
Approximating max-min linear programs
with local algorithms

Patrik Floréen,
Marja Hassinen,
Petteri Kaski,
Topi Musto,
Jukka Suomela

HIIT seminar
29 February 2008

Max-min linear programs: Example

Example: Fair bandwidth allocation
in a communication network

◮ circle = customer

◮ square = access point

◮ edge = network connection

2 / 24

Max-min linear programs: Example

Example: Allocate a fair share of bandwidth for
each customer

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

1

2

3

7

8

9

4

5

6

3 / 24

Max-min linear programs: Example

Example: Allocate a fair share of bandwidth for
each customer; each access point has a limited capacity

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0
1

2

3

7

8

9

4

5

6

4 / 24

Max-min linear programs: Example

Example: Allocate a fair share of bandwidth for
each customer; each access point has a limited capacity

An optimal solution:

x1 = x5 = x9 = 3/5,

x2 = x8 = 2/5,

x4 = x6 = 1/5,

x3 = x7 = 0

1

2

3

7

8

9

4

5

6

5 / 24

Max-min linear programs: Definition

Objective:

maximise min
k∈K

∑
v∈V ckvxv

subject to
∑

v∈V aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀ v ∈ V

Idea:

◮ One unit of activity by agent v ∈ V
benefits party k ∈ K by ckv ≥ 0 units and
consumes aiv ≥ 0 units of resource i ∈ I

◮ Objective: set the activities to provide
a fair share of benefit for each party

6 / 24

Max-min linear programs: Definition

Let A, c, ck ≥ 0

In matrix notation:

maximise min
k∈K

ckx

subject to Ax ≤ 1,

x ≥ 0

Generalisation of packing LP:

maximise cx

subject to Ax ≤ 1,

x ≥ 0

7 / 24

Max-min linear programs: Challenges

What about large networks?
What if there are frequent changes in network topology?

8 / 24

Max-min linear programs: Challenges

Could we perhaps use solely local information to find
a provably near-optimal solution to the global problem?

9 / 24

Local algorithms

Definition: (e.g., Naor and Stockmeyer 1995)

◮ Distributed algorithm

◮ Output of a node is a function of input within its
constant-radius neighbourhood

Our focus:

◮ Problems where the size of input and output
per node is bounded by a constant

Here constant = does not depend on input,
in particular, does not depend on the number of nodes
(but may depend on desired approximation ratio, etc.)

10 / 24

Local algorithms

Advantages of local algorithms:

◮ Space and time complexity is constant per node

◮ Distributed constant time (even in an infinite network)

◮ Topology change affects a constant-size part only

◮ Bounded-fan-in, constant-depth Boolean circuits: in NC0

◮ Simple linear-time centralised algorithm;
in some cases randomised, approximate
sublinear-time algorithms (Parnas and Ron 2007)

◮ Insight into algorithmic value of information
(cf. Papadimitriou and Yannakakis 1991)

11 / 24

Local algorithms: Prior work

Some previous negative results:

◮ 3-colouring of n-cycle not possible (Linial 1992)

◮ No constant-factor approximation of vertex cover, etc.
(Kuhn et al. 2004)

Some previous positive results:

◮ Locally checkable labellings (Naor and Stockmeyer 1995)

◮ Dominating set, randomised approximations
(Kuhn and Wattenhofer 2005)

◮ Packing and covering LPs, approximations
(Papadimitriou and Yannakakis 1993; Kuhn et al. 2006)

12 / 24

Recap

Max-min linear programs: given A, ck ≥ 0,

maximise mink∈K ckx

subject to Ax ≤ 1, x ≥ 0

Local algorithms: output is a function of input
in a constant-radius neighbourhood

Missing link: exactly what does a constant-radius
neighbourhood mean in a max-min LP?

13 / 24

Max-min linear programs: Local setting

Communication hypergraph H:

◮ agents are vertices

◮ {v ∈ V : aiv > 0} and {v ∈ V : ckv > 0} are edges
for all i , k

max min {x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9}

s.t. x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1

1 2 3

4 5 6

7 8 9

14 / 24

Max-min linear programs: Local setting

Each agent knows:

◮ with whom it is competing for resources

◮ with whom it is working together

max min {x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9}

s.t. x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1

1 2 3

4 5 6

7 8 9

15 / 24

Max-min linear programs: Local setting

Each agent knows:

◮ with whom it is competing for resources

◮ with whom it is working together

For example, in this bandwidth allocation problem:

radius 3 local neighbourhood in hypergraph H is:

16 / 24

Challenges of locality

Two instances of the bandwidth allocation problem:

Different optimal solutions:

. . . but identical local neighbourhoods:

17 / 24

Challenges of locality

Two instances of the bandwidth allocation problem:

Near-optimal solutions:

◮ Here we can make the same decisions in parts
where local neighbourhoods are identical

◮ Can we generalise this idea to arbitrary instances?

