
NOTICE: This is the author’s version of a work that was accepted for publication in Information Processing
Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication. A definitive version was subsequently
published in Information Processing Letters, Volume 103, Issue 1, 30 June 2007, pages 28–33.
doi:10.1016/j.ipl.2007.02.001

Approximability of Identifying Codes and

Locating-Dominating Codes

Jukka Suomela

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, P.O. Box 68,

FI-00014 University of Helsinki, Finland

Abstract

We study the approximability and inapproximability of finding identifying codes and
locating-dominating codes of the minimum size. In general graphs, we show that it
is possible to approximate both problems within a logarithmic factor, but sublog-
arithmic approximation ratios are intractable. In bounded-degree graphs, there is
a trivial constant-factor approximation algorithm, but arbitrarily low approxima-
tion ratios remain intractable. In so-called local graphs, there is a polynomial-time
approximation scheme. We also consider fractional packing of codes and a related
problem of finding minimum-weight codes.

Key words: approximation algorithms, combinatorial problems, graph algorithms,
identifying codes, locating-dominating codes.

1 Introduction

Consider an undirected graph G = (V,E) and a matrix H = (huv) of size
|V | × |V | where huv is the proximity of vertex v as seen from vertex u. Each
subset C ⊆ V determines a matrix H(C) of size |V | × |C| which is formed by
restricting to the columns v ∈ C. We say that C is a code for this proximity
matrix H if the rows of H(C) are distinct and each row contains a nonzero

Email address: jukka.suomela@cs.helsinki.fi (Jukka Suomela).

Preprint submitted to Elsevier 23 April 2007

element. The vertices of the code C are called beacons. We can determine our
location in the graph by measuring our proximity to each beacon; as the rows
of H(C) are distinct, the proximity information uniquely identifies the vertex.

In this paper, we study the optimisation problems of finding a code of the
minimum size. We focus on the following definitions of proximity. We write
d(u, v) for the shortest-path distance (the number of edges) from vertex u to
vertex v. For t-Identifying Code (t-IC), set huv = 1 if d(v, u) ≤ t; otherwise
huv = 0. For t-Locating-Dominating Code (t-LDC), set huv = 2 if u = v;
otherwise set huv = 1 if d(v, u) ≤ t; otherwise set huv = 0.

Note that a t-LDC always exists, as we can choose C = V . This is not nec-
essarily the case for t-IC. However, if a code exists, C = V is a code. As it
is easy to test whether there is a code for a given graph, we focus on graphs
where a code exists.

Motivation. Consider the problem of installing devices such as motion de-
tectors. The vertices V correspond to physical areas, e.g., rooms; the edges
E describe the ability to detect events in neighbouring areas, e.g., a line of
sight; and a beacon c ∈ C corresponds to an area equipped with a detector.
The goal is to determine in which room there is motion, assuming there is at
most one such room. If each detector is a three-state device that is able to
distinguish between no event, an event in a neighbouring vertex, and an event
in its own vertex, we arrive at the 1-LDC formulation [20]. If each detector
is a two-state device that cannot distinguish between events in its own vertex
and in a neighbouring vertex, we arrive at the 1-IC formulation [10]. If we
were only interested in determining whether there is motion somewhere in
the building (instead of locating the room in which there is motion), it would
suffice to consider sets C which are dominating sets of G.

Related work. The problems t-IC and t-LDC are known to be NP-complete
for all t ≥ 1, in both directed and undirected graphs [1,2,4,5]. Extensive re-
search has been conducted on identifying codes and locating-dominating codes
in specific graphs and restricted problem classes, such as strips, square lattices,
hexagonal lattices, triangular lattices, king lattices, Hamming spaces, chains,
cycles, trees, and series-parallel graphs; see Lobstein [16] for an online bibliog-
raphy. However, little is known about the approximability of t-IC and t-LDC
in more general problem classes [18, §4.1]. The related problems Metric Di-

mension and Alarm Placement are known to be approximable within a
logarithmic factor [12,15].

