, δ)), then we also
know that Π has complexity Ω(f(n/(k + 1), d − k, δ)).

2.3 Problem reductions

In this section, we use Lemmas 2.5, 2.6 and 2.9 to reduce problems to easier ones and give lower
bounds on those with the help of Lemma 2.1. In what follows, we slightly abuse the notation
and represent the sets W (d) and B(δ) using the corresponding binary strings Ŵ (d) and B̂(δ).

Proposition 2.10. Let k and l be integers. The problem Π(d, δ) = (d, δ, 0d−k+11k, 1l0δ−l+1) for
d ≥ k, δ ≥ l is either unsolvable or has complexity Ω(log n) when d, δ = O(n1−ε) for some ε > 0.
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Proof. Let W = 0d−k+11k and B = 1l0δ−l+1. We reduce Π to Π′(k, l) = (k, l, 01k , 1l0) by first
applying white shift to get Π1 = Π←W d−k and then black shift to get Π′ = Π2 = Π←Bδ−l

1 .
By Lemma 2.1, Π′(k, l) has complexity Ω(log n). Indeed, k and l are constants, so one can

verify this by consulting the classification table of Balliu et al. [2]. Therefore, by Lemma 2.9, Π1

has complexity Ω(log(n/(δ− l+1))). Applying Lemma 2.9 again, we get that Π has complexity

Ω

(

log

(

n

(δ − l + 1)(d − k + 1)

))

= Ω(log n)

when d, δ = O(n1−ε).

Remark 2.11. Notice that if k ≤ 2 and l ≤ 2 then problem Π(d, δ) = (d, δ, 0d−k+11k, 1l0δ−l+1) is
either unsolvable or has complexity Θ(n).

Proposition 2.12. Let k and l be integers. The problem Π(d, δ) = (d, δ, 1k0d−k−l+11l, 01δ−10)
has complexity Ω(logδ n) when d = O(n1−ε) for some ε > 0.

Proof. We apply white shift to reduce Π(d, δ) to problem

Π′(k + l, δ) = Π←W d−k−l = (k + l, δ, 1k01l, 01δ−10).

Again, by Lemma 2.1, problem Π′ has complexity Ω(logδ n). By previous results [2], we know
that Π′ is neither a trivial nor an unsolvable problem. Applying Lemma 2.9, we get that Π has
complexity Ω(logδ(n/(d− k − l + 1))) = Ω(logδ n) when d = O(n1−ε).

3 Logarithmic upper bounds

Now we proceed to prove upper bounds; later in Section 4 we will see that our lower and upper
bounds indeed provide tight bounds for all structurally simple problems in the logarithmic
region.

3.1 Center-good problems

Recall the concept of center-good constraints that we introduced in Definition 1.1. We start by
showing that problems whose white or black constraint is center-good can be solved efficiently:

Lemma 3.1. Let Π(d, δ) = (d, δ,W (d), B(δ)) be a solvable structurally simple problem. If W (d)
is center-good, then Π(d, δ) can be solved with locality O(logd n). Similarly, if B(δ) is center-good,
then Π(d, δ) can be solved with locality O(logδ n).

To prove the lemma, we will first show that problems of this type are (s, t)-resilient [2] for
some s, t ∈ N:

Definition 3.2 (resilient problem [2]). A binary labeling problem Π(d, δ) = (d, δ,W (d), B(δ))
is (s, t)-resilient if

• string Ŵ (d) does not contain a substring of the form 0d+1−s and
• string B̂(δ) does not contain a substring of the form 0δ+1−t.

Resilient problems are useful because they allow partial labelings to be completed:

Definition 3.3 (partial labeling). Let G = (V,E) be a tree. We call ℓ : E′ → {0, 1} for some
subset of edges E′ ⊆ E a partial labeling of G.

Given two partial labelings ℓ1 : E1 → {0, 1} and ℓ2 : E2 → {0, 1} on G, we say that ℓ2 is a
completion of ℓ1 if E1 ⊆ E2, that is, it is defined on a larger set of edges.

Given a problem Π and a partial labeling ℓ, we say a node v ∈ V is labelled in a valid manner
if the set of edges incident to v is in the domain of ℓ and if ℓ satisfies the constraints of Π on v.
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Lemma 3.4 (Balliu et al. [3]). Let Π(d, δ) be a (t, s)-resilient problem, let G = (V,E) be a tree,
and let ℓ be a partial labeling on G. There for every node v ∈ V , there exists a completion of ℓ
that labels v in a valid manner if one of the following conditions holds:

• v is a white node incident to at most t edges with non-empty labels, or
• v is a black node incident to at most s edges with non-empty labels.

