
New Classes of Distributed Time Complexity
Alkida Balliu

Aalto University, Finland

Gran Sasso Science Institute, Italy

Institut de Recherche en Informatique

Fondamentale, France

alkida.balliu@aalto.fi

Juho Hirvonen

University of Freiburg, Germany

IRIF, CNRS, and University Paris

Diderot, France

juho.hirvonen@cs.uni-freiburg.de

Janne H. Korhonen

Aalto University, Finland

janne.h.korhonen@aalto.fi

Tuomo Lempiäinen

Aalto University, Finland

tuomo.lempiainen@aalto.fi

Dennis Olivetti

Aalto University, Finland

Gran Sasso Science Institute, Italy

Institut de Recherche en Informatique

Fondamentale, France

dennis.olivetti@aalto.fi

Jukka Suomela

Aalto University, Finland

jukka.suomela@aalto.fi

ABSTRACT
A number of recent papers – e.g. Brandt et al. (STOC 2016), Chang

et al. (FOCS 2016), Ghaffari & Su (SODA 2017), Brandt et al. (PODC

2017), and Chang & Pettie (FOCS 2017) – have advanced our un-

derstanding of one of the most fundamental questions in theory

of distributed computing: what are the possible time complexity

classes of LCL problems in the LOCAL model? In essence, we have

a graph problem Π in which a solution can be verified by checking

all radius-O(1) neighbourhoods, and the question is what is the

smallest T such that a solution can be computed so that each node

chooses its own output based on its radius-T neighbourhood. Here

T is the distributed time complexity of Π.
The time complexity classes for deterministic algorithms in

bounded-degree graphs that are known to exist by prior work are

Θ(1), Θ(log
∗ n), Θ(logn), Θ(n1/k), and Θ(n). It is also known that

there are two gaps: one betweenω(1) and o(log log
∗ n), and another

between ω(log
∗ n) and o(logn). It has been conjectured that many

more gaps exist, and that the overall time hierarchy is relatively

simple – indeed, this is known to be the case in restricted graph

families such as cycles and grids.

We show that the picture is much more diverse than previously

expected. We present a general technique for engineering LCL
problems with numerous different deterministic time complexities,

including Θ(log
α n) for any α ≥ 1, 2

Θ(log
α n)

for any α ≤ 1, and

Θ(nα) for any α < 1/2 in the high end of the complexity spectrum,

and Θ(log
α

log
∗ n) for any α ≥ 1, 2

Θ(log
α

log
∗ n)

for any α ≤ 1,

and Θ((log
∗ n)α) for any α ≤ 1 in the low end of the complexity

spectrum; here α is a positive rational number.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC’18, June 25–29, 2018, Los Angeles, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5559-9/18/06. . . $15.00

https://doi.org/10.1145/3188745.3188860

CCS CONCEPTS
• Theory of computation → Distributed computing models;
Complexity classes;

KEYWORDS
Distributed complexity theory, graph algorithms, locally checkable

labellings, LOCAL model

ACM Reference Format:
Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen,

Dennis Olivetti, and Jukka Suomela. 2018. New Classes of Distributed Time

Complexity. In Proceedings of 50th Annual ACM SIGACT Symposium on
the Theory of Computing (STOC’18). ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3188745.3188860

1 INTRODUCTION
In this work, we show that the landscape of distributed time com-

plexity is much more diverse than what was previously known.

We present a general technique for constructing distributed graph

problems with a wide range of different time complexities. In par-

ticular, our work answers many of the open questions of Chang

and Pettie [7], and disproves one of their conjectures.

1.1 LOCALModel
We explore here one of the standard models of distributed comput-

ing, the LOCAL model [21, 26]. In this model, we say that a graph

problem (e.g., graph colouring) is solvable in timeT if each node can

output its own part of the solution (e.g., its own colour) based on

its radius-T neighbourhood. We focus on deterministic algorithms

– even though most of our results have direct randomised coun-

terparts – and as usual, we assume that each node is labelled with

an O(logn)-bit unique identifier. We give the precise definitions in

Section 2.

1.2 LCL Problems
The most important family of graph problems from the perspective

of the LOCAL model is the class of LCL problems [22]. Informally,

LCL problems are graph problems that can be solved in constant

timewith a nondeterministic algorithm in the LOCALmodel, and the

key research question is, what is the time complexity of solving LCL

1307

https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1145/3188745.3188860

STOC’18, June 25–29, 2018, Los Angeles, CA, USA A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D.Olivetti, J. Suomela

Table 1: State of the art: prior results on the existence of LCL
problems in different complexity classes.

Complexity Status Reference

O(1) exists trivial

ω(1), o(log log
∗ n) does not exist [22]

Ω(log log
∗ n), o(log

∗ n) ?

Θ(log
∗ n) exists [8, 21]

ω(log
∗ n), o(logn) does not exist [6]

Θ(logn) exists [3, 6, 16]

ω(logn), no(1) ?

