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Abstract

We study the approximability and inapproximability of finding identifying codes and
locating-dominating codes of the minimum size. In general graphs, we show that it
is possible to approximate both problems within a logarithmic factor, but sublog-
arithmic approximation ratios are intractable. In bounded-degree graphs, there is
a trivial constant-factor approximation algorithm, but arbitrarily low approxima-
tion ratios remain intractable. In so-called local graphs, there is a polynomial-time
approximation scheme. We also consider fractional packing of codes and a related
problem of finding minimum-weight codes.
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1 Introduction

Consider an undirected graph G = (V,E) and a matrix H = (huv) of size
|V | × |V | where huv is the proximity of vertex v as seen from vertex u. Each
subset C ⊆ V determines a matrix H(C) of size |V | × |C| which is formed by
restricting to the columns v ∈ C. We say that C is a code for this proximity
matrix H if the rows of H(C) are distinct and each row contains a nonzero
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element. The vertices of the code C are called beacons. We can determine our
location in the graph by measuring our proximity to each beacon; as the rows
of H(C) are distinct, the proximity information uniquely identifies the vertex.

In this paper, we study the optimisation problems of finding a code of the
minimum size. We focus on the following definitions of proximity. We write
d(u, v) for the shortest-path distance (the number of edges) from vertex u to
vertex v. For t-Identifying Code (t-IC), set huv = 1 if d(v, u) ≤ t; otherwise
huv = 0. For t-Locating-Dominating Code (t-LDC), set huv = 2 if u = v;
otherwise set huv = 1 if d(v, u) ≤ t; otherwise set huv = 0.

Note that a t-LDC always exists, as we can choose C = V . This is not nec-
essarily the case for t-IC. However, if a code exists, C = V is a code. As it
is easy to test whether there is a code for a given graph, we focus on graphs
where a code exists.

Motivation. Consider the problem of installing devices such as motion de-
tectors. The vertices V correspond to physical areas, e.g., rooms; the edges
E describe the ability to detect events in neighbouring areas, e.g., a line of
sight; and a beacon c ∈ C corresponds to an area equipped with a detector.
The goal is to determine in which room there is motion, assuming there is at
most one such room. If each detector is a three-state device that is able to
distinguish between no event, an event in a neighbouring vertex, and an event
in its own vertex, we arrive at the 1-LDC formulation [20]. If each detector
is a two-state device that cannot distinguish between events in its own vertex
and in a neighbouring vertex, we arrive at the 1-IC formulation [10]. If we
were only interested in determining whether there is motion somewhere in
the building (instead of locating the room in which there is motion), it would
suffice to consider sets C which are dominating sets of G.

Related work. The problems t-IC and t-LDC are known to be NP-complete
for all t ≥ 1, in both directed and undirected graphs [1,2,4,5]. Extensive re-
search has been conducted on identifying codes and locating-dominating codes
in specific graphs and restricted problem classes, such as strips, square lattices,
hexagonal lattices, triangular lattices, king lattices, Hamming spaces, chains,
cycles, trees, and series-parallel graphs; see Lobstein [16] for an online bibliog-
raphy. However, little is known about the approximability of t-IC and t-LDC
in more general problem classes [18, §4.1]. The related problems Metric Di-

mension and Alarm Placement are known to be approximable within a
logarithmic factor [12,15].

2



Contributions. In Section 2, we study the approximability of 1-IC and 1-
LDC in general graphs. We prove that it is possible to approximate both prob-
lems within a logarithmic factor, but (under plausible complexity-theoretic
assumptions) sublogarithmic factors are intractable. In Section 3, we consider
1-IC and 1-LDC in graphs of bounded degree. We show that there is a trivial
constant-factor approximation algorithm, but approximating 1-IC or 1-LDC
within an arbitrarily low constant factor is intractable. In Section 4, we focus
on the class of so-called local graphs that are motivated by practical applica-
tions. We prove that in these cases, t-IC and t-LDC admit a polynomial-time
approximation scheme (PTAS). In Section 5, we conclude the paper by hav-
ing a look at two related problems: fractional packing of codes and minimum-
weight codes.