Our plan is to recursively remove layers of nodes from the input tree. Then we can put the
layers back and complete the layering by exploiting Lemma 3.4. We first define a procedure
DEG:

Definition 3.5 (DEG). Let G = (VW ⊔ VB, E) be a tree with bipartition (VW , VB). Let

degens,t(G) = {v ∈ VW | degG(v) ≤ s} ∪ {v ∈ VB | degG(v) ≤ t}.

Procedure DEG(s, t) partitions nodes of G into non-empty sets L1, L2, . . . , Lk = ∅ for some k as
follows:

G0 = G,

Li+1 = degens,t(Gi) if Gi is not empty,

Gi+1 = Gi \ Li+1.

We now show that computing decomposition DEG(s, t) can be computed with locality
O(logmax{s,t} n) in the LOCAL model. We start with the following lemma showing that the
number of high-degree nodes in a tree is bounded:

Lemma 3.6. Let d ≥ 1 and let G(VW ⊔ VB , E) be a tree with bipartition (VW , VB), where VW

is the set of white nodes and VB is the set of black nodes. There are at most (|VB | − 1)/(d − 1)
white nodes with degree at least d, and at most (|VW |−1)/(d−1) black nodes with degree at least
d.

Proof. Let d and G be as in the statement. We show the statement for white nodes; the proof
for black nodes follows by symmetry.

Denote by nW
≥d the number of white nodes with degree at least d, and by nW

<d the number of
the rest of white nodes. By the handshake lemma for bipartite graphs, we have

|E| ≥ dnW
≥d + nW

<d = (d− 1)nW
≥d + |VW |. (1)

As G is a tree, we have |E| = |VW |+ |VB | − 1. Combining this with (1) gives the result

nW
≥d ≤ (|VB | − 1)/(d − 1).

We can now prove the following lemma showing that each round of DEG reduces the number
of nodes by a constant factor:

Lemma 3.7. Let s, t ≥ 1, and let d ≥ 1 and let G(VW ⊔ VB, E) be a tree with bipartition
(VW , VB). Running two iterations of DEG(s, t) on G reduces the number of nodes in G by a
factor of Ω(st).

Proof. Let s, t and G be as in the statement. We call nodes of VW white nodes and nodes of VB

black nodes. Let L1 = degens,t(G), G1 = G \L1, L2 = degens,t(G1), and G2 = G1 \L2. Let n
W
1

and nB
1 be the number of white and black nodes in L1, respectively, and let nW

2 and nB
2 be the

number of white and black nodes in L2.
By Lemma 3.6, we have

nW
1 ≤ (|VB | − 1)/(t − 1) and nB

1 ≤ (|VW | − 1)/(s − 1).

10



Applying Lemma 3.6 again on G1, we have

nW
2 ≤ (nB

1 − 1)/(t − 1) and B
2 ≤ (nW

1 − 1)/(s − 1).

Expanding the definitions of nW
1 and nB

1 gives the result:

nW
2 ≤ |VW |/Ω(st) and nB

2 ≤ |VB|/Ω(st).

Combining this lemma with the simple fact that all nodes can locally compute degens,t for
each round, we immediately get the locality of DEG(s, t):

Corollary 3.8. The running time of procedure DEG(s, t) is O(logst n) = O(logmax{s,t} n) in the
LOCAL model.

We can now show that resilient problems can be solved efficiently in the LOCAL model:

Lemma 3.9. Any (s, t)-resilient problem Π(d, δ) can be solved with locality O(logmax{s,t} n).

Proof. Let G be the input tree. Start by computing layer decomposition L1, . . . , Lk for G; this
can be done with locality O(logmax{s,t} n) by Corollary 3.8. Label each edge that is between two
nodes in the same layer with 0.

We can now proceed to label the rest of the edges layer-by-layer, from k− 1 to 1. The nodes
on layer i label all their adjacent edges in a valid manner. This is possible by Lemma 3.4 as
white (respectively black) nodes in layer i have at most s (respectively t) edges to layer i or
higher layers, and only those edges have a label. Note that this procedure can be done in parallel
by all nodes of layer i as all edges with both endpoints in the same layer have their output fixed
at 0. Finally, by definition of L1, white nodes on the layer 1 have at most s < d neighbors,
and black nodes on the layer 1 have at most t < δ neighbors, hence they do not impose any
restrictions on their adjacent edges.

Now we are finally ready to prove Lemma 3.1:

Proof of Lemma 3.1. Let us focus on the case where W (d) is center-good; the case where B(δ)
is center-good is symmetric. By definition, any sufficiently large set w ∈ W (d) contains an
element p ∈ [dε, d1−ε]. Therefore, the problem is (dmin{ε,1−ε}, 1)-resilient, and the rest follows
by Lemma 3.9.

