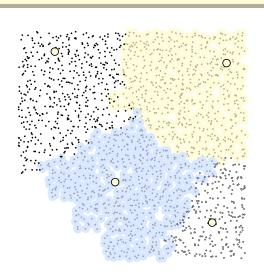
A distributed approximation scheme for sleep scheduling in sensor networks

Patrik Floréen, Petteri Kaski, Topi Musto, <u>Jukka Suomela</u>

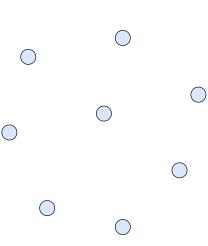
HIIT seminar 23 March 2007



A sensor network

Battery-powered sensor devices

Maximise the lifetime by letting each node sleep occasionally

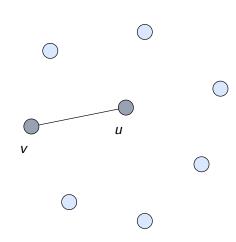


Pairwise redundancy relations

Two sensors close to each other may be pairwise redundant

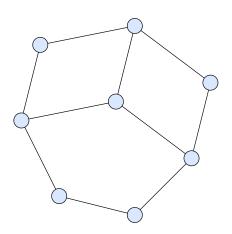
If *v* is active then *u* can be asleep and vice versa

Detecting pairwise redundancy: e.g., Koushanfar et al. (2006)

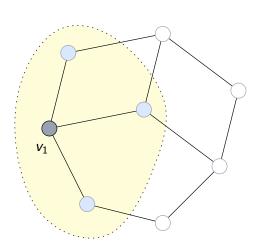


Redundancy graph for the sensor network

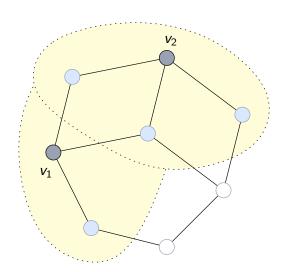
All pairwise redundancy relations



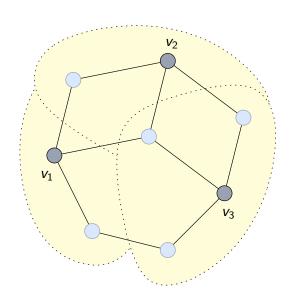
If v_1 is active then its neighbours can be asleep



If v_2 is active then its neighbours can be asleep

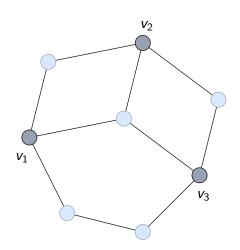


If v_3 is active then its neighbours can be asleep



If nodes $\{v_1, v_2, v_3\}$ are active then all other nodes can be asleep

 $D = \{v_1, v_2, v_3\}$ is a dominating set in this redundancy graph

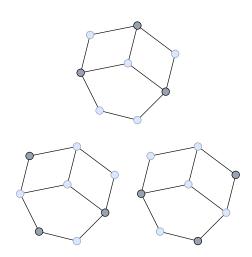


Sleep scheduling in sensor networks

Task: find multiple dominating sets and apply them one after another

Objective: maximise total lifetime

Constraints: the battery capacity of each node



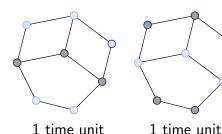
Domatic partition

One approach: find disjoint dominating sets

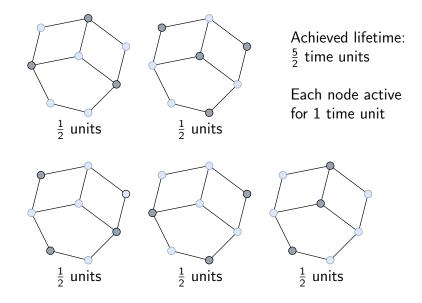
Achieved lifetime: 2 time units

Each node active for 1 time unit

Feasible but not optimal!



Fractional domatic partition



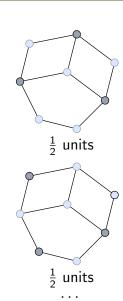
Towards the distributed algorithm

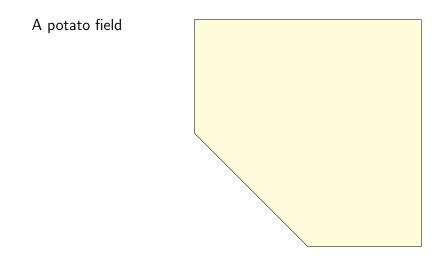
Optimal sleep scheduling = optimal fractional domatic partition

- Hard to optimise and hard to approximate in general graphs
- Centralised solutions are not practical in large networks

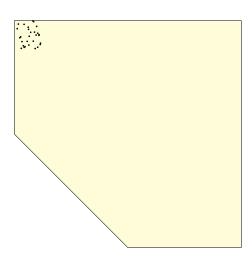
Plan:

- Identify the features of typical redundancy graphs
- Exploit the features to design a distributed approximation scheme

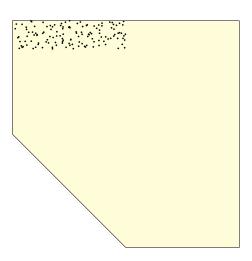




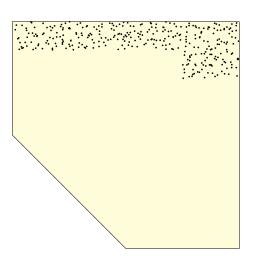
Planting sensors. . .



Planting sensors. . .



Planting sensors. . .