2 Approximability in General Graphs

We first prove that t-IC and t-LDC can be approximated within a logarithmic
factor. We use the same general approach as Khuller et al. [12] for Metric

Dimension and Lakshmanan et al. [15] for Alarm Placement: we construct
an equivalent instance of Set Covering.

We write X ⋄ Y for the set of all unordered pairs {x, y} where x ∈ X, y ∈ Y ,
and x 6= y. We formulate t-IC and t-LDC equivalently in terms of finding
beacons that cover all vertices and distinguish all vertex pairs. For each beacon
c, the set of covered vertices, S(c), consists of all vertices u ∈ V such that huc 6=
0. The set of distinguished vertex pairs, T (c), consists of all pairs {u, v} ∈ V ⋄V
such that huc 6= hvc.

By definition, a subset of vertices is a code if and only if each vertex is covered
by at least one beacon and each vertex pair is distinguished by at least one
beacon. Finding a t-IC or t-LDC of size k is thus equivalent to finding k sets
S(c) ∪ T (c) such that their union equals V ∪ (V ⋄ V ); this is an instance of
Set Covering, which can be approximated within a logarithmic ratio in
polynomial time by a greedy algorithm [9].

We next prove that this ratio is asymptotically tight for t = 1; we use similar
ideas as in the proof of the inapproximability of Alarm Placement [15].
Consider an instance of Dominating Set. Given a graph G′ = (V ′, E ′), the
goal is to find a minimum subset of vertices X ⊆ V ′ such that each i ∈ V ′ \X
has a neighbour in X. We assume |V ′| ≥ 2, as small instances are trivial.

Let 2V ′ = {1, 2}×V ′ and form any injection f : V ′×V ′ → 2V ′⋄2V ′. Construct
a graph G = (V,E) as follows. The set of vertices V consists of pki, qki,
rki, φa, and ψa for all k ∈ V ′, i ∈ V ′, and a ∈ 2V ′. The set of edges E
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consists of {pki, φa}, {pki, φb}, {qki, φa}, {qki, φb}, {rki, ψa}, and {rki, ψb} for all
f(k, i) = {a, b}; and {pki, rkj} for all i, j, k such that either i = j or {i, j} ∈ E ′.
See Fig. 1 for an illustration.

Let X be a dominating set in G′. Construct C = {rki : k ∈ V ′, i ∈ X} ∪
{φa, ψa : a ∈ 2V ′}. The size of C is |X||V ′| + 4|V ′|. This set is a 1-IC and
a 1-LDC, as it covers V and distinguishes all V ⋄ V in both formulations.

Conversely, let C be a 1-IC or a 1-LDC for G. Construct |V ′| sets Xk = {i :
pki ∈ C ∨ qki ∈ C ∨ rki ∈ C}. We have

∑
k |Xk| ≤ |C| and thus the smallest

of Xk contains at most |C|/|V ′| elements. Each Xk is a dominating set in
G′: to distinguish {pki, qki}, there must be a beacon in pki, in qki, or in a
neighbouring rkj.

Assume that we can approximate 1-IC or 1-LDC within 1 + α ln |V | for some
α > 0. Let X∗ denote a minimum dominating set in G′. There is a 1-IC and 1-
LDC for G of size |X∗||V ′|+4|V ′|. The approximation algorithm returns a code
of size at most (1+α ln |V |)(|X∗||V ′|+4|V ′|). Use the code to construct a domi-
nating set of size at most (1+α ln |V |)(|X∗||V ′|+4|V ′|)/|V ′| = (1+α ln(3|V ′|2+
4|V ′|))(|X∗|+4), which is less than γ(1+αβ ln |V ′|)|X∗| for some positive con-
stants β and γ. If ln |V ′| ≤ 1/αβ we can find a minimum dominating set in con-
stant time by exhaustive search. Otherwise, γ(1 + αβ ln |V ′|) ≤ 2αβγ ln |V ′|.
We have proved the following theorem.