3.2 Aggressive rake-and-compress

In this section, we introduce the aggressive rake-and-compress algorithm, compute its complexity,
and give some of its key properties.

Definition 3.10. For a graph G and some positive integer r, we define the following two sets:

leaves(G) = {v ∈ V (G) | degG(v) = 1},

extr,∆(G) = {v ∈ V (G) | ∀u ∈ N r[v],degG(u) < ∆} = V (G) \N r[{v ∈ V (G) | degG(v) ≥ ∆}],

where N r[v] in the distance-r closed neighborhood of v. Removing the first set from the graph
is a rake operation, removing the second set from the graph is a compress operation.

By computing these sets recursively and removing them from the graph, we can partition
the graph into layers. This is a very helpful tool to create efficient O(log∆ n) local algorithms.

Definition 3.11. Procedure ARC(r,∆) partitions the set of nodes V into non-empty sets
L1, L2, . . . , Lk for some L as follows:

G0 = G,

Li+1 = leaves(Gi) ∪ extr,∆(Gi) if Gi is not empty,

Gi+1 = Gi \ Li+1.

11



recoloring recoloring

Figure 1: An example of the initial coloring and two recoloring steps, with r = 2 and ∆ = 3.

In the following, we show that computing ARC(r,∆) requires only O(r2 · log∆/r n) rounds.

Lemma 3.12. Let G = (V,E) be a tree and r ∈ {1, 2, . . . }. Apply successively the distance-r
rake operation, compress operation and then rake operation again, r times successively. If V ′ is
the remaining vertex set then |V ′| ≤ O(r)|V |/Ω(∆).

Proof. Let G be a tree. We color the nodes of the tree as follows:

• a node of degree ∆ is colored blue,
• a non-leaf node of degree < ∆ at distance ≤ r from a node of degree ∆ is colored red,
• and all other nodes are colored white.

Notice that after a rake operation and a compress operation, all white nodes are removed. To
account for the remaining rake operation, we recolor all red nodes as follows; see Figure 1:

• an old red node is recolored red if it is adjacent to at least two non-white nodes,
• and all the other old red nodes are recolored white.

We do this recoloring r times.
Notice that after the first rake operation and the compress operation, and then the following

r successive rake operations, all white nodes are taken. Now, we want to bound the number of
leftover blue and red nodes. Let B and R be the sets of blue and red nodes. Now let G′ be the
subgraph of G induced by blue and red nodes, rooted at an arbitrary blue node. Observe first
that every leaf node in G′ is a blue vertex. Indeed, suppose for sake of contradiction that there
is a red leaf node v. It is red because it was at distance ≤ r from a blue node b at the beginning.
Consider the subtree of G′ starting from b. Because its diameter is at most r, this subtree is
white at the end of the recoloring. This is a contradiction with the fact that v is red. Now, we
claim the following:

|V (G)| ≥ ∆|B|+ 2, (2)

|R| ≤ 2r|B|. (3)

Once those claims are proven, we can combine them and end the proof with the following:
|V ′| = |R|+ |B| ≤ O(r)|V (G)|/Ω(∆). Equation (2) follows from the handshake lemma and the
fact that G has |V (G)| − 1 edges. To prove (3), we first need to define the depth of a red node
of G′ as follows: depth(v) is the minimum distance of v to a blue node by only taking paths of
G′ that go downward in the tree, i.e. the node of the path closest to the root should be v. By a
previous claim, depth(v) is indeed well-defined for any v ∈ R. Said in other words, it would be
the minimum distance from v to a blue node if we orient the edges of G′ away from the root.

For any red node v, we claim that depth(v) ≤ 2r. Indeed, assume for sake of contradiction
that there is some node v such that all red downward paths in G′ of length 2r+1 starting from
v contain no blue node; see Figure 2. Fix one of these paths P and look at the center vertex
u of this path. This vertex u splits P , we can write P = P1uP2, where v ∈ P1. We claim that
u is at distance at least r + 1 from a blue node, which is in contradiction with the fact that u
is red. To show the claim, assume for sake of contradiction that there exists some downward
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v

uP ′ P

Figure 2: Explanation of the proof that depth(v) ≤ 2r for r = 1.

path P3 ⊆ V (G′) of length r + 1 from u to a blue node b. Let P ′ = P1△P3 ∪ {u} be the path
formed by joining P3 to P1, and removing all vertices that appear twice (so that it is indeed a
path). This is a path of length ≤ |P1|+ |P3| ≤ r+ (r + 1) = 2r+ 1 from v to a b, contradiction.
Now, let us count the number of red nodes. Each red node receives one token and sends it to
one of its nearest blue successor in G′ (break ties arbitrarily). Because of the depth property,
each blue node b can receive only 2r tokens at most, from every red node in the red downward
path that ends at b’s parent. Hence, |R| ≤ 2d|B|, concluding the proof.