2

Contributions. In Section 2, we study the approximability of 1-IC and 1-
LDC in general graphs. We prove that it is possible to approximate both prob-
lems within a logarithmic factor, but (under plausible complexity-theoretic
assumptions) sublogarithmic factors are intractable. In Section 3, we consider
1-IC and 1-LDC in graphs of bounded degree. We show that there is a trivial
constant-factor approximation algorithm, but approximating 1-IC or 1-LDC
within an arbitrarily low constant factor is intractable. In Section 4, we focus
on the class of so-called local graphs that are motivated by practical applica-
tions. We prove that in these cases, t-IC and t-LDC admit a polynomial-time
approximation scheme (PTAS). In Section 5, we conclude the paper by hav-
ing a look at two related problems: fractional packing of codes and minimum-
weight codes.

2 Approximability in General Graphs

We first prove that t-IC and t-LDC can be approximated within a logarithmic
factor. We use the same general approach as Khuller et al. [12] for Metric

Dimension and Lakshmanan et al. [15] for Alarm Placement: we construct
an equivalent instance of Set Covering.

We write X ⋄ Y for the set of all unordered pairs {x, y} where x ∈ X, y ∈ Y ,
and x 6= y. We formulate t-IC and t-LDC equivalently in terms of finding
beacons that cover all vertices and distinguish all vertex pairs. For each beacon
c, the set of covered vertices, S(c), consists of all vertices u ∈ V such that huc 6=
0. The set of distinguished vertex pairs, T (c), consists of all pairs {u, v} ∈ V ⋄V
such that huc 6= hvc.

By definition, a subset of vertices is a code if and only if each vertex is covered
by at least one beacon and each vertex pair is distinguished by at least one
beacon. Finding a t-IC or t-LDC of size k is thus equivalent to finding k sets
S(c) ∪ T (c) such that their union equals V ∪ (V ⋄ V); this is an instance of
Set Covering, which can be approximated within a logarithmic ratio in
polynomial time by a greedy algorithm [9].

We next prove that this ratio is asymptotically tight for t = 1; we use similar
ideas as in the proof of the inapproximability of Alarm Placement [15].
Consider an instance of Dominating Set. Given a graph G′ = (V ′, E ′), the
goal is to find a minimum subset of vertices X ⊆ V ′ such that each i ∈ V ′ \X
has a neighbour in X. We assume |V ′| ≥ 2, as small instances are trivial.

Let 2V ′ = {1, 2}×V ′ and form any injection f : V ′×V ′ → 2V ′⋄2V ′. Construct
a graph G = (V,E) as follows. The set of vertices V consists of pki, qki,
rki, φa, and ψa for all k ∈ V ′, i ∈ V ′, and a ∈ 2V ′. The set of edges E

3

consists of {pki, φa}, {pki, φb}, {qki, φa}, {qki, φb}, {rki, ψa}, and {rki, ψb} for all
f(k, i) = {a, b}; and {pki, rkj} for all i, j, k such that either i = j or {i, j} ∈ E ′.
See Fig. 1 for an illustration.

Let X be a dominating set in G′. Construct C = {rki : k ∈ V ′, i ∈ X} ∪
{φa, ψa : a ∈ 2V ′}. The size of C is |X||V ′| + 4|V ′|. This set is a 1-IC and
a 1-LDC, as it covers V and distinguishes all V ⋄ V in both formulations.

Conversely, let C be a 1-IC or a 1-LDC for G. Construct |V ′| sets Xk = {i :
pki ∈ C ∨ qki ∈ C ∨ rki ∈ C}. We have

∑
k |Xk| ≤ |C| and thus the smallest

of Xk contains at most |C|/|V ′| elements. Each Xk is a dominating set in
G′: to distinguish {pki, qki}, there must be a beacon in pki, in qki, or in a
neighbouring rkj.

Assume that we can approximate 1-IC or 1-LDC within 1 + α ln |V | for some
α > 0. Let X∗ denote a minimum dominating set in G′. There is a 1-IC and 1-
LDC for G of size |X∗||V ′|+4|V ′|. The approximation algorithm returns a code
of size at most (1+α ln |V |)(|X∗||V ′|+4|V ′|). Use the code to construct a domi-
nating set of size at most (1+α ln |V |)(|X∗||V ′|+4|V ′|)/|V ′| = (1+α ln(3|V ′|2+
4|V ′|))(|X∗|+4), which is less than γ(1+αβ ln |V ′|)|X∗| for some positive con-
stants β and γ. If ln |V ′| ≤ 1/αβ we can find a minimum dominating set in con-
stant time by exhaustive search. Otherwise, γ(1 + αβ ln |V ′|) ≤ 2αβγ ln |V ′|.
We have proved the following theorem.

