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Max-min linear programs: Example

Example: Fair bandwidth allocation
in a communication network

◮ circle = customer

◮ square = access point

◮ edge = network connection
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Max-min linear programs: Example

Example: Allocate a fair share of bandwidth for
each customer

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}
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Max-min linear programs: Example

Example: Allocate a fair share of bandwidth for
each customer; each access point has a limited capacity

maximise min {

x1, x2 + x4,

x3 + x5 + x7,

x6 + x8, x9

}

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0
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Max-min linear programs: Example

Example: Allocate a fair share of bandwidth for
each customer; each access point has a limited capacity

An optimal solution:

x1 = x5 = x9 = 3/5,

x2 = x8 = 2/5,

x4 = x6 = 1/5,

x3 = x7 = 0
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Max-min linear programs: Definition

Objective:

maximise min
k∈K

∑

v∈V ckvxv

subject to
∑

v∈V aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀ v ∈ V

Idea:

◮ One unit of activity by agent v ∈ V
benefits party k ∈ K by ckv ≥ 0 units and
consumes aiv ≥ 0 units of resource i ∈ I

◮ Objective: set the activities to provide
a fair share of benefit for each party
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Max-min linear programs: Definition

Let A, c, ck ≥ 0

In matrix notation:

maximise min
k∈K

ckx

subject to Ax ≤ 1,

x ≥ 0

Generalisation of packing LP:

maximise cx

subject to Ax ≤ 1,

x ≥ 0
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Local algorithms

What about large networks?
What if there are frequent changes in network topology?
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Local algorithms

Could we perhaps use solely local information to find
a provably near-optimal solution to the global problem?
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Local algorithms

Definition: (e.g., Naor and Stockmeyer 1995)

◮ Distributed algorithm

◮ Output of a node is a function of input within its
constant-radius neighbourhood

Our focus:

◮ Problems where the size of input and output
per node is bounded by a constant

Here constant = does not depend on input,
in particular, does not depend on the number of nodes
(but may depend on desired approximation ratio, etc.)
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Local algorithms

Advantages of a local algorithm:

◮ Space and time complexity is constant per node

◮ Distributed constant time (even in an infinite network)

◮ Topology change affects a constant-size part only

◮ Simple linear-time centralised algorithm

◮ In some cases randomised, approximate
sublinear-time algorithms (Parnas and Ron 2007)

But can we design a local algorithm for max-min LPs?
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Challenges of locality

Two instances of the bandwidth allocation problem:

Different optimal solutions:

. . . but identical local neighbourhoods:
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Challenges of locality

Two instances of the bandwidth allocation problem:

Near-optimal solutions:

◮ Here we can make the same decisions in parts
where local neighbourhoods are identical

◮ Can we generalise this idea to arbitrary instances?
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Old results: approximability

Yes, there are local approximation algorithms
for max-min linear programs

“Safe algorithm”: node v chooses

xv = min
i : aiv >0

1
aiv |{u : aiu > 0}|

(Papadimitriou and Yannakakis 1993)

This is a factor ∆V
I approximation where

∆V
I = maximum number of variables in a constraint

Uses information only in radius 1 neighbourhood of v
— a better approximation ratio with a larger radius?
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New results: inapproximability

The safe algorithm is factor ∆V
I approximation

In general, we cannot have a much better
approximation ratio:

Theorem
There is no local algorithm for max-min LP
with approximation ratio less than

∆V
I + 1
2

−
1

2∆V
K − 2

◮ ∆V
I = maximum number of variables in a constraint

◮ ∆V
K = maximum number of variables that benefit a party
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Upcoming results: inapproximability

The safe algorithm is factor ∆V
I approximation

In general, we cannot have a much better
approximation ratio (upcoming, tight result):

Theorem
There is no local algorithm for max-min LP
with approximation ratio

∆V
I

(

1 −
1

∆V
K

)

◮ ∆V
I = maximum number of variables in a constraint

◮ ∆V
K = maximum number of variables that benefit a party
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New results: approximability

Define relative growth

γ(r) = max
v∈V

|BH(v , r + 1)|

|BH(v , r)|

where BH(v , r) = radius r neighbourhood of v in H

If H has bounded relative growth, then
better approximation ratios can be achieved:

Theorem

For any R, there is a local algorithm for max-min LP with
approximation ratio γ(R − 1) γ(R) and local horizon Θ(R)
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Proof idea: inapproximability

◮ Construct instance S with no short cycles

◮ Apply the supposed approximation algorithm A to S

◮ Study the solution; choose a “bad” tree-like area S
′ ⊂ S

◮ A has to make the same local decisions in S
′, suboptimal
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Algorithm idea: approximability

Choose local constant-size subproblems:

Solve them optimally:

Take averages of local solutions, add some slack:
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Summary

Max-min linear programs: given A, ck ≥ 0,

maximise mink∈K ckx

subject to Ax ≤ 1, x ≥ 0

Local algorithms: output is a function of input
in a constant-radius neighbourhood

Results:

◮ Inapproximability results for general graphs

◮ Approximation algorithm for bounded-growth graphs

http://www.hiit.fi/ada/geru — jukka.suomela@cs.helsinki.fi
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