Corollary 3.13. ARC(r,∆) can be computed in O(r2 · log∆/r n) rounds.

Proof. By Lemma 3.12, when we apply the rake-and-compress procedure r times, we divide the
number of vertices by O(∆/r). Therefore, after computing (r+1)k layers, the number of vertices
not in layers is divided by O((∆/r)k). Therefore, we need to compute at most O(r · log∆/r n)

layers to have all vertices assigned to some layer. In total, O(r2 · log∆/r n) LOCAL rounds are
needed, because every layer takes O(r) LOCAL rounds to compute.

Here is a key property that is used to build algorithms optimal in n, d and δ:

Lemma 3.14. After the ARC(r,∆ − k + 1) procedure, every relevant degree-∆ vertex in G
is adjacent to k raked vertices (i.e. neighbors which were taken due to their degree being 1).
Moreover, we can assume those raked vertices are the k lowest-layer neighbors of v.

Proof. We apply the procedure ARC(r, d−k) to the inputG. Denote by L1, . . . , Lm the resulting
layer partition. Let v be a degree-∆ node on layer i. Consider the set R of the k lowest-layer
neighbors of v. When u ∈ R is added to its layer, it cannot be due to compress operation,
because when at this time, u had at least ∆− k other neighbors still not assigned to a layer yet,
i.e. v had residual degree ≥ ∆− k + 1. Therefore, one of its neighbors cannot be added a layer
at that time, and we get a contradiction. Hence, u gets assigned to a layer because of a rake
operation.

For r ≥ 2, we have the more general statement:

Lemma 3.15. Given a decomposition given by the ARC(r,∆ − k + 1) procedure with r ≥ 2,
we have the following. For every relevant degree-∆ vertex v, and every vertex u in the set of k
lowest-layer neighbors of v, every neighbor of u different from v is a raked vertex. Moreover, u
is also raked.
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Proof. We apply the procedure ARC(r, d−k) to the input G, with r ≥ 2. Denote by L1, . . . , Lm

the resulting layer partition. Let v be a relevant degree-∆ vertex, and let u be a layer-j vertex
in the set of k lowest-layer neighbors of v. Let w be a neighbor of u different from v, in layer i.
u must be a raked vertex, because it is one of the k lowest-layer neighbors of v. Therefore, w is
at a lower layer than u, i.e. i < j. We also get that v is of degree ≥ d− k in Gj , as u, one of the
k lowest-layer neighbors of w, is still in Gj . Therefore, w is at distance 2 of v in Gi, so w must
be a raked vertex because v is of degree ≥ d− k in Gi.

We will now use these tools to prove upper-bound results for two problems that play a key
role in our classification.

3.3 Bipartite factor problem

Definition 3.16. Bipartite (k, l)-factor is the problem Π(d, δ) = (d, δ, {k}, {l}).

Note that bipartite (1, 1)-factor is the same problem as bipartite perfect matching.

Lemma 3.17. When k and l are non-zero constants, bipartite (k, l)-factor can be solved in
O(logδ n) rounds.

Proof. We apply the procedure ARC(1,min{d − k, δ − l}) on the input graph G. We therefore
have access to Lemma 3.14. Let L1, . . . , Lm denote the resulting layer partition. The general
idea is to iterate through the layers in a backwards order, and match a relevant node with some
of its raked neighbors (exist by Lemma 3.14). More formally, consider the nodes on layer i, and
assume that all edges incident to nodes of layers greater than i have labeled. Vertices in Li

perform the following steps to label all their incident edges that remain unlabeled:

• Any edge between two nodes in Li is labeled with 0,

• Any white (resp. black) node that already has one incident edge labeled 1 chooses its k−1
(resp. l−1) lowest-layer neighbors, labels the unlabeled edges to these neighbors by 1, and
labels the rest of the unlabeled incident edges by 0. If those neighbors do not all exist,
then v is not relevant by Lemma 3.14, and we can label all unlabeled incident edges of v
by 0.

• Any white (resp. black) node that already has one incident edge labeled 1 chooses its k
(resp. l) lowest-layer neighbors, labels the unlabeled edges to these neighbors by 1, and
labels the rest of the unlabeled incident edges by 0. If those neighbors do not all exist,
then v is not relevant by Lemma 3.14, and we can label all unlabeled incident edges of v
by 0.

