
HIIT seminar, 16 October 2009

+ 1
2 · + 1

4 ·

Jukka Suomela

Joint work with Matti Åstrand, Patrik Floréen,
Valentin Polishchuk, Joel Rybicki, and Jara Uitto

Local approximation algorithms
for vertex cover

Vertex cover problem in a distributed setting

2 / 55

Part I:
Introduction

Given a graph G = (V, E), find a smallest
C ⊆ V that covers every edge of G

• i.e., each edge e ∈ E incident to
at least one node in C

Classical NP-hard optimisation problem

3 / 55

Vertex cover

Node = computer
Edge = communication link

Each node must decide whether it is in the cover C

4 / 55

Vertex cover in a distributed setting

Graph is unknown, all nodes run the same algorithm

Initially : Each node knows its own degree
and the maximum degree ∆

5 / 55

Vertex cover in a distributed setting

6 3
25

4 1 4
1

2
3

12

12

1

1

1

1

Port numbering: each node has chosen
an ordering on its incident edges

6 / 55

Vertex cover in a distributed setting

6 3
25

4 1 4
1

2
3

12

12

1

1

1

1

Communication primitives:

• “send message m to port i”
• “let m be the message received from port i”

7 / 55

Vertex cover in a distributed setting

Synchronous communication round : Each node

1. performs local computation

8 / 55

Vertex cover in a distributed setting

Synchronous communication round : Each node

1. performs local computation
2. sends a message to each neighbour

9 / 55

Vertex cover in a distributed setting

Synchronous communication round : Each node

1. performs local computation
2. sends a message to each neighbour

(message propagation. . .)

10 / 55

Vertex cover in a distributed setting

Synchronous communication round : Each node

1. performs local computation
2. sends a message to each neighbour
3. receives a message from each neighbour

11 / 55

Vertex cover in a distributed setting

no

yesno

no no

no

noyes

Finally : Each node performs local computation
and announces its output: whether it is in the cover C

Running time = number of communication rounds

12 / 55

Vertex cover in a distributed setting

Focus:

• deterministic algorithm

• strictly local algorithm,
running time independent of n = |V|
(but may depend on maximum degree ∆)

• the best possible approximation ratio

13 / 55

Vertex cover in a distributed setting

Kuhn et al. (2006):

• (2 + ε)-approximation in O(log ∆/ε4) rounds

Czygrinow et al. (2008), Lenzen & Wattenhofer (2008):

• (2− ε)-approximation requires
Ω(log∗ n) rounds, even if ∆ = 2

What about 2-approximation?

Is it possible in f (∆) rounds, for some f ?

14 / 55

Prior work

Deterministic 2-approximation algorithm for vertex cover

• Running time O(∆) synchronous rounds

Surprise: node identifiers not needed

• Negative result for (2− ε)-approximation holds
even if there are unique node identifiers

• Our algorithm can be used in
anonymous networks

15 / 55

Contribution

Maximal matchings and edge packings

16 / 55

Part II:
Background

In a centralised setting,
2-approximation is easy:
find a maximal matching,
take all matched nodes

But matching requires
Ω(log∗ n) rounds
and unique identifiers

• symmetry breaking!

17 / 55

Background: maximal matching

0.0 0.0

1.0
0.0

0.0
0.50.0

0.3

0.2

Edge packing = edge weights from [0, 1],
for each node v ∈ V, total weight on incident edges ≤ 1

Maximal , if no weight can be increased

18 / 55

Background: maximal edge packing

0.0

0.0

0.0

0.0

0.0

0.0
1.0

1.0

0.0

Maximal matching =⇒ maximal edge packing

(matched: weight 1, unmatched: weight 0)

19 / 55

Background: maximal edge packing

0.5 0.5

0.50.5

Maximal matching requires symmetry breaking

Maximal edge packing does not

20 / 55

Background: maximal edge packing

1.00.3 0.0

0.0

0.0

0.0

0.0

0.5

0.2

Node saturated if total weight on incident edges = 1

Saturated nodes in a maximal edge packing =
2-approximation of vertex cover (proof: LP duality)

21 / 55

Background: maximal edge packing

Node saturated if total weight on incident edges = 1

Saturated nodes in a maximal edge packing =
2-approximation of vertex cover

∗ ∗ ∗

So we only need to design a distributed algorithm
that finds a maximal edge packing

Warm-up: how to find a (non-trivial) edge packing?

22 / 55

Background: maximal edge packing

1
1

1
2

1
3

1
2

1
4

1
3

1
1

1
4

1
41

4
1
2

1
2

1
3

1
1

A simple approach: a node of degree d
offers 1/d of its “capacity” to each incident edge

(Capacity = 1− total weight of incident edges)

23 / 55

Finding an edge packing

1
2

1
3

1
4

1
4

1
41

3
1
4

Each edge accepts the minimum of the two offers

(cf. Khuller et al. 1994, Papadimitriou and Yannakakis 1993)

24 / 55

Finding an edge packing

1
2

1
3

1
4

1
4

1
41

3
1
4

Looks good, some progress is guaranteed,
and we might even saturate some nodes

But this is not a maximal edge packing yet

25 / 55

Finding an edge packing

1
2

1
3

1
4

1
4

1
41

4
1
3

1
2

1
6

1
12

3
4

3
4

5
12

0

Remaining capacities are now unwieldy fractions,
even though our starting point was unweighted!