Theorem 1 Both t-IC and t-LDC are approximable within O(log |V |) for
all t. However, there is a constant ρ > 0 such that for any constant α >
0, a polynomial-time (1 + α ln |V |)-approximation algorithm for 1-IC or 1-

LDC implies a polynomial-time max {1, ρα ln |V |}-approximation algorithm
for Dominating Set.

For the hardness of approximating Dominating Set within a logarithmic
factor, see, for example, Lund and Yannakakis [17].

3 Approximability in Bounded-Degree Graphs

If the degree of the input graph is bounded by a constant, also |S(c)| is bounded
by a constant. As a t-IC or t-LDC has to cover all vertices, we need Ω(|V |)
beacons. Thus, the trivial solution C = V is a constant-factor approximation
algorithm for t-IC and t-LDC in graphs of bounded degree. We prove that
this result is asymptotically tight for t = 1, i.e., we cannot make the constant
factor arbitrarily small.

Let us assume that for each constant ∆, there is a PTAS for 1-IC or 1-LDC

4

in graphs of maximum degree ∆. We show how these schemes can be used to
approximate Dominating Set within 1 + ǫ′ in graphs of maximum degree
∆′ for any constants ǫ′ > 0 and ∆′. Choose a constant ǫ > 0 such that
(1 + ǫ)2 < 1 + ǫ′ and a positive integer µ such that 4(∆′ + 1)/(µ− 1) ≤ ǫ. Let
A = {1, 2, . . . , µ}.

Let G′ = (V ′, E ′) be an instance of bounded-degree Dominating Set. Con-
struct a graph G = (V,E) as follows. The set of vertices V consists of pki,
qki, rki, φai, and ψai for all k ∈ A ⋄ A, a ∈ A, and i ∈ V ′. The set of edges
E consists of {pki, φai}, {pki, φbi}, {qki, φai}, {qki, φbi}, {rki, ψai}, and {rki, ψbi}
for all k = {a, b}, i ∈ V ′; and {pki, rkj} for all i, j, k such that either i = j or
{i, j} ∈ E ′. See Fig. 2 for an illustration.

The maximum degree of G is bounded by the constant ∆ = max {∆′ + 3,
2µ− 2}: The degree of each ψai equals µ − 1, as there are µ − 1 distinct
elements b ∈ A such that k = {a, b} ∈ A ⋄A. Similarly, the degree of each φai
equals 2µ − 2. The degree of each qki equals 2, because the only neighbours
are φai and φbi for k = {a, b}. The degree of each pki is at most ∆′+3, because
the neighbours are the vertices φai and φbi for k = {a, b}, the vertex rki, and
at most ∆′ vertices rkj with {i, j} ∈ E ′. The case of rki is analogous to pki.

As in Section 2, a dominating set X in G′ can be used to construct a code C =
{rki : k ∈ A ⋄ A, i ∈ X} ∪ {φai, ψai : a ∈ A, i ∈ V ′} for G of size |X||A ⋄ A| +
2|V ′||A|, and a code C for G can be used to construct |A ⋄ A| dominating sets
Xk = {i : pki ∈ C ∨ qki ∈ C ∨ rki ∈ C} in G′ of total size at most |C|.

Use the PTAS to approximate 1-IC or 1-LDC within 1 + ǫ in the constructed
bounded-degree graph. Let X∗ denote a minimum dominating set in G′. As
each vertex dominates at most ∆′ other vertices, we have (∆′ +1)|X∗| ≥ |V ′|.
The approximation algorithm returns a code of size at most (1+ǫ)(|X∗||A ⋄ A|
+ 2|V ′||A|), and we can use the code to construct a dominating set of size at
most (1 + ǫ)(|X∗||A ⋄ A|+ 2|V ′||A|)/|A ⋄ A| = (1 + ǫ)(|X∗|+ 4|V ′|/(µ− 1)) ≤
(1 + ǫ)(|X∗| + 4(∆′ + 1)|X∗|/(µ − 1)) ≤ (1 + ǫ′)|X∗|. We have proved the
following theorem.