Θ(n1/k) exists [7]

Θ(n) exists trivial

problems with deterministic algorithms. Examples of LCL problems

include the problem of finding a proper vertex colouring with k
colours: if you guess a solution nondeterministically, you can easily

verify it with a constant-time distributed algorithm by having each

node check its local neighbourhood. As usual, we will focus on

bounded-degree graphs. We give the precise definitions in Section 2.

1.3 State of the Art
Already in the 1990s, it was known that there are LCL problemswith

time complexitiesO(1),Θ(log
∗ n), andΘ(n) onn-node graphs [8, 21].

It is also known that these are the only possibilities in the case of

cycles and paths [22]. For example, the problem of finding a 2-

colouring of a path is inherently global, requiring time Θ(n), while
the problem of finding a 3-colouring of a path can be solved in time

Θ(log
∗ n).

While some cases (e.g., oriented grids) are now completely un-

derstood [4], the case of general graphs is currently under active

investigation. LCL problems with deterministic time complexities

of Θ(logn) [3, 6, 16] and Θ(n1/k) for all k [7] have been identified

only very recently. It was shown by Chang et al. that there are no

LCL problems with complexities betweenω(log
∗ n) and o(logn) [6].

Classical symmetry breaking problems like maximal matching, max-

imal independent set, (∆+1)-colouring, and (2∆−1)-edge colouring

have complexityΘ(log
∗ n) [1, 2, 13, 23]. Some classical problems are

now also known to have intermediate complexities, even though

tight bounds are still missing: ∆-colouring and (2∆ − 2)-edge col-

ouring require Ω(logn) rounds [3, 5], and can be solved in time

O(polylogn) [24]. Some gaps have been conjectured; for example,

Chang and Pettie [7] conjecture that there are no problems with

complexity between ω(n1/(k+1)) and o(n1/k). See Table 1 for an

overview of the state of the art.

The picture changes for randomised algorithms, especially in

the region between ω(log
∗ n) and o(logn). In the lower end of this

region, it is known that there are no LCLs with randomised complex-

ity between ω(log
∗ n) and o(log logn) [6], but e.g. sinkless orienta-

tions have a randomised complexity Θ(log logn) [3, 16], and it is

known that no LCL problem belongs to this complexity class in the

deterministic world. In the higher end of this region, it is known that

all LCLs solvable in time o(logn) can be solved in time TLLL(n), the
time it takes to solve a relaxed variant of the Lovász local lemma [7].

The current best algorithm gives TLLL(n) = 2
O (
√

log logn)
[11].

So far we have discussed the complexity of LCL problems in the

strict classical sense, in graphs of maximum degree ∆ = O(1). Many

of these problems have been studied also in the case of a general ∆.
The best deterministic algorithms for maximal independent set

and (∆ + 1)-colouring run in time 2
O (
√

logn)
[25]. Maximal match-

ing can be solved in time O(log
2 ∆ logn) [10] and (2∆ − 1)-edge

colouring in time O(log
8 ∆ logn) [12]. Corresponding randomised

solutions are exponentially faster: O(log∆) + 2
O (
√

log logn)
rounds

for maximal independent set [14], O(
√

log∆) + 2
O (
√

log logn)
for

(∆ + 1)-colouring [18], O(log∆ + log
3

logn) for maximal match-

ing [10], and 2
O (
√

log logn)
for (2∆ − 1)-edge colouring [9, 12].

Some lower bounds are known in the general case: maximal in-

dependent set and maximal matching require time complexity of

Ω(min{log∆/log log∆,
√

logn/log logn}) [20].

1.4 Contributions
Based on the known results related to LCL problems, it seemed

reasonable to conjecture that there might be only three distinct non-

empty time complexity classes below no(1), namelyO(1), Θ(log
∗ n),

and Θ(logn). There are very few candidates of LCL problems that

might have any other time complexity, and in particular the gap

between Ω(log log
∗ n) and o(log

∗ n) seemed to be merely an artefact

of the current Ramsey-based proof techniques (see Chang and

Pettie [7] for more detailed discussion on this region).

Our work changes the picture completely: we show how to

construct infinitely many LCL problems for the regions in which

the existence of any problems was an open question. We present

a general technique that enables us to produce time complexities

of the form f (log
∗ n) and f (n) for a wide range of functions f ,

as long as f is sublinear and at least logarithmic. See Table 2 for

some examples of time complexities that we can construct with our

technique.

The table also highlights another surprise: the structure of “low”

complexities below O(log
∗ n) and the structure of “high” complex-

ities above ω(log
∗ n) look now very similar.

1.5 Proof Ideas
On a high level, we start by defining a simple model of computation,

called a link machine here. We emphasise that link machines are

completely unrelated to distributed computing; they are simply a

specific variant of the classical register machines. A link machine

has O(1) registers that can hold unbounded positive natural num-

bers, and a finite program (sequence of instructions). The machine

supports the following instructions: resetting a register to 1, ad-

dition of two registers, comparing two registers for equality, and

skipping operations based on the result of a comparison.

