
A distributed approximation scheme

for sleep scheduling in sensor networks

Patrik Floréen,
Petteri Kaski,
Topi Musto,
Jukka Suomela

HIIT seminar
23 March 2007



A sensor network

Battery-powered
sensor devices

Maximise the lifetime
by letting each node
sleep occasionally

2 / 32



Pairwise redundancy relations

Two sensors close to
each other may be
pairwise redundant

If v is active then
u can be asleep
and vice versa

Detecting pairwise
redundancy: e.g.,
Koushanfar et al. (2006)

v

u

3 / 32



Redundancy graph for the sensor network

All pairwise
redundancy relations

4 / 32



A dominating set in the redundancy graph

If v1 is active
then its neighbours
can be asleep

v1

5 / 32



A dominating set in the redundancy graph

If v2 is active
then its neighbours
can be asleep

v1

v2

6 / 32



A dominating set in the redundancy graph

If v3 is active
then its neighbours
can be asleep

v1

v2

v3

7 / 32



A dominating set in the redundancy graph

If nodes {v1, v2, v3}
are active then
all other nodes
can be asleep

m

D = {v1, v2, v3} is
a dominating set in
this redundancy graph

v1

v2

v3

8 / 32



Sleep scheduling in sensor networks

Task: find multiple
dominating sets and
apply them one after
another

Objective: maximise
total lifetime

Constraints: the
battery capacity of
each node

9 / 32



Domatic partition

One approach:
find disjoint
dominating sets

Achieved lifetime:
2 time units

Each node active
for 1 time unit

Feasible but
not optimal!

1 time unit 1 time unit

10 / 32



Fractional domatic partition

1
2

units 1
2

units

1
2

units 1
2

units 1
2

units

5
2

time units

Each node active
for 1 time unit

Achieved lifetime:

11 / 32



Towards the distributed algorithm

Optimal sleep scheduling =
optimal fractional domatic partition

◮ Hard to optimise and hard to
approximate in general graphs

◮ Centralised solutions are not
practical in large networks

Plan:

◮ Identify the features of
typical redundancy graphs

◮ Exploit the features to design a
distributed approximation scheme

1
2

units

1
2

units
· · ·

12 / 32



Construction of a typical redundancy graph

A potato field

13 / 32



Construction of a typical redundancy graph

Planting sensors. . .

14 / 32



Construction of a typical redundancy graph

Planting sensors. . .

15 / 32



Construction of a typical redundancy graph

Planting sensors. . .

16 / 32



Construction of a typical redundancy graph

A sensor network

17 / 32



Construction of a typical redundancy graph

Wireless
communication links

18 / 32



Construction of a typical redundancy graph

Wireless
communication links

Some example nodes
highlighted

Not necessarily
a unit disk graph

19 / 32



Construction of a typical redundancy graph

Redundancy relations

An arbitrary
subgraph of the
communication graph

Nodes that can communicate
with each other can also
determine whether they are
pairwise redundant

20 / 32



Construction of a typical redundancy graph

The complete
redundancy graph

In this example: approx.
2000 nodes
6000 redundancy edges
100000 communication links
(not shown)

21 / 32



Features of a typical redundancy graph (1)

Bounded
density of nodes

Cover a larger area =⇒
still at most N sensors in any
unit disk

22 / 32



Features of a typical redundancy graph (2)

Bounded
length of edges

In the communication
graph and thus also in
the redundancy graph

Limited range of radio,
limited range of sensor

23 / 32



Features of a typical redundancy graph (3)

The communication
graph is a geometric
spanner

A shortest path
in the graph is not
much longer than
the shortest path
in the plane

“Sensible”network topology;
here guaranteed by the
deployment process

No such assumption is made
about the redundancy graph

24 / 32



Features of a typical redundancy graph

Communication graph

1. Density of nodes

2. Length of edges

3. Geometric
spanner

Redundancy graph

◮ Any subgraph

Given these
assumptions, there
exists a distributed
approximation scheme

25 / 32



The distributed approximation scheme

Idea 1:

1. Partition the graph into small cells

2. Solve the scheduling problem
locally in each cell

◮ Nodes near a cell boundary

help in domination
◮ Local optimum at least

as good as global optimum

3. Merge the local solutions

Problem:

◮ Nodes near a cell boundary
work suboptimally

26 / 32



The distributed approximation scheme

Idea 2: shifting strategy
(e.g., Hochbaum & Maass 1985)

1. Form several partitions

2. Make sure no node is near
a cell boundary too often

3. Construct a schedule for each
partition and interleave

Works fine if the nodes know
their coordinates

Can we form the partitions
without using any coordinates ?

27 / 32



The distributed approximation scheme

Install anchor nodes

Or use a distributed algorithm
to find suitable anchors: e.g.,
any maximal independent set
in a power graph of the
communication graph

Not too sparse,
not too dense

1 bit of information:
“I am an anchor”

28 / 32



The distributed approximation scheme

Finding one partition
is now easy:
Voronoi cells
for anchors

◮ Metric: hop counts in
communication graph

How do we get more
partitions?

No global consensus
on left/right,
north/south

29 / 32



The distributed approximation scheme

Assumption: locally
unique identifiers for
anchors

◮ MAC addresses

◮ Random numbers

Shift borders towards
those anchors with
larger identifiers

Key lemma
No node is near a cell
boundary too often

30 / 32



The distributed approximation scheme

A constant number of
partitions suffices

Cell size is constant

Main result
For any ǫ > 0,
with suitable anchor
placement,
sleep scheduling can
be approximated
within 1 + ǫ in
constant time
per node

31 / 32



Summary

◮ Sleep scheduling in sensor networks
= fractional domatic partition

◮ Formalise the features which make
the problem easier to approximate

◮ Anchors suffice, coordinates are
not needed

◮ A distributed approximation
scheme, constant effort per node

◮ Demonstrates theoretical feasibility
– more work needed to make the
constants practical

To appear in Proc. SECON 2007

1
2

units

1
2

units
· · ·

32 / 32


	The sleep scheduling problem
	Construction of a typical redundancy graph
	Features of a typical redundancy graph
	The distributed approximation scheme
	Summary