Theorem 2 Both t-IC and t-LDC are approximable within a constant factor
in graphs of bounded degree. However, if there is a PTAS for 1-IC or 1-LDC

in graphs of bounded degree, there is a PTAS for Dominating Set in graphs
of bounded degree.

Dominating Set in graphs of bounded degree is APX-complete [11,19].

5

4 Approximability in Local Graphs

To find realistic problem classes that do admit a PTAS, we study the following
family of graphs. We say that a graph is (d,N)-local if each vertex is associated
with a point in R

d so that within any ball of radius 1, there are at most N
vertices; and for each edge, the distance between the vertices is at most 1. Our
definition of local graphs is similar in nature to civilised graphs, i.e., graphs
drawn in a civilised manner [6, §8.5].

With suitable scaling of the space, the family of local graphs captures the
features of many proposed applications of identifying codes. Consider, for ex-
ample, a motion-detecting application: vertices correspond to physical areas,
not arbitrarily small, and the length of each edge is limited by the maximum
range of the sensor.

Local graphs are bounded-degree graphs but not necessarily graphs of a con-
stant treewidth (consider a grid graph). In this section, we consider t-IC and
t-LDC in the family of (d,N)-local graphs for a constant d and a constant N .

Fix the parameters d and N . Choose any ǫ > 0. We show how to approximate
t-IC and t-LDC within 1+ ǫ if the graph is (d,N)-local, by applying a shifting
strategy; cf., e.g., Hunt et al. [8]. Choose an integer m > 2dd/ǫ. Consider all
functions f : {1, 2, . . . , d} → {0, 1, . . . ,m− 1} and g : {1, 2, . . . , d} → Z. Form
a family of hypercubes Q(f, g, r) = {x ∈ R

d : −r ≤ xk/t− 4(mg(k) + f(k)) <
4(m − 1) + r ∀k}. Intuitively, f selects one of md positions for a modular
grid, g selects one cube in the grid, and r is the width of a margin around
each cube; see Fig. 3. Denote by V (f, g, r) the set of all vertices that are
contained in Q(f, g, r). For each pair (f, g) with a non-empty V (f, g, 4), use
exhaustive search to find the smallest set C(f, g) ⊆ V (f, g, 4) that covers
all vertices in V (f, g, 3) and distinguishes all pairs in V (f, g, 3) ⋄ V (f, g, 3).
Let C(f) =

⋃
g C(f, g). Choose a function f ∗ that minimises |C(f ∗)| and let

C = C(f ∗).

Let us now prove the correctness of this algorithm. Let C∗ be a minimum code.
First, we show that for all (f, g), there is a C(f, g) that satisfies the above
conditions, and |C(f, g)| ≤ |C∗ ∩ V (f, g, 4)|. For each vertex v ∈ V (f, g, 3),
there is a beacon c ∈ C∗ such that c covers v. The distance from c to v
is at most t, implying that c ∈ V (f, g, 4). Similarly, for each pair {u, v} ∈
V (f, g, 3)⋄V (f, g, 3), there is a beacon c ∈ C∗ such that c distinguishes {u, v}.
This is not possible if the distance from c to both u and v is more than t; thus,
c ∈ V (f, g, 4). It follows that the set C∗ ∩ V (f, g, 4) satisfies the conditions.

Second, we show that the set C is a code. Consider any v ∈ V . For each f ,
there is at least one g such that v ∈ V (f, g, 3). Thus, v is covered by C(f ∗, g)
and by C = C(f ∗). Consider any pair {u, v} ∈ V ⋄ V . If there is a g such

6

that u, v ∈ V (f ∗, g, 3), the pair is distinguished by construction. If no such g
exists, the distance between u and v is more than 2t units, as neighbouring
hypercubes Q(f ∗, ·, 3) overlap by 2t units. Consider any beacon c ∈ C that
covers the vertex u. The distance from c to u is at most t units. This implies
that the distance from c to v is more than t units. Thus huc 6= 0 and hvc = 0,
and c distinguishes the pair {u, v}.