We say that a link machine M has growth д : N → N if the

following holds: if we reset all registers to value 1, and then run

the program of the machine M repeatedly for ℓ times, then the

maximum of the register values is д(ℓ). For example, the following

link machine has a growth д(ℓ) = Θ(ℓ2):

x ← x + 1

y ← y + x

1308

New Classes of Distributed Time Complexity STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Table 2: Our contributions: examples of time complexity classes that are now known to contain an LCL problem. The integers
r and s are positive constants.

“Low” “High”

O(1) trivial Θ(log
∗ n) [8, 21]���� gap [7, 22]

���� gap [6]

Θ(log log
∗ n) this work Θ(logn) [3, 6, 16]

Θ(log
r/s

log
∗ n) r/s ≥ 1 this work Θ(log

r/s n) r/s ≥ 1 this work

2
Θ(log

r /s
log
∗ n) r/s ≤ 1 this work 2

Θ(log
r /s n) r/s ≤ 1 this work

Θ(n1/s) [7]

Θ((log
∗ n)r/s) r/s ≤ 1 this work Θ(nr/s) r/s < 1/2 this work

Θ(log
∗ n) [8, 21] Θ(n) trivial

Now assume that we have the following ingredients:

(1) A link machineM of growth д.
(2) An LCL problem Π for directed cycles, with a time complex-

ity T .

We show how to construct a new LCL problem ΠM in which the

“relevant” instances are graphs G with the following structure:

• There is a directed cycle C in which we need to solve the

original problem Π.
• The cycle is augmented with an additional structure of mul-

tiple layers of “shortcuts”, and the lengths of the shortcuts

correspond to the values of the registers of machineM .

Therefore if we take ℓ steps away from cycle C , we will find short-

cuts of length д(ℓ). In particular, if two nodes u and v are within

distance ℓ · д(ℓ) from each other along cycle C , we can reach from

u to v in Θ(ℓ) steps along graph G.
In essence, we have compressed the distances and made problem

ΠM easier to solve than Π, in a manner that is controlled precisely

by function д. For example, if д(ℓ) = Θ(ℓ2), then distance ℓ · д(ℓ) =
Θ(ℓ3) along C corresponds to distance Θ(ℓ) in graph G. If Π had a

time complexity of T = Θ(log
∗ n), we obtained a problem ΠM with

a time complexity of TM = Θ((log
∗ n)1/3).

Notice that these results could not be achieved by just adding

shortcuts of length д(n) directly onto every node of the cycle, since

the lengths of the shortcuts would not be locally checkable, and

moreover, it would not be true that a node can reach every other

node within a certain distance.

1.6 Some Technical Details
Plenty of care is needed in order to make sure that

• ΠM is indeed a well-defined LCL problem: feasible solutions

can be verified by checking theO(1)-radius neighbourhoods,
• ΠM is solvable in time O(TM) also in arbitrary bounded-

degree graphs and not just in “relevant” instances that have

the appropriate structure of a cycle plus shortcuts,

• there is no way to cheat and solve ΠM in time o(TM).

There is a fine balance between these goals: to make sure ΠM is

solvable efficiently in adversarial instances, we want to modify the

definition so that for unexpected inputs it is permitted to produce

the output “this is an invalid instance”, but this easily opens loop-

holes for cheating – what if all nodes always claim that the input is

invalid?

We address these issues with the help of ideas from locally check-
able proofs and proof labelling schemes [17, 19], both for inputs and

for outputs:

• Locally checkable inputs: Relevant instances carry a locally

checkable proof. If the instance is not relevant, it can be

detected locally.

• Locally checkable outputs: If the algorithm claims that the

input is invalid, it also has to prove it. If the proof is wrong,

it can be detected locally.

In essence, we define ΠM so that the algorithm has two possibilities

in all local neighbourhoods: solve Π or prove that the input is

invalid. This requirement can be now encoded as a bona fide LCL
problem.

As a minor twist, we have slightly modified the above scheme

so that we replace impossibility of cheating by hardness of cheat-

ing. Our LCL problem is designed so that an algorithm could, in

principle, construct a convincing proof that claims that the input is

invalid (at least for some valid inputs). However, to avoid detection,

the algorithm would need to spend Ω(TM) time to construct such a

proof – in which case the algorithm could equally well solve the

original problem directly.

1.7 Significance
The complexity classes and the gaps in the time hierarchy of LCL
problems have recently played a key role in the field of distributed

computing. The classes have served as a source of inspiration for

algorithm design (e.g. the line of research related to the sinkless

orientation problem [3, 6, 16] and the follow-up work [15] that

places many other problems in the same complexity class), and

the gaps have directly implied non-trivial algorithmic results (e.g.

the problem of 4-colouring 2-dimensional grids [4]). The recently

identified gaps [4, 6, 7, 11] have looked very promising; it has

seemed that a complete characterisation of the LCL complexities

might be within a reach of the state of the art techniques, and the

resulting hierarchy might be sparse and natural.