Theorem 1 Both t-IC and t-LDC are approximable within O(log |V |) for
all t. However, there is a constant ρ > 0 such that for any constant α >
0, a polynomial-time (1 + α ln |V |)-approximation algorithm for 1-IC or 1-

LDC implies a polynomial-time max {1, ρα ln |V |}-approximation algorithm
for Dominating Set.

For the hardness of approximating Dominating Set within a logarithmic
factor, see, for example, Lund and Yannakakis [17].

3 Approximability in Bounded-Degree Graphs

If the degree of the input graph is bounded by a constant, also |S(c)| is bounded
by a constant. As a t-IC or t-LDC has to cover all vertices, we need Ω(|V |)
beacons. Thus, the trivial solution C = V is a constant-factor approximation
algorithm for t-IC and t-LDC in graphs of bounded degree. We prove that
this result is asymptotically tight for t = 1, i.e., we cannot make the constant
factor arbitrarily small.

Let us assume that for each constant ∆, there is a PTAS for 1-IC or 1-LDC
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in graphs of maximum degree ∆. We show how these schemes can be used to
approximate Dominating Set within 1 + ǫ′ in graphs of maximum degree
∆′ for any constants ǫ′ > 0 and ∆′. Choose a constant ǫ > 0 such that
(1 + ǫ)2 < 1 + ǫ′ and a positive integer µ such that 4(∆′ + 1)/(µ− 1) ≤ ǫ. Let
A = {1, 2, . . . , µ}.

Let G′ = (V ′, E ′) be an instance of bounded-degree Dominating Set. Con-
struct a graph G = (V,E) as follows. The set of vertices V consists of pki,
qki, rki, φai, and ψai for all k ∈ A ⋄ A, a ∈ A, and i ∈ V ′. The set of edges
E consists of {pki, φai}, {pki, φbi}, {qki, φai}, {qki, φbi}, {rki, ψai}, and {rki, ψbi}
for all k = {a, b}, i ∈ V ′; and {pki, rkj} for all i, j, k such that either i = j or
{i, j} ∈ E ′. See Fig. 2 for an illustration.

The maximum degree of G is bounded by the constant ∆ = max {∆′ + 3,
2µ− 2}: The degree of each ψai equals µ − 1, as there are µ − 1 distinct
elements b ∈ A such that k = {a, b} ∈ A ⋄A. Similarly, the degree of each φai
equals 2µ − 2. The degree of each qki equals 2, because the only neighbours
are φai and φbi for k = {a, b}. The degree of each pki is at most ∆′+3, because
the neighbours are the vertices φai and φbi for k = {a, b}, the vertex rki, and
at most ∆′ vertices rkj with {i, j} ∈ E ′. The case of rki is analogous to pki.

As in Section 2, a dominating set X in G′ can be used to construct a code C =
{rki : k ∈ A ⋄ A, i ∈ X} ∪ {φai, ψai : a ∈ A, i ∈ V ′} for G of size |X||A ⋄ A| +
2|V ′||A|, and a code C for G can be used to construct |A ⋄ A| dominating sets
Xk = {i : pki ∈ C ∨ qki ∈ C ∨ rki ∈ C} in G′ of total size at most |C|.

Use the PTAS to approximate 1-IC or 1-LDC within 1 + ǫ in the constructed
bounded-degree graph. Let X∗ denote a minimum dominating set in G′. As
each vertex dominates at most ∆′ other vertices, we have (∆′ +1)|X∗| ≥ |V ′|.
The approximation algorithm returns a code of size at most (1+ǫ)(|X∗||A ⋄ A|
+ 2|V ′||A|), and we can use the code to construct a dominating set of size at
most (1 + ǫ)(|X∗||A ⋄ A|+ 2|V ′||A|)/|A ⋄ A| = (1 + ǫ)(|X∗|+ 4|V ′|/(µ− 1)) ≤
(1 + ǫ)(|X∗| + 4(∆′ + 1)|X∗|/(µ − 1)) ≤ (1 + ǫ′)|X∗|. We have proved the
following theorem.