Third, we show that |C| ≤ (1 + ǫ)|C∗|. For each k, let Pk(i) = {x ∈ R
d :

−4 ≤ xk/t − 4(mj + i) < 0, j ∈ Z}. Denote by Uk(i) the set of vertices con-
tained in Pk(i), and let U(f) =

⋃
k Uk(f(k)). The sets Pk(·) partition the space

into m parts; thus, there is a function f ′ such that |C∗ ∩ Uk(f
′(k))| ≤ |C∗|/m

and |C∗ ∩ U(f ′)| ≤ d|C∗|/m. Let W (f, g) = V (f, g, 4) \ V (f, g, 0) ⊆ U(f).
For each (f, v), there are at most 2d functions g such that v ∈ W (f, g). We
get |C| ≤ |C(f ′)| = |

⋃
g C(f ′, g)| ≤

∑
g |C(f ′, g)| ≤

∑
g |C

∗ ∩ V (f ′, g, 4)| =
∑
g |C

∗ ∩ V (f ′, g, 0)| +
∑
g |C

∗ ∩W (f ′, g)| ≤ |C∗| + 2d|C∗ ∩ U(f ′)| ≤ (1 +
2dd/m)|C∗| ≤ (1 + ǫ)|C∗|.

5 Fractional Packing of Codes

So far, we have focused on finding one code. This is relevant in deployment
planning: given a graph that describes the landscape, decide where to place
the beacons. Alternatively, we may be interested in operation planning: given
a deployed system that consists of battery-powered devices (e.g., a wireless
sensor network [13]), decide how to schedule the activity of the devices to
maximise the lifetime of the system. More precisely, we want to find a sleep
schedule: during each time interval, the set of active devices forms an iden-
tifying or locating-dominating code. The time that each device can act as a
beacon is bounded by its battery capacity.

This leads into a fractional packing problem: maximise
∑
xj subject to Ax ≤ b

and x ≥ 0. The columns of the matrix A = (aij) consist of 0-1 vectors that
describe all possible codes, bi is the battery capacity of the ith vertex, and
xj is the time interval allocated for the jth code. Note that a collection of
disjoint identifying codes [14] provides a feasible but not necessarily optimal
solution.

To solve this LP, we may apply, for example, the approximation scheme by
Garg and Könemann [7]. In the scheme, we need to provide an oracle that
finds a minimum-weight column of A: given a nonnegative weight vector w,
the oracle has to find a column j that minimises

∑
iwiaij. With an exact oracle

we obtain a PTAS for fractional packing, but we may also use an approximate
oracle, obtaining an approximation algorithm for fractional packing.

7

This raises the issue of the computational complexity of Weighted t-IC
and Weighted t-LDC. In the case of general graphs, we can translate the
problem into an instance of Weighted Set Covering; again, we obtain
a logarithmic approximation ratio [3]. In local graphs, we can use the same
approach as in Section 4. Our polynomial-time approximation scheme is de-
signed so that it directly generalises to weighted problems; the only difference
is that the cardinalities of the sets are replaced by sums of weights. The ap-
proximability of Weighted t-IC and Weighted t-LDC in bounded-degree
graphs remains an open problem.

Acknowledgements. Thanks to Patrik Floréen, Petteri Kaski, Jukka Ko-
honen, and Tanja Säily for comments and discussions, and to an anonymous
referee for valuable suggestions.

This work was supported in part by the Academy of Finland, Grant 116547,
by Helsinki Graduate School in Computer Science and Engineering (Hecse),
and by the IST Programme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778. This publication only reflects the
author’s views.

Notes added after preparing the final version. During the review of
this paper, similar results have been published independently in the follow-
ing work: M. Laifenfeld, A. Trachtenberg, and T.Y. Berger-Wolf. Identifying
codes and the set cover problem. In Proc. 44th Annual Allerton Conference
on Communication, Control, and Computing (Monticello, IL, USA, September
2006).

References

[1] I. Charon, O. Hudry, and A. Lobstein. Identifying and locating-dominating
codes: NP-completeness results for directed graphs. IEEE Transactions on
Information Theory, 48(8):2192–2200, 2002.

[2] I. Charon, O. Hudry, and A. Lobstein. Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard. Theoretical Computer Science,
290(3):2109–2120, 2003.

[3] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4(3):233–235, 1979.

[4] G. Cohen, I. Honkala, A. Lobstein, and G. Zémor. On identifying codes. In
Proc. DIMACS Workshop on Codes and Association Schemes (Piscataway,
NJ, USA, 1999), volume 56 of DIMACS Series in Discrete Mathematics

8

and Theoretical Computer Science, pages 97–109, Providence, RI, USA, 2001.
American Mathematical Society.