Let M be the set of edges labeled with 1. We have to argue that this case distinction cover
all possible cases, that is, every relevant vertex v has at most one higher-layer neighbor u such
that uv ∈ M . This is true, because if v is a relevant vertex with a higher-layer neighbor u
such that uv ∈ M , then by definition of the algorithm v is a raked vertex and cannot have
more than one edge to a higher-layer vertex. Notice that we can ignore vertices in L1: they
are not relevant because they are not of degree d nor δ. Furthermore, by definition, every
relevant white (resp. black) node v is incident k (resp. l) edges in M . Therefore, we proved the
correctness of the algorithm. Additionally, the desired round complexity is achieved, as we run
ARC(1,min{d − k, δ − l}) in O(logδ n) time by Corollary 3.13 (and because k, l are constants)
and go through all the O(logδ n) layers once in time O(logδ n).
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3.4 Quasi-orientation problem

Definition 3.18. Quasi-(k, l)-orientation is the problem Π(d, δ) = (d, δ, {k}, {0, δ − l}).

This problem is easiest to understand if we interpret it so that the edges in X are oriented
towards black nodes and edges in E \ X are oriented towards white nodes. Then in a quasi-
(k, l)-orientation, all relevant white nodes have outdegree k while all relevant black nodes have
outdegree l or δ.

Lemma 3.19. When k is a constant, quasi-(k, l)-orientation can be solved in O(logd n) rounds.

Proof. We apply the procedure ARC(2, d− k) to the input graph G. Let L1, . . . , Lm denote the
resulting layer partition. The general idea is to iterate through the layers in a backwards order,
and orient a white degree-d node towards some of its black raked neighbors, and orient a black
degree-δ node towards some of its white raked neighbors (only if the black node is adjacent to
an edge labelled with a 1). More formally, consider the nodes on layer i, and assume that all
edges incident to nodes of layers > i have labeled. Vertices in Li perform the following steps to
label all their incident edges that remain unlabeled:

• If a black node is not incident to any edge labeled 1, label all unlabeled incident edges
by 0.

• If a black node is incident to exactly one edge labeled 1, choose its l lowest-layer neighbors,
label the unlabeled edges to these neighbors by 0, and label the rest of the unlabeled
incident edges by 1. These lower-layer neighbors always exist because the black node is a
raked vertex.

• If a white node is incident (respectively not incident) to an edge labeled 1, choose its k− 1
(respectively k) lowest-layer neighbors, label the unlabeled edges to these neighbors by 1,
and label the rest of the unlabeled incident edges by 0. In the case where those neighbors
do not all exist, then v is not relevant by Lemma 3.14, and we can label all unlabeled
incident edges of v by 0.

Let M be the set of edges labeled with 1. We have to argue that this case distinction cover all
possible cases, that is, every relevant vertex v has at most one higher-layer neighbor u such that
uv ∈ M . For relevant black vertices, this is because black vertices with an edge labeled 1 that
goes to a higher-layer neighbor are raked vertices. Now, let us tackle the case of white vertices.
Suppose a white vertex u ∈ Li is adjacent to a higher-layer or equal-layer black vertex v ∈ Lj,
with all but l of v’s incident edges labeled 1. By Lemma 3.15, v must be a raked vertex, and one
the k lowest-layer neighbors of some relevant node w ∈ V (Gj). We also get that u is a raked
vertex. Thus, u cannot have 2 incident edges labeled with 1 coming from higher-layer neighbors.
Notice that we can ignore white vertices in L1: they are not relevant because they are of degree
< d. Black vertices in L1 have no relevant white neighbor, so we can satisfy them trivially.
Other relevant black nodes either have δ − l incident edges labeled 1 or all their incident edges
labeled 0, and furthermore, by definition, every white relevant node (thus not in L1) is incident
to k edges in M . Therefore, the algorithm is correct. Additionally, the desired round complexity
is achieved, as we run ARC(2, d − k) in O(logd n) time by Corollary 3.13 (and because k and l
are constant) and go through all the O(logd n) layers once in time O(logd n).

4 Classification of logarithmic problems

We now have all the tools to classify logarithmic problems and prove our main theorem. A
summary of the classification is displayed in Figure 3.
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Theorem 1.4. Let Π(d, δ) be a structurally simple family of binary labeling problems and assume
that the complexity of Π(d, δ) in trees is Θd,δ(log n). Then the complexity of Π(d, δ) in trees for
each d and δ falls in one of these classes, as long as δ ≤ d = O(n1−α) for some α > 0:

1. Θ(log n),
2. Θ(logδ n),
3. Θ(logd n).

Proof. Fix some d and δ, let w = Ŵ (d) and b = B̂(δ). Suppose Π is solvable and has Θd,δ(log n)
complexity. We know by Lemma 2.1 that the problem has complexity Ω(logd n). However, this
is not tight: there are some problems that cannot be solved in O(logd n) time. We make a case
distinction to classify the problem complexity into multiple classes.