18 / 24

Old results: approximability

Yes, there are local approximation algorithms
for max-min linear programs

“Safe algorithm”: node v chooses

xv = min
i : aiv >0

1
aiv |{u : aiu > 0}|

(Papadimitriou and Yannakakis 1993)

This is a factor ∆V
I approximation where

∆V
I = maximum number of variables in a constraint

Uses information only in radius 1 neighbourhood of v
— a better approximation ratio with a larger radius?

19 / 24

New results: inapproximability

The safe algorithm is factor ∆V
I approximation

In general, we cannot have a much better
approximation ratio:

Theorem
There is no local algorithm for max-min LP
with approximation ratio less than

∆V
I + 1
2

−
1

2∆V
K − 2

◮ ∆V
I = maximum number of variables in a constraint

◮ ∆V
K = maximum number of variables that benefit a party

20 / 24

Proof idea: inapproximability

◮ Construct instance S with no short cycles

◮ Apply the supposed approximation algorithm A to S

◮ Study the solution; choose a “bad” tree-like area S
′ ⊂ S

◮ A has to make the same local decisions in S
′, suboptimal

21 / 24

New results: approximability

Define relative growth

γ(r) = max
v∈V

|BH(v , r + 1)|

|BH(v , r)|

where BH(v , r) = radius r neighbourhood of v in H

If H has bounded relative growth, then
better approximation ratios can be achieved:

Theorem

For any R, there is a local algorithm for max-min LP with
approximation ratio γ(R − 1) γ(R) and local horizon Θ(R)

22 / 24

Algorithm idea: approximability

Choose local constant-size subproblems:

Solve them optimally:

Take averages of local solutions, add some slack:

23 / 24

Summary

Max-min linear programs: given A, ck ≥ 0,

maximise mink∈K ckx

subject to Ax ≤ 1, x ≥ 0

Local algorithms: output is a function of input
in a constant-radius neighbourhood

Results:

◮ Inapproximability results for general graphs

◮ Approximation algorithm for bounded-growth graphs

To appear in IPDPS 2008

24 / 24

References (1)

P. Floréen, P. Kaski, T. Musto, and J. Suomela. Approximating max-min
linear programs with local algorithms. In Proc. 22nd IEEE International
Parallel and Distributed Processing Symposium (IPDPS, Miami, FL,
USA, April 2008), 2008. To appear.

F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set
approximation. Distributed Computing, 17(4):303–310, 2005. [DOI]

F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed
locally! In Proc. 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC, St. John’s, Newfoundland, Canada,
July 2004), pages 300–309, New York, NY, USA, 2004. ACM Press.
[DOI]

http://dx.doi.org/10.1007/s00446-004-0112-5
http://dx.doi.org/10.1145/1011767.1011811

References (2)

F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being
near-sighted. In Proc. 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA, Miami, FL, USA, January 2006), pages
980–989, New York, NY, USA, 2006. ACM Press. [DOI]

N. Linial. Locality in distributed graph algorithms. SIAM Journal on
Computing, 21(1):193–201, 1992. [DOI]

M. Naor and L. Stockmeyer. What can be computed locally? SIAM
Journal on Computing, 24(6):1259–1277, 1995. [DOI]

C. H. Papadimitriou and M. Yannakakis. On the value of information in
distributed decision-making. In Proc. 10th Annual ACM Symposium on
Principles of Distributed Computing (PODC, Montreal, Quebec,
Canada, August 1991), pages 61–64, New York, NY, USA, 1991. ACM
Press. [DOI]

http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1145/112600.112606

References (3)

C. H. Papadimitriou and M. Yannakakis. Linear programming without the
matrix. In Proc. 25th Annual ACM Symposium on Theory of
Computing (STOC, San Diego, CA, USA, May 1993), pages 121–129,
New York, NY, USA, 1993. ACM Press. [DOI]

M. Parnas and D. Ron. Approximating the minimum vertex cover in
sublinear time and a connection to distributed algorithms. Theoretical
Computer Science, 381(1–3):183–196, 2007. [DOI]

http://dx.doi.org/10.1145/167088.167127
http://dx.doi.org/10.1016/j.tcs.2007.04.040

	Cover page
	Max-min linear programs
	Example
	Definition
	Challenges

	Local algorithms
	Definition
	Implications
	Prior work

	Recap
	Local setting in max-min LPs
	Definition
	Challenges
	Ideas

	Old results
	New results
	Inapproximability
	Approximability

	Summary
	References