[5] C. J. Colbourn, P. J. Slater, and L. K. Stewart. Locating dominating sets in
series parallel networks. Congressus Numerantium, 56:135–162, 1987.

[6] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. Number 22
in The Carus Mathematical Monographs. The Mathematical Association of
America, Washington, DC, USA, 1984.

[7] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. In Proc. 39th Annual Symposium
on Foundations of Computer Science (FOCS, Palo Alto, CA, USA, November
1998), pages 300–309, Los Alamitos, CA, USA, 1998. IEEE Computer Society.

[8] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. S. Ravi, D. J.
Rosenkrantz, and R. E. Stearns. NC-approximation schemes for NP-
and PSPACE-hard problems for geometric graphs. Journal of Algorithms,
26(2):238–274, 1998.

[9] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal
of Computer and System Sciences, 9:256–278, 1974.

[10] M. Karpovsky, K. Chakrabarty, and L. Levitin. On a new class of codes
for identifying vertices in graphs. IEEE Transactions on Information Theory,
44(2):599–611, 1998.

[11] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus
computational views of approximability. SIAM Journal on Computing,
28(1):164–191, 1999.

[12] S. Khuller, B. Raghavachari, and A. Rosenfeld. Landmarks in graphs. Discrete
Applied Mathematics, 70(3):217–229, 1996.

[13] B. Krishnamachari. Networking Wireless Sensors. Cambridge University Press,
Cambridge, UK, 2005.

[14] M. Laifenfeld and A. Trachtenberg. Disjoint identifying-codes for arbitrary
graphs. In Proc. International Symposium on Information Theory (ISIT,
Adelaide, Australia, September 2005), pages 244–248, Piscataway, NJ, USA,
2005. IEEE.

[15] K. B. Lakshmanan, D. J. Rosenkrantz, and S. S. Ravi. Alarm placement in
systems with fault propagation. Theoretical Computer Science, 243(1–2):269–
288, 2000.

[16] A. Lobstein. Codes identifiants et localisateurs-dominateurs dans les graphes:
une bibliographie, January 2007. http://perso.enst.fr/∼lobstein/

bibLOCDOMetID.html

[17] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. Journal of the ACM, 41(5):960–981, 1994.

9

[18] J. Moncel. Optimal graphs for identification of vertices in networks. Technical
Report 138, Laboratoire Leibniz, Grenoble, France, November 2005.

[19] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43(3):425–440,
1991.

[20] P. J. Slater. Domination and location in acyclic graphs. Networks, 17(1):55–64,
1987.

10

G

qed

qec

qebqea

qad

.

.

.
qac

.

.

.

rea

pea

G′

ψ2a ψ2b
ψ1a ψ1b

φ1a φ1b

φ2bφ2a

a b

d

ce

Fig. 1. The reduction for general graphs. In this example, we have chosen
f(e, a) = {(1, a), (2, a)}. The black vertices in G′ are a dominating set, and the
black vertices in G are a 1-IC and a 1-LDC. All edges from rea are shown, as well
as selected other edges.

11

φ4,c

φ2,c

φ1,c

φ3,c

φ4,b

φ3,a

φ4,a
G

ψ4,a

ψ3,a

ψ4,b

ψ4,c

ψ3,c

ψ2,c

ψ1,c

r34,a

q34,bq34,ap34,a

q12,c

q13,c

q14,c

q23,c

q24,c

q34,c

q12,d

q12,e

Fig. 2. The reduction for bounded-degree graphs. In this example, µ = 4.
To simplify the illustration, we write A ⋄ A = {12, 13, 14, 23, 24, 34} instead of
{{1, 2}, {1, 3}, . . . }. The original graph G′ is the same as in Fig. 1. The black vertices
in G are a 1-IC and a 1-LDC.

12

4t

4mt

Q(f2, g3, 0) Q(f2, g4, 0)

Q(f2, g2, 0)Q(f2, g1, 0)

Q(f1, g4, 1)

Q(f1, g4, 4)

Q(f1, g1, 0) Q(f1, g2, 0)

Fig. 3. The modular grid in the 2-dimensional case. Here m = 5, f1 = (0, 0),
f2 = (2, 3), g1 = (1, 1), g2 = (2, 1), g3 = (1, 2), and g4 = (2, 2).

13