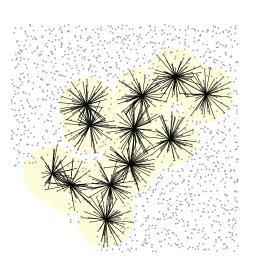
A sensor network

Wireless communication links

Wireless communication links

Some example nodes highlighted

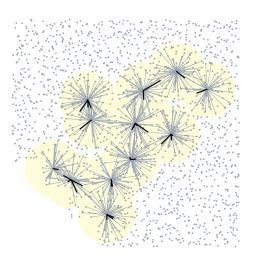
Not necessarily a unit disk graph



Redundancy relations

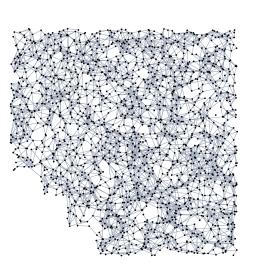
An arbitrary subgraph of the communication graph

Nodes that can communicate with each other can also determine whether they are pairwise redundant



The complete redundancy graph

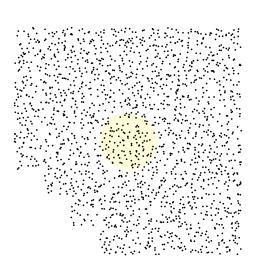
In this example: approx. 2000 nodes 6000 redundancy edges 100000 communication links (not shown)



Features of a typical redundancy graph (1)

Bounded density of nodes

Cover a larger area \implies still at most N sensors in any unit disk

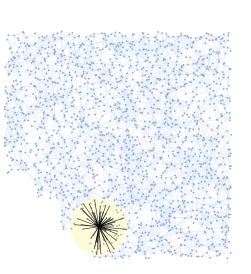


Features of a typical redundancy graph (2)

Bounded length of edges

In the communication graph and thus also in the redundancy graph

Limited range of radio, limited range of sensor



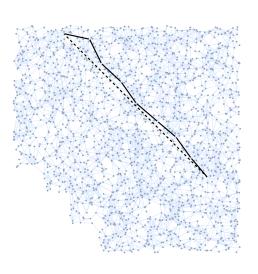
Features of a typical redundancy graph (3)

The communication graph is a geometric spanner

A shortest path in the graph is not much longer than the shortest path in the plane

"Sensible" network topology; here guaranteed by the deployment process

No such assumption is made about the redundancy graph



Features of a typical redundancy graph

Communication graph

- 1. Density of nodes
- 2. Length of edges
- 3. Geometric spanner

Redundancy graph

Any subgraph

Given these assumptions, there exists a distributed approximation scheme

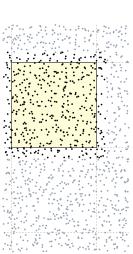


Idea 1:

- Partition the graph into small cells
- 2. Solve the scheduling problem locally in each cell
 - Nodes near a cell boundary help in domination
 - Local optimum at least as good as global optimum
- 3. Merge the local solutions

Problem:

 Nodes near a cell boundary work suboptimally



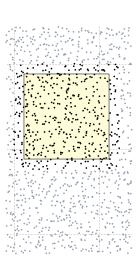
Idea 2: shifting strategy

(e.g., Hochbaum & Maass 1985)

- 1. Form several partitions
- 2. Make sure no node is near a cell boundary too often
- 3. Construct a schedule for each partition and interleave

Works fine if the nodes know their coordinates

Can we form the partitions without using any coordinates?

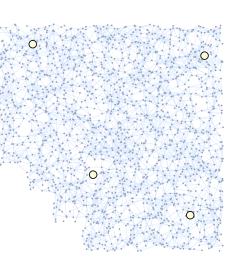


Install anchor nodes

Or use a distributed algorithm to find suitable anchors: e.g., any maximal independent set in a power graph of the communication graph

Not too sparse, not too dense

1 bit of information: "I am an anchor"



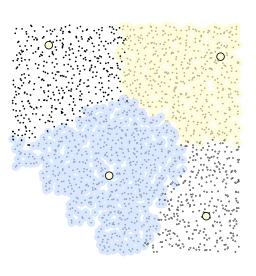
Finding one partition is now easy:

Voronoi cells for anchors

Metric: hop counts in communication graph

How do we get more partitions?

No global consensus on left/right, north/south



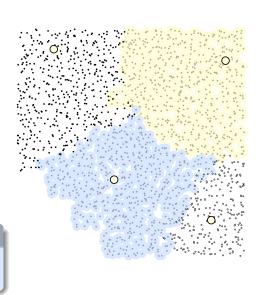
Assumption: locally unique identifiers for anchors

- MAC addresses
- Random numbers

Shift borders towards those anchors with larger identifiers

Key lemma

No node is near a cell boundary too often

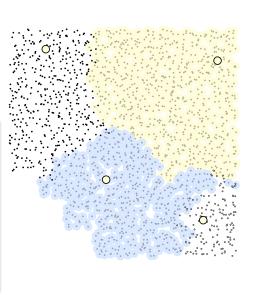


A constant number of partitions suffices

Cell size is constant

Main result

For any $\epsilon>0$, with suitable anchor placement, sleep scheduling can be approximated within $1+\epsilon$ in constant time per node



Summary

- Sleep scheduling in sensor networks= fractional domatic partition
- Formalise the features which make the problem easier to approximate
- Anchors suffice, coordinates are not needed
- A distributed approximation scheme, constant effort per node
- Demonstrates theoretical feasibility
 more work needed to make the constants practical

To appear in Proc. SECON 2007