First, if w is center-good, then it can be solved in O(logd n) rounds using Lemma 3.9.
Now suppose that w is edge-good. Let w = sww10

kw2tw with |w1|, |w2| ≤ C, and b = sb . . . ts.
Depending on w and b, the complexity splits into different classes. The problem is not of constant
complexity, so it cannot be that sw = sb = 1 or tw = tb = 1. If sb = tb = 1, then Π(d, δ) can
be solved with the quasi-(k, 0)-orientation algorithm of Lemma 3.19 (and possibly Lemma 2.6)
in time O(logd n), because it cannot be that w1 and w2 only contains 0’s, otherwise we would
have w = 0d+1 (as sw = tw = 0). Else, either sb = 0 or tb = 0. Without loss of generality,
assume in the following that tb = 0 (otherwise, one can use Lemma 2.6). In the case where
sb = 1, it is not possible that b = 10∗, as sw = 0. Otherwise, the problem would be unsolvable.
Therefore, b contains at least 2 1’s and Π(d, δ) can be solved in O(logd n) rounds with the
quasi-(k, l)-orientation algorithm.

We are now left with the case sb = tb = 0 for the rest of the proof. Then the problem has
complexity Ω(logδ n) by Proposition 2.12 (assuming d = O(n1−α) for some α > 0). Moreover, by
assumption, the complexity is O(log n). There are still two possible complexity classes: logδ n
and log n. To finish our classification, we need to prove that in all cases, the complexity is either
Ω(log n) orO(logδ n). If b is center-good, then the complexity isO(logδ n) by Lemma 3.9. For the
rest of the proof, suppose b is edge-good. Let b = sbb10

lb2tb with |b1|, |b2| ≤ C. If sw = tw = 1,
then Π(d, δ) can be solved in time O(logδ n) with Lemma 2.5, possibly Lemma 2.6, and the
quasi-(k, 0)-orientation algorithm of Lemma 3.19. Indeed, we can apply this algorithm because
it cannot be that b1 and b2 only contains 0’s, otherwise we would have b = 0δ+1 (sb = tb = 0).
There are multiple cases depending on the wc’s and bc’s:

• Type A: there exists i ∈ {1, 2} such that both bi and wi contain a 1.
• Type B: w1 and b2 only contain 0’s, and w2 and b1 contains a 1.
• Type C: w2 and b1 only contain 0’s, and w1 and b2 contains a 1.
• Type Dc: there exists c ∈ {w, b} such that both c1 and c2 only contain 0’s.

Without loss of generality, we can forget about type C, because by using Lemma 2.6 we can get
back to type B. If the problem is of type A then the complexity is O(logδ n) by Lemma 3.17
and using Lemma 2.6 (if necessary). Now suppose the problem is of type B. If sw = 0, the
problem is of complexity Ω(log n) by Proposition 2.10. Else, sw = 1 and tw = 0, therefore the
problem can be solved in time O(logδ n) using Lemma 3.19 and Lemma 2.5. If the problem is
of type Db or Dw, it is unsolvable. Suppose that the problem is of type Db. Then the problem
is unsolvable because b = 0δ+1. Suppose that the problem is of type Dw. If sw = tw = 0, the
problem is unsolvable because w = 0d+1. Else, one of sw and tw is equal to 0, but not both. So
w = 0+01 or w = 100+ and the problem is unsolvable because sb = tb = 0.

5 Outside logarithmic region

In Sections 2 to 4 we have analyzed problems of complexity Θd,δ(log n). In this section we
explore the two remaining cases of solvable problems: classes Od,δ(1) and Θd,δ(n). All results
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Π(d, δ) = (d, δ,W (d), B(δ)) with d ≥ δ

is W (d) edge-good?

B̂(δ) = 0b′0?

is B(δ) edge-good?

Ŵ (d) = 0k
′

w2 ∧ B̂(δ) = b10
l
′

with |w2|, |b1| = O(1)
or

Ŵ (d) = w10
k
′

∧ B̂(δ) = 0l
′

b2
with |w1|, |b2| = O(1)?

Θ(logd n)

Θ(logδ n)

Θ(log n)

no
yes

no

yes

no

yes

yes

no

Figure 3: Complexity flowchart for logarithmic problems; we assume here that the complexity
of Π(d, δ) is Θd,δ(log n).
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are summarized in Table 2 on page 6.

5.1 Constant complexity

Proposition 5.1. If the complexity of Π(d, δ) is Od,δ(1), then it is also O(1).