1309

STOC’18, June 25–29, 2018, Los Angeles, CA, USA A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D.Olivetti, J. Suomela

In essence, our work shows that the free lunch is over. The de-

terministic LCL complexities in general bounded-degree graphs do

not seem to provide any further gaps that we could exploit. Any of

the currently known upper bounds might be tight. To discover new

gaps, we will need to restrict the setting further, e.g. by studying

restricted graph families such as grids and trees [4, 7], or by focus-

ing on restricted families of LCL problems. Indeed, this is our main

open question: what is the broadest family of LCL problems that

contains the standard primitives (e.g., colourings and orientations)

but for which there are large gaps in the distributed time hierarchy?

2 PRELIMINARIES
Let us first fix some terminology.Wework with directed graphsG =
(V ,E), which are always assumed to be simple, finite, and connected.

We denote the number of nodes by n = |V |. The number of edges

on a shortest path from node v to node u is denoted dist(v,u). A
labelling of a graph G is a mapping l : V → Σ. Given a labelled

graph (G, l), the radius-T neighbourhood of a node v consists of the

subgraphGv,T = (Vv,T ,Ev,T), whereVv,T = {u ∈ V : dist(v,u) ≤
T } and Ev,T = {(u,w) ∈ E : dist(v,u) ≤ T and dist(v,w) ≤ T }, as
well as the restriction l ↾Vv,T : Vv,T → Σ of the labelling. The set

of natural numbers is N = {0, 1, . . .}.

2.1 Model of Computation
Our setting takes place in the LOCAL model [21, 26] of distributed

computing. We have a graph G = (V ,E), where each node v ∈ V
is a computational unit and all nodes run the same deterministic
algorithm A. We work with bounded-degree graphs; hence A can

depend on an upper bound ∆ for the maximum degree of G.
Initially, the nodes are not aware of the graph topology – they

can learn information about it by communicating with their neigh-

bours. To break symmetry, nodes have access toO(logn)-bit unique
identifiers, given as a labelling. We will also assume that the nodes

are given as input the number n of nodes (for most of our results,

e.g. a polynomial upper bound on n is sufficient). In addition, nodes

can be given a task-specific local input labelling. We will often

refer to directed edges, but for our purposes the directions are just

additional information that is encoded in the input labelling. We

emphasise that the directions of the edges do not affect commu-

nication; they are just additional information that the nodes can

use.

The communication takes place in synchronous communication

rounds. In each round, each node v ∈ V

(1) sends a message to each of its neighbours,

(2) receives a message from each of its neighbours,

(3) performs local computation based on the received messages.

Each nodev is required to eventually halt and produce its own local

output. We do not limit the amount of local computation in each

round, nor the size of messages; the only resource of interest is the

number of communication rounds until all the nodes have halted.

Note that in T rounds of communication, each node can gather

all information in its radius-T neighbourhood, and hence aT -round
algorithm is simply a mapping from radius-T neighbourhoods to

local outputs.

2.2 Graph Problems
In the framework of the LOCAL model, the same graph G = (V ,E)
serves both as the communication graph and the problem instance.

In addition to the graph topology, the problem instance can contain

local input labels. To solve the graph problem, each node is required

to produce an output label so that all the labels together define a

valid output.

More formally, let Σ and Γ be sets of input and output labels,

respectively. A graph problem is a function ΠΣ,Γ that maps each

graph G and input labelling i : V → Σ to a set ΠΣ,Γ(G, i) of valid
solutions. Each solution is a function o : V → Γ. We say that al-
gorithm A solves graph problem ΠΣ,Γ if for each graph G, each
input labelling i : V → Σ of G, and any setting of the unique iden-

tifiers, the mapping o : V → Γ defined by setting o(v) to be the

local output of node v for each v ∈ V , is in the set ΠΣ,Γ(G, i). Note
that the unique identifiers are given as a separate labelling; the set

ΠΣ,Γ(G, i) of valid solutions depends only on the task-specific input

labelling i . When Σ and Γ are clear from the context, we denote a

graph problem simply Π.
LetT : N→ N. Suppose that algorithmA solves problem Π, and

for each input graphG , each input labelling i and any setting of the
unique identifiers, each node needs as most T (|V |) communication

rounds to halt. Then we say that algorithm A solves problem Π in
timeT , or that the time complexity ofA isT . The time complexity of
problem Π is defined to be the slowest-growing functionT : N→ N
such that there exists an algorithm A solving Π in time T .

In this work, we consider an important subclass of graph prob-

lems, namely locally checkable labelling (LCL) problems [22]. A

graph problem ΠΣ,Γ is an LCL problem if the following conditions

hold:

(1) The label sets Σ and Γ are finite.

(2) There exists a LOCAL algorithm A having constant time

complexity, such that given any labelling l : V → Γ as an

additional input labelling, A can determine whether l ∈
ΠΣ,Γ(G, i) holds: if l ∈ ΠΣ,Γ(G, i), all nodes output “yes”;
otherwise at least one node outputs “no”.

That is, an LCL problem is one where the input and output labels are

of constant size, and for which the validity of a candidate solution

can be checked in constant time.

3 LINK MACHINES
A link machine M consists of a constant number k of registers,
labelled with arbitrary strings, and a program P . The program is a

sequence of instructions i1, i2, . . . , ip , where each instruction i j is
one of the following for some registers a, b, and c:

• Addition: a ← b + c .
• Reset: a ← 1.