Unweighted instance =⇒ weighted subproblems

26 / 55

Finding an edge packing

Pessimist’s take:

• Solving this will be as hard as finding
maximal edge packings in weighted graphs

• Let’s try something else

Optimist’s take:

• If we solve this, we can also find
maximal edge packings in weighted graphs

• Let’s do it!

27 / 55

Finding an edge packing

Finding maximal edge packings
in unweighted graphs

28 / 55

Part III:
Pessimist’s algorithm

Construct a 2-coloured bipartite double cover

Each original node simulates two nodes of the cover

29 / 55

Finding an edge packing

Find a maximal matching in the 2-coloured graph

Easy in O(∆) rounds

30 / 55

Finding an edge packing

0

0 1
2

0

1
2

1
2

Give 1
2 units of weight to each edge in matching

31 / 55

Finding an edge packing

0
0 0

0

0

1

Many possibilities. . .

32 / 55

Finding an edge packing

0
0 0

1
2

1
2

1
2

Many possibilities. . .

33 / 55

Finding an edge packing

0

1

0

1
2

1
2 0

Many possibilities. . .

34 / 55

Finding an edge packing

0

0

0
0

0 0

0

0

0
0 0

0 0

0

1

1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

Always: weight 1
2 paths and cycles and weight 1 edges

Valid edge packing

35 / 55

Finding an edge packing

0

0

1
2

1
2

1
2

1
2

Not necessarily maximal – but all unsaturated edges
adjacent to two weight 1

2 edges

36 / 55

Finding a maximal edge packing

∆ = 3

In any graph:

Unsaturated edges
adjacent to two
weight 1

2 edges

37 / 55

Finding a maximal edge packing

∆ = 3 → ∆ = 2

In any graph:

Unsaturated edges
adjacent to two
weight 1

2 edges

Delete
saturated edges

38 / 55

Finding a maximal edge packing

∆ = 3 → ∆ = 2

Each node has lost
at least one neighbour

Remaining capacity
of each node is
exactly 1

2

39 / 55

Finding a maximal edge packing

∆ = 2

Repeat

40 / 55

Finding a maximal edge packing

∆ = 2 → ∆ = 1

Delete saturated edges

41 / 55

Finding a maximal edge packing

∆ = 2 → ∆ = 1

Each node has lost
at least one neighbour

Remaining capacity
of each node is
exactly 1

4

42 / 55

Finding a maximal edge packing

∆ = 1

Repeat. . .

43 / 55

Finding a maximal edge packing

Repeat. . .

Maximum degree decreases
on each iteration

Everything saturated in
∆ iterations

44 / 55

Finding a maximal edge packing

∆ = 3

+ 1
2 ·

∆ = 2

+ 1
4 ·

∆ = 1

Maximal edge packing in (∆ + 1)2 rounds

=⇒ 2-approximation of vertex cover

45 / 55

Finding a maximal edge packing

Maximal edge packing in (∆ + 1)2 rounds

=⇒ 2-approximation of vertex cover

∗ ∗ ∗

But it seems that this cannot be generalised
to approximate minimum-weight vertex cover

A different approach needed

46 / 55

Finding a maximal edge packing

Finding maximal edge packings
in weighted graphs

47 / 55

Part IV:
Optimist’s algorithm

1
1

1
2

1
3

1
2

1
4

1
3

1
1

1
4

1
41

4
1
2

1
2

1
3

1
1

Recall the simple algorithm: a node of degree d
offers 1/d of its “capacity” to each incident edge

Each edge accepts the minimum of the two offers

48 / 55

Finding an edge packing

1
2

1
3

1
4

1
4

1
41

4
1
3

1
2

1
6

1
12

3
4

3
4

5
12

0

Starting point has non-uniform capacities,
ok if subproblems have non-uniform capacities!

Let’s study this approach more carefully. . .

49 / 55

Finding an edge packing

1
2

1
3

1
4

1
4

1
41

4
1
3

1
2

1
6

1
12

3
4

3
4

5
12

0

Key observation: For each node

1. at least one incident edge becomes saturated
(= cannot increase edge weight), or . . .

50 / 55

Finding an edge packing

1
4

1
3

1
1

1
4

1
41

4
1
2

1
2

1
3

1
1

1
3

1
2

1
2

1
1

Key observation: for each node

1. at least one incident edge becomes saturated , or

2. at least one incident edge got two different offers

51 / 55

Finding an edge packing

Key observation: for each node

1. at least one incident edge becomes saturated , or

2. at least one incident edge got two different offers

We can interpret the offers as “colours”

Progress is guaranteed:
edges become saturated or multi-coloured

52 / 55

Finding an edge packing

After ∆ iterations: each edge saturated or multi-coloured

At this point, colours are huge integers

1, 2, . . . ,
(
W(∆!)∆)∆

but Cole–Vishkin (1986) techniques can be used
to reduce the number of colours to ∆ + 1 very fast

Then we can use the colours to saturate all edges

(W = maximum weight)

53 / 55

Finding an edge packing

In summary, maximal edge packing in O(∆ + log∗W)
rounds, where W = maximum weight

That is, O(∆) rounds in unweighted graphs!

• Better running time and easier to design
than pessimist’s algorithm

• A similar approach can be used for
the set cover problem

54 / 55

Finding an edge packing

• Two distributed 2-approximation algorithms
for the vertex cover problem

• Running times: O(∆2) and O(∆) rounds,
deterministic, can be self-stabilised

• Strictly local algorithms – running time
independent of number of nodes

• Be optimistic: more general problems
are sometimes easier to tackle

55 / 55

Summary