Proof. If the complexity of the problem is Od,δ(1), then by the classification of [2] the problem
is of the form (111+, B) with B non-empty or of the form (W,B) with 0 ∈ W ∩ B (or their
switch or reverse). To solve the first type of problem in O(1) rounds, one can run an algorithm
where black nodes label k neighboring edges with a 1 (if k ∈ B), and the rest of the neighboring
edges with a 0. To solve the second type of problems in O(1) rounds, one can run an algorithm
where every node labels every neighboring edge with a 0. Both of these algorithms are correct
and run in O(1) rounds.

5.2 Linear complexity: upper bounds

For a bipartite graph G with bipartition V (G) = VW ⊔ VB , denote Ws = {v ∈ VW | deg(v) = s}
and Bt = {v ∈ VB | deg(v) = t}.

Lemma 5.2. Let G be a tree with bi-partition V (G) = VW⊔VB. Then G[Ws∪Bt] has components
of diameter at most 4|V (G)|/(s + t) + 4.

Proof. Let G′ be a connected component of G[Ws ∪ Bt]. Let d be the diameter of G′ and let
P be a path of length d in G′. Notice that in G′, all vertices are either leaves, vertices of
degree s in W , or vertices of degree t in B. Therefore, P contains at most 2 leaves, at least
(d − 4)/2 vertices from Ws and at least (d − 4)/2 vertices from Bt. By the handshake lemma,
2|V (G)| ≥ s|Ws|+ t|Bt| ≥ (s+ t)(d− 4)/2. Finally, we get d ≤ 4|V (G)|/(s + t) + 4.

Corollary 5.3. Any solvable binary labeling problem Π(d, δ) has complexity O(n/(d+ δ)).

Proof. Let (G, d, δ) be an instance of Π with W ⊔ B a bipartition of V (G). As we do not have
only constraints on vertices of W of degree d and on vertices of B of degree δ, one needs only
to only solve Π on the connected components of G[Wd ∪ Bδ]. By Lemma 5.2, the diameter is
at most 4|V (G)|/(d + δ) + 4, and every LOCAL problem can be solved in a number of rounds
equal to the diameter. Therefore, Π can be solved in time O(n/(d+ δ)).

5.3 Linear complexity: lower bounds

Up to switching, there are two types of problems with complexity Ωd,δ(n) [2]:

• Type A: (W,B) = (10+1, 010),
• Type B: (W,B) = (∗10+, 0+1∗),

where ∗ is a placeholder for an arbitrary bit. We prove that both types have complexity Ω(n/(d+
δ)). Notice that in the first type, δ = 3 so the complexity is Ω(n/d).

Lemma 5.4. If Π(d, 3) is a problem of type A, then Π(d, 3) has complexity Ω(n/d).

Proof. This follows from the proof of Theorem 8.1 of [2]. In this proof, the problem is reduced
to 2-coloring of a path of size n/d, and it is known that the complexity of 2-coloring a path of
length ℓ is Θ(ℓ). Hence, Π(d, 3) has complexity Ω(n/d)

Lemma 5.5. If Π(d, δ) is of type B, then Π(d, δ) has complexity Ω(n/(d+ δ)).
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Proof. This follows the proof of Theorem 8.2 of [2]. In this proof, the problem is reduced to a
problem called almost oriented path for a path of size f(n, d, δ), and then it is showed that the
complexity of almost orienting a path of length ℓ is Θ(ℓ). The almost oriented path problem
takes as input a properly 2-colored path and asks to orient the edges such that at most one node
of degree 2 has all its incident edges outgoing, and all other nodes of degree 2 have exactly one
outgoing edge (nodes of degree 1 are unconstrained).

Let us compute f(n, d, δ). In the proof, of Theorem 8.2, the authors start from properly 2-
colored path, connect to each white node d−2 new black leaves, and to each black node δ−2 new
white leaves. Then, the authors connect an additional node to each endpoint of the path while
keeping a proper 2-coloring. Then, any solution for Π(d, δ) for this new instance can be mapped
to a solution for the almost oriented path problem on the original instance. Let k be the order
of the original instance. n is the size of the new instance so n ≥ (k/2+1)(δ−2)+(k/2+1)(δ−2)
and therefore k = Ω(n/(d+ δ)). This finishes the proof that Π(d, δ) has complexity f(n, d, δ) =
Ω(k) = Ω(n/(d+ δ)).

5.4 Linear complexity: summary

By putting together Sections 5.2 and 5.3, we obtain:

Corollary 5.6. If the complexity of Π(d, δ) is Θd,δ(n), then it is also Θ(n/(d+ δ)).

6 Structurally simple problems and context-free languages

We have now completed the classification of structurally simple binary labeling problems. In
this section, we show that all binary labeling problems that can be defined with context-free
grammar are structurally simple:

Lemma 1.7. Let X(k) ⊆ {0, 1, . . . , k} be a family of sets. If X̂ is a context-free language, then
X(k) is structurally simple.