Theorem 2 Both t-IC and t-LDC are approximable within a constant factor
in graphs of bounded degree. However, if there is a PTAS for 1-IC or 1-LDC

in graphs of bounded degree, there is a PTAS for Dominating Set in graphs
of bounded degree.

Dominating Set in graphs of bounded degree is APX-complete [11,19].
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4 Approximability in Local Graphs

To find realistic problem classes that do admit a PTAS, we study the following
family of graphs. We say that a graph is (d,N)-local if each vertex is associated
with a point in R

d so that within any ball of radius 1, there are at most N
vertices; and for each edge, the distance between the vertices is at most 1. Our
definition of local graphs is similar in nature to civilised graphs, i.e., graphs
drawn in a civilised manner [6, §8.5].

With suitable scaling of the space, the family of local graphs captures the
features of many proposed applications of identifying codes. Consider, for ex-
ample, a motion-detecting application: vertices correspond to physical areas,
not arbitrarily small, and the length of each edge is limited by the maximum
range of the sensor.

Local graphs are bounded-degree graphs but not necessarily graphs of a con-
stant treewidth (consider a grid graph). In this section, we consider t-IC and
t-LDC in the family of (d,N)-local graphs for a constant d and a constant N .

Fix the parameters d and N . Choose any ǫ > 0. We show how to approximate
t-IC and t-LDC within 1+ ǫ if the graph is (d,N)-local, by applying a shifting
strategy; cf., e.g., Hunt et al. [8]. Choose an integer m > 2dd/ǫ. Consider all
functions f : {1, 2, . . . , d} → {0, 1, . . . ,m− 1} and g : {1, 2, . . . , d} → Z. Form
a family of hypercubes Q(f, g, r) = {x ∈ R

d : −r ≤ xk/t− 4(mg(k) + f(k)) <
4(m − 1) + r ∀k}. Intuitively, f selects one of md positions for a modular
grid, g selects one cube in the grid, and r is the width of a margin around
each cube; see Fig. 3. Denote by V (f, g, r) the set of all vertices that are
contained in Q(f, g, r). For each pair (f, g) with a non-empty V (f, g, 4), use
exhaustive search to find the smallest set C(f, g) ⊆ V (f, g, 4) that covers
all vertices in V (f, g, 3) and distinguishes all pairs in V (f, g, 3) ⋄ V (f, g, 3).
Let C(f) =

⋃
g C(f, g). Choose a function f ∗ that minimises |C(f ∗)| and let

C = C(f ∗).

Let us now prove the correctness of this algorithm. Let C∗ be a minimum code.
First, we show that for all (f, g), there is a C(f, g) that satisfies the above
conditions, and |C(f, g)| ≤ |C∗ ∩ V (f, g, 4)|. For each vertex v ∈ V (f, g, 3),
there is a beacon c ∈ C∗ such that c covers v. The distance from c to v
is at most t, implying that c ∈ V (f, g, 4). Similarly, for each pair {u, v} ∈
V (f, g, 3)⋄V (f, g, 3), there is a beacon c ∈ C∗ such that c distinguishes {u, v}.
This is not possible if the distance from c to both u and v is more than t; thus,
c ∈ V (f, g, 4). It follows that the set C∗ ∩ V (f, g, 4) satisfies the conditions.

Second, we show that the set C is a code. Consider any v ∈ V . For each f ,
there is at least one g such that v ∈ V (f, g, 3). Thus, v is covered by C(f ∗, g)
and by C = C(f ∗). Consider any pair {u, v} ∈ V ⋄ V . If there is a g such
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that u, v ∈ V (f ∗, g, 3), the pair is distinguished by construction. If no such g
exists, the distance between u and v is more than 2t units, as neighbouring
hypercubes Q(f ∗, ·, 3) overlap by 2t units. Consider any beacon c ∈ C that
covers the vertex u. The distance from c to u is at most t units. This implies
that the distance from c to v is more than t units. Thus huc 6= 0 and hvc = 0,
and c distinguishes the pair {u, v}.