• Conditional execution: If a = b (or if a , b), execute the next
s instructions, otherwise skip them.

The registers can store unbounded natural numbers. For conveni-

ence, we will generally identify the link machine with its program.

An execution of the link machineM is a single run through the

program, modifying the values of the registers according to the

instructions in the obvious way. Generally, we consider computing

with link machines in a setting where

1310

New Classes of Distributed Time Complexity STOC’18, June 25–29, 2018, Los Angeles, CA, USA

• all registers start from value 1, and

• we are interested in the maximum value over all registers

after ℓ executions ofM .

Specifically, for a register r , we denote by r (ℓ) the value of register
r after ℓ full executions of the link machine program, starting from

all registers set to 1. We say that a link machineM with registers

r1, r2, . . . , rk has growth д : N → N if, starting from all registers

set to 1, we have that max{ri (ℓ) : i = 1, 2, . . . ,k} = д(ℓ) for all
ℓ ∈ N. While д does not need to be a bijection, we use the notation

д−1
: N → N to denote the function defined by setting д−1(ℓ) =

min{m ∈ N : д(m) ≥ ℓ} for all ℓ ∈ N.

3.1 Working with Link Machine Programs
Composition. Consider two link machinesM1 andM2 with cor-

responding programs P1 and P2. By relabelling if necessary, we can

assume that the programs do not share any registers. Moreover,

assume P1 has a register y we call the output register for P1 and

P2 has a register x we call the input register for P2. We define the

composition P2 ◦ P1 as the program

P1

x ← y
P2

Note that the growth of the program P2 ◦ P1 at step ℓ is the

maximum between the growth of each program at step ℓ, and can

be affected by the input given by P1 to P2. The basic idea is to use this

construct so that P1 produces an output register y(ℓ) dependent on
ℓ, which is then used by P2 to produce a composed growth function

д(y(ℓ)).
We define the composition Pi ◦ · · · ◦ P2 ◦ P1 of multiple link ma-

chine programs with specified input and output registers similarly.

Note that the growth of a link machine is at most 2
O (ℓ)

. As we

will see later this constraint is necessary, since otherwise we would

contradict known results regarding gaps on LCL complexities.

3.2 Building Blocks
We now define our basic building blocks, that is, small programs

that can be composed to obtain more complicated functions. These

building blocks are summarised in Table 3. In all our cases, we

will assume that the value of the input register x is growing and

bounded above by ℓ; otherwise the semantics of a building block is

undefined.

Link machine programming conventions. We use the following

shorthands when writing link machine programs:

• We write conditional executions as if-then constructs, with

the conditional execution skipping all enclosed instructions

if the test fails. We also use if-else constructs, as these can

be implemented in an obvious way.

• We write sums with multiple summands, constant multi-

plications, and constant additions as single instructions, as

these can be easily simulated by multiple instructions and a

constant number of extra registers.

Table 3: Our basic building blocks. The integer k is a con-
stant. Programs with no input generate output values that
only depend on the number of executions ℓ. Programs with
input assume that the value of the input register x is grow-
ing and bounded above by ℓ.

Program P Input Output Growth

count – y = ℓ ℓ

root
′
k – y = Θ(ℓ1/k) Θ(ℓ1/k)

rootk x y = Θ(x1/k) Θ(x)

powk x y = Θ(xk) Θ(xk)

exp x y = 2
Θ(x)

2
Θ(x)

log x y = Θ(logx) Θ(x)

Counting. Our first program count simply produces a linear

output y = ℓ:

y ← y + 1

Clearly, program count has growth ℓ.

Polynomials. Next, we define a sequence of programs for com-

puting y = Θ(xk). For any fixed k ≥ 1, we define the program

powk as follows:

if x , x1 then
xk ←

∑k
i=0

(k
i
)
xi

xk−1
←

∑k−1

i=0

(k−1

i
)
xi

. . .

x1 ← x1 + 1

end if
y ← xk

We now have that x1 = Θ(x), and by the binomial theorem,

xi = (x1)
i
for all i = 1, 2, . . . ,k . Moreover, powk has growth Θ(xk).

Roots. We define two versions of a program computing a kth
root. The first one does not take an input and has the advantage that

it has sublinear growth of Θ(ℓ1/k). Specifically, we define root′k
as follows:

if y1 , y2 then
y1 ← y1 + 1

else if y2 , y3 then
y2 ← y2 + 1

y1 ← 1

else if . . . then
. . .

else if yk−1
, yk then

yk−1
← yk−1

+ 1

y1 ← 1,y2 ← 1, . . . ,yk−2
← 1

else
yk ← yk + 1

1311

STOC’18, June 25–29, 2018, Los Angeles, CA, USA A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D.Olivetti, J. Suomela

y1 ← 1,y2 ← 1, . . . ,yk−1
← 1

end if
y ← yk

Observe that started from all registers set to 1, we always have

y1 ≤ y2 ≤ . . . ≤ yk . Moreover, for register yk to increase from s to
s+1, the values of the registersyi will visit all configurations where

y1 ≤ y2 ≤ . . .yk−1
≤ s , and there are

(s+k−2

k−1

)
such configurations.