To prove this, we need the following result from language theory:

Theorem 6.1 ([14, Theorem 2.1]). Let B a constant and L a context-free language such that
for every length n of a word in L, there are at most B words of length n in L. Then L can be
written as a finite union of so-called paired loops, i.e.

L =
⋃

i∈I

{uiv
n
i wix

n
i yi | n ∈ N}

for some finite set I and words ui, vi, wi, xi, yi for every i ∈ I.

We also need the following auxiliary lemma:

Lemma 6.2. For every language L = {uvnwxny | n ∈ N}, for some words u, v, w, x, y ∈ {0, 1}∗,
there exists α > 0 and B,C,N ∈ N such that for n ≥ N , at least one of these is true:

1. L contains a word z with length n with a 1 at position i s.t. αn−B ≤ i ≤ (1− α)n +B,
2. there is no word of L of length n with a 1 at position i s.t. i > C or i < n− C.

Proof. Let N = |uvwxy|. Let C = max{|u|, |v|, |w|, |x|, |y|}. If v,w, x ∈ 0∗, all the words z ∈ L
of length n ≥ N can only contain symbol 1’s at positions i ∈ [0, C]∪ [|z|−C, |z|]. Otherwise, we
know that the word vwx contain a symbol 1. Let n ≥ N . Take z ∈ L of length n and let k ∈ N

such that z = uvkwxky = uvk−1(vwx)xk−1y. vk−1 and xk−1 exist, because n ≥ N . Therefore,
there is a 1 in z, inside the middle vwx, at position

i ∈ [|u|+ (k − 1)|v|, |z| − |y| − (k − 1)|x|].
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There are multiple cases. We first handle the case where v and x are not empty. If this is the case,
then let α = min{|v|, |x|}/(|v|+|x|) and B = α|uvwxy|. Then αn−B = α((k−1)|v|+(k−1)|x|) =
(k−1)α(|v|+ |x|) ≤ (k−1)|v|, (k−1)|x|. This means that i, |z|− i ≥ αn−B. Let us now handle
the case where v is empty; the proof when x is empty is similar, and v and x cannot be both
empty. Let C = 2max{|u|, |v|, |w|, |x|, |y|}, α = 1/2, and B = |uvwxy|. If x ∈ 0∗, then z only
contain symbol 1’s at positions i ∈ [0, C]∪ [|z|−C, |z|]. Otherwise, write z = uwx⌊k/2⌋xx⌈k/2⌉−1y.
Notice that there is a 1 in z, inside the middle x, at position

i ∈
[

|u|+ |w| + ⌊k/2⌋|x|, |z| − |y| − (⌈k/2⌉ − 1)|x|
]

.

Then αn − B ≤ (k − 2)|x|/2 ≤ ⌊k/2⌋|x|, (⌈k/2⌉ − 1)|x|. This means that i, |z| − i ≥ αn − B.
This concludes the proof.

Proof of Lemma 1.7. Using Theorem 6.1, we can write

X̂ =
⋃

i∈I

{uiv
k
i wix

k
i yi | k ∈ N}

for some finite set I and words ui, vi, wi, xi, yi for every i ∈ I. Apply Lemma 6.2 for each
Li = {uiv

k
i wix

k
i yi | k ∈ N} separately, and obtain constants αi, Bi, Ci, and Ni for each i ∈ I, so

that for every i ∈ I, n ≥ Ni, and w ∈ Li of length n ≥ Ni at least one of these is true:

1. Li contains a word w with length n with a 1 at position x s.t. αin−Bi ≤ x ≤ (1−αi)n+Bi,
2. there is no word of L of length n with a 1 at position x s.t. x > Ci or x < n− Ci.

Let α = min{αi | i ∈ I}, B = max{Bi | i ∈ I}, C = max{Ci | i ∈ I}, and N = max{Ni | i ∈ I}.
Then, given some n ≥ N , at least one of these is true:

1. X̂ contains a word w ∈ Li for some i ∈ I with length n with a 1 at position x s.t.
αn−B ≤ x ≤ (1−α)n+B, because αn−B ≤ αin−Bi and (1−αi)n+Bi ≤ (1−α)n+B,

2. there is no word of X̂ of length n with a 1 at position x s.t. x > C or x < n−C, because
for every i ∈ I, C ≥ Ci or n− C ≤ n− Ci.

This proves that for any ε > 0, there exists some N such that for any word w ∈ X̂ with
length n ≥ N , at least one of these is true:

1. word w is ε-center-good: it has a 1 at position p ∈ [nε, n1−ε],
2. word w is C-edge-good: it has 1’s only at positions p ∈ [0, C] ∪ [|w| − C, |w|].

This means that X is structurally simple.
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