Third, we show that |C| ≤ (1 + ǫ)|C∗|. For each k, let Pk(i) = {x ∈ R
d :

−4 ≤ xk/t − 4(mj + i) < 0, j ∈ Z}. Denote by Uk(i) the set of vertices con-
tained in Pk(i), and let U(f) =

⋃
k Uk(f(k)). The sets Pk(·) partition the space

into m parts; thus, there is a function f ′ such that |C∗ ∩ Uk(f
′(k))| ≤ |C∗|/m

and |C∗ ∩ U(f ′)| ≤ d|C∗|/m. Let W (f, g) = V (f, g, 4) \ V (f, g, 0) ⊆ U(f).
For each (f, v), there are at most 2d functions g such that v ∈ W (f, g). We
get |C| ≤ |C(f ′)| = |

⋃
g C(f ′, g)| ≤

∑
g |C(f ′, g)| ≤

∑
g |C

∗ ∩ V (f ′, g, 4)| =
∑
g |C

∗ ∩ V (f ′, g, 0)| +
∑
g |C

∗ ∩W (f ′, g)| ≤ |C∗| + 2d|C∗ ∩ U(f ′)| ≤ (1 +
2dd/m)|C∗| ≤ (1 + ǫ)|C∗|.

5 Fractional Packing of Codes

So far, we have focused on finding one code. This is relevant in deployment
planning: given a graph that describes the landscape, decide where to place
the beacons. Alternatively, we may be interested in operation planning: given
a deployed system that consists of battery-powered devices (e.g., a wireless
sensor network [13]), decide how to schedule the activity of the devices to
maximise the lifetime of the system. More precisely, we want to find a sleep
schedule: during each time interval, the set of active devices forms an iden-
tifying or locating-dominating code. The time that each device can act as a
beacon is bounded by its battery capacity.

This leads into a fractional packing problem: maximise
∑
xj subject to Ax ≤ b

and x ≥ 0. The columns of the matrix A = (aij) consist of 0-1 vectors that
describe all possible codes, bi is the battery capacity of the ith vertex, and
xj is the time interval allocated for the jth code. Note that a collection of
disjoint identifying codes [14] provides a feasible but not necessarily optimal
solution.

To solve this LP, we may apply, for example, the approximation scheme by
Garg and Könemann [7]. In the scheme, we need to provide an oracle that
finds a minimum-weight column of A: given a nonnegative weight vector w,
the oracle has to find a column j that minimises

∑
iwiaij. With an exact oracle

we obtain a PTAS for fractional packing, but we may also use an approximate
oracle, obtaining an approximation algorithm for fractional packing.
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This raises the issue of the computational complexity of Weighted t-IC
and Weighted t-LDC. In the case of general graphs, we can translate the
problem into an instance of Weighted Set Covering; again, we obtain
a logarithmic approximation ratio [3]. In local graphs, we can use the same
approach as in Section 4. Our polynomial-time approximation scheme is de-
signed so that it directly generalises to weighted problems; the only difference
is that the cardinalities of the sets are replaced by sums of weights. The ap-
proximability of Weighted t-IC and Weighted t-LDC in bounded-degree
graphs remains an open problem.
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Fig. 1. The reduction for general graphs. In this example, we have chosen
f(e, a) = {(1, a), (2, a)}. The black vertices in G′ are a dominating set, and the
black vertices in G are a 1-IC and a 1-LDC. All edges from rea are shown, as well
as selected other edges.
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Fig. 2. The reduction for bounded-degree graphs. In this example, µ = 4.
To simplify the illustration, we write A ⋄ A = {12, 13, 14, 23, 24, 34} instead of
{{1, 2}, {1, 3}, . . . }. The original graph G′ is the same as in Fig. 1. The black vertices
in G are a 1-IC and a 1-LDC.
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Fig. 3. The modular grid in the 2-dimensional case. Here m = 5, f1 = (0, 0),
f2 = (2, 3), g1 = (1, 1), g2 = (2, 1), g3 = (1, 2), and g4 = (2, 2).
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