This implies that the growth of register yk is Θ(ℓ1/k).
The second version of the kth root program takes an input re-

gister x , and computes an output y = Θ(x1/k). We define this

program rootk as follows:

if x , x ′ then
x ′ ← x ′ + 1

root
′
k

end if

Clearly, we have that x ′ = Θ(x), and by the properties of root
′
k

the output register isy = Θ(x1/k). The growth of rootk is д(ℓ) = x .

Exponentials. The program exp computes an exponential func-

tion in the input register x :

if x , x ′ then
y ← y + y
x ′ ← x ′ + 1

end if

We have that x ′ = Θ(x), and y = 2
x ′ = 2

Θ(x)
. Moreover, the

growth of exp is 2
Θ(x)

.

Logarithms. The program log computes a logarithm of the input

register x :

if x , x ′ then
if x ′ = z then

z ← z + z
y ← y + 1

end if
x ′ ← x ′ + 1

end if

Clearly, we have that x ′ = Θ(x), and z = Θ(x ′). Starting from

the valid starting configuration, the register z only takes values

that are powers of two, and y = log
2
z. Thus, we have y = Θ(logx).

By construction, the growth of log is д(ℓ) = z = Θ(x).

3.3 Composed Functions
By composing our building block functions, we can now construct

more complicated functions, which will then be used to obtain LCL
problems of various complexities. The constructions we use are

listed in Table 4; the values of output registers and the functions

Table 4: Composed programs. The integers p and q are con-
stants.

Program P Growth

powp ◦ root
′
q Θ(ℓp/q)

exp ◦ powq ◦ root
′
p (p ≥ q) 2

Θ(ℓq/p)

exp ◦ powq ◦ rootp ◦ log ◦ count (p ≥ q) 2
Θ(log

q/p ℓ)

computed by these programs follow directly from the results in

Section 3.2.

Notice that for all the considered programs there is a register

that is always as big as all the other registers. Thus, we can refer to

it as the register of maximum value.

Remark 1. While exploring the precise power of link machines is

left as an open question, we point out that, in this paper, we do

not list every possible complexity that one can achieve with link

machines. Indeed, there are many more time complexities that can

be realised; for example, one could define a building block that

performs a multiplication, or add support for negative numbers and

subtractions.

4 LINK MACHINE ENCODING GRAPHS
In this section, we show how to encode link machine executions as

locally checkable graphs. Fix a link machineM with k registers and

a program of length p that has non-decreasing growth д in ω(1)

and 2
O (n)

, and let h be an integer. The basic idea is that we encode

the link machine computation of the value д(h) as follows:

• We start from anh×n grid graph, wheren = 3д(h), that wraps
around in the horizontal direction, as shown in Figure 1 (here

3 is the smallest constant that avoids parallel edges or self-

loops). This allows us to ‘count’ in two dimensions; one is

used for time, and the other for the values of the registers of

M . The grid is consistently oriented so that we can locally

distinguish between the two dimensions, and all grid edges

are labelled with either ‘up’, ‘down’, ‘left’ or ‘right’ to make

this locally checkable.

• We add horizontal edges to the grid graph to encode the

values of the registers. Specifically, at level ℓ of the graph,

the horizontal edges encode the values the registers take

during the ℓth execution of the link machine program, with

edge labels specifying which register values the edges are

encoding (see Figure 2).

The labels should be thought as LCL input labels; as we will see

later, they will allow us to recognise valid link machine encoding

graphs in the sense of locally checkable proofs. We will make this

construction more formal below.

4.1 Formal Definition
LetM be a link machine with growthд as above. We formally define

the link machine encoding graphs for M as graphs obtained from

the construction we describe below.

Grid structure. The construction starts with a 2-dimensionalh×n
grid graph, where n = 3д(h). Let (x , ℓ) denote the node on the

1312

New Classes of Distributed Time Complexity STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Figure 1: The base grid. The bottom cycle (first level) is highlighted.

ℓth row and the xth column, where x ∈ {1, 2, . . . ,n} and ℓ ∈
{1, 2, . . . ,h}. The grid wraps around along the horizontal axis, that

is, we also add the edges

(
(n, ℓ), (1, ℓ)

)
for all ℓ.

We add horizontal link edges to the graph according to the state

of the machineM . That is, we say that for a node (x , ℓ), a link edge
of length s is an edge

(
(x , ℓ), (x + s mod n, ℓ)

)
. Let r (ℓ, i) denote the

value of the register r after executing ℓ − 1 times the full program

of M , and then executing the first i instructions of M . For each

ℓ = 1, 2, . . . ,h, register r , and i = 0, 1, 2, . . . ,p, we add a link edge

of length r (ℓ, i) to all nodes on level ℓ if it does not already exist.

Local labels. In addition to the graph structure, we add constant-
size labels to the graph as follows. First, each node (x , ℓ) has a set
of labels for each incident edge, added according to the following

rules if the corresponding edge is present (note that a single edge

may have multiple labels):

• The grid edge to (x , ℓ + 1) is labelled with U.
• The grid edge from (x , ℓ − 1) is labelled with D.
• The grid edge from (x − 1 mod n, ℓ) is labelled with L.
• The grid edge to (x + 1 mod n, ℓ) is labelled with R.
• For each register r and i = 0, 1, 2, . . . ,p, the link edge of

length r (ℓ, i) is labelled with (r , i).

Consider the set of labels that each node (x , ℓ) associates to each

of its incident edges. When we later define graph problems, we

assume these labels to be implicitly encoded in the node label given

to (x , ℓ).

Input. Also, each node v is provided with an input i(v) ∈ {0, 1}.

4.2 Local Checkability
We show that the labels described in Section 4.1 constitute a locally
checkable proof for the graph being a link machine encoding graph.

That is, there is a LOCAL algorithmwhere all nodes accept a labelled

graph if and only if it is a link machine encoding graph.

Local constraints. We first specify a set of local constraints that

are checked by the nodes locally. All the constraints depend on

the radius-4 neighbourhood of the nodes, so this can be implemen-

ted in the LOCAL model in 4 rounds. In the following, for labels

L1,L2, . . . ,Lk , let v(L1,L2, . . . ,Lk) denote the node reached by fol-

lowing the edges with the specified labels. The full constraints are

now as follows:

(1) Each node checks that the basic properties of the labelling

are correct:

• All possible edge labels are present exactly once, except

possibly one of D and U.
• The direction labels U, D, L, and R are on different edges

if present.

(2) Grid constraints ensure the validity of the grid structure:

• Each node checks that each of the edges labelled with U,
D, L or R has the opposite label in the other end.

• If there is an edge labelled D, check thatv(D,R,U) = v(R).
• If there is not an edge labelled D, check that also nodes

v(L) and v(R) do not have edges labelled D.
• If there is not an edge labelled U, check that also nodes

v(L) and v(R) do not have edges labelled U.
(3) Nodes check that the values of the registers are correctly

initialised on the link edges:

• Nodes that do not have an edge labelled with D check that

the register values are initialised to 1, that is, the labels R
and (r , 0) are on the same edge for all registers r .
• Nodes that have an edge labelled with D check that the

registers are copied correctly, that is, for all registers r ,
v((r , 0)) = v(D, (r ,p),U).

(4) Nodes check that the program execution is encoded correctly

as follows. Each instruction is processed in order, from 1 to

p. The ith is checked as follows, depending on the type of

the instruction:

• If the instruction is a ← 1:

(a) Register a is correctly set to 1: the labels R and (a, i) are
on the same edge.

(b) Any of the other registers did not change, that is, labels

(r , i − 1) and (r , i) are on the same edge for all registers

r except a.
• If the instruction is a ← b + c:
(a) Register a is set correctly:

v
(
(a, i)

)
= v

(
(b, i − 1), (c, i − 1)

)
.

(b) Any of the other registers did not change, that is, labels

(r , i − 1) and (r , i) are on the same edge for all registers

r except a.
• If the instruction is an if statement comparing registers a
and b, check if the labels (a, i − 1) and (b, i − 1) are on the

1313

STOC’18, June 25–29, 2018, Los Angeles, CA, USA A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D.Olivetti, J. Suomela

(a, i)

(b, i � 1) (c, i � 1)

Figure 2: Checking the correct encoding of the execution of
the instruction a ← b + c.

same edge, and if this does not match the condition of the

if statement, check that the following s instructions are
not executed:

(a) Any registers do not change for s steps, that is, for all
registers r , we have that labels (r , i − 1), (r , i), (r , i + 1),

. . . , (r , i + s) are on the same edge.

(b) Skip the checks for the next s instructions.
(5) If no edges are labelled U, check that the link edges cor-

responding to the register with the maximum value form

3-cycles.

Correctness. It is clear that link machine encoding graphs satisfy

the constraints (1)–(5) specified above. Conversely, wewant to show

any graph satisfying these constraints is a link machine encoding

graph, but it turns out this is not exactly the case.

It might happen that the register values exceed the widthw of

the grid, the edges “wrap around”, and the correspondence between

the edge lengths and register values gets lost. However, for this to

happen one has to have a row ℓ with д(ℓ) ≥ w .

In order to characterise the graph family captured by the local

constraints, we define that a graph G is an extended link machine

encoding graph if

• G is an h × w grid for some h and w that wraps around

horizontally but not vertically,

• G satisfies the local constraints of link machine encoding

graphs, and

• there is an ℓ ≤ h with д(ℓ) ≥ w/3 such that up to row ℓ − 1

the edge lengths are in one-to-one correspondence with the

register values of the first ℓ−1 executions of link machineM .

Note that a linkmachine encoding graph is trivially an extended link

machine encoding graph, as we can simply choose ℓ = h andw = n
and hence д(ℓ) = w/3. The intuition is that extended link machine

encoding graphs have a good bottom part with dimensions ℓ ×

Θ(д(ℓ)), and on top of that there might be any number of additional

rows of some arbitrary garbage.

Lemma 2. LetG be a graph that satisfies the constraints (1)–(5) and
has at least one node that does not have an edge labelled with D. Then
G is an extended link machine encoding graph.

Proof. By constraints (1) and (2), we have that the graph G is a

grid graph that wraps around horizontally. By the assumption that

there is a node without edge labelled by D and by constraint (2),

the grid cannot wrap around vertically. Hence G is an h ×w grid

that wraps around horizontally, for some values h andw , and by as-

sumption it satisfies the local constraints of link machine encoding

graphs.

Constraints (3) and (4) ensure that the link edges and the corres-

ponding labels are according to the link machine encoding graph

specification, as long as д(ℓ) ≤ w .

Constraint (5) ensures that we cannot have д(ℓ) < w/3 for all

ℓ, as in the top row we must have three edges that form a cycle

that wraps around the entire grid of widthw at least once. Hence

at some point we must reach д(ℓ) ≥ w/3, and this is sufficient for

G to satisfy the definition of an extended link machine encoding

graph. □

5 LCLLCLLCL CONSTRUCTIONS
Let M be a link machine with non-decreasing growth д in ω(1)

and 2
O (n)

, and let Π be an LCL problem on directed cycles with

complexity T (n) – for concreteness, Π will either be 3-colouring

(complexityΘ(log
∗ n)) or a variant of 2-colouring (complexityΘ(n)).

To simplify the construction, we will assume that Π is solvable on

directed cycles with one-sided algorithms, i.e., with algorithms in

which each node only looks at itsT (n) successors.We now construct

an LCL problem ΠM with complexity related to д, as outlined in

the introduction:

• If a node sees a graph that locally looks like a link machine

encoding graph forM , and the node is on the bottom row of

the grid, it will need to solve problem Π on the directed cycle

formed by the bottom row of the grid. As will be shown later,

in Θ(ℓ) steps, a node on the bottom row of the grid sees all

nodes within distance f (ℓ) = ℓд(ℓ) on the bottom cycle, so

this is solvable in Θ(f −1(T (n))) rounds.
• If a node sees something that does not look like a link ma-

chine encoding graph, it is allowed to report an error; the

node must also provide an error pointer towards an error it

sees in the graph. A key technical point here is to ensure that

it is not too easy to claim that there is an error somewhere

far, even if in reality we have a valid link machine encoding

graph. We address this by ensuring that error pointer chains

can only go right and then up, they cannot disappear without

meeting an error, the part that is pointing right must be prop-

erly 2-coloured, and the part that is pointing up copies the

input i(v) given to the node v that is witnessing the error. If

some nodes claim that the error is somewhere far up, we will

eventually reach the highest layer of the graph and catch the

cheaters. Also, nodes cannot blindly point up, because they

need to mark themselves with the input of the witness. If all

bottom-level nodes claim that the error is somewhere right,

we do not necessarily catch cheaters, but the nodes did not

gain anything as they had to produce a proper 2-colouring

for the long chain of error pointers.

There are some subtleties in both of these points, which we address

in detail below.

5.1 The LCL Problem ΠM

Formally, we specify the LCL problem ΠM as follows. The input

label set forΠM is the set of labels used in the linkmachine encoding

graph labelling forM as described in Section 4. The possible output

labels are the following:

(1) output labels of the LCL problem Π,
(2) an error label E,

1314

New Classes of Distributed Time Complexity STOC’18, June 25–29, 2018, Los Angeles, CA, USA

(3) an error pointer, pointing either right (R) or up (U), with a

counter mod 2 and a label ce in {0, 1},

(4) an empty output ϵ .

The correctness of the output labelling is defined as follows.

(1) If the input labelling does not locally satisfy the constraints

of link machine encoding graphs for M (see Section 4.2)

either at the node itself or at one of its neighbours, then the

only valid output is E. Otherwise, the node must produce

one of the other labels.

(2) If the output of a node v is one of the labels of Π, then the

following must hold:

• Node v does not have an incident edge with label D in the

input labelling.

• If any adjacent nodes have output from the label set of Π,
then the local constraints of Π must be satisfied.

(3) If the output of a node v is empty, then it must have an

incident edge with label D in the input labelling.

(4) If the output of a node v is an error pointer, then the follow-

ing must hold:

• Node v has only one outgoing error pointer.

• The error pointer is pointing either R or U if the node does

not have an edge labelled D in the input, and U if the node

does have an edge labelled D in the input.

• The node at the other end of the pointer either outputs an

error label E, or an error pointer.

• The mod-2 counters of nodes outputting error pointer R
form a 2-colouring in the induced subgraph of those nodes.

• The nodes v outputting error pointer U have the same

label ce (v) as the next node in the chain. If v is the last

node in the chain, ce (v) = i(w) holds, where w is the

witness outputting E.

These conditions are clearly locally checkable, so ΠM is a valid LCL
problem.

5.2 Time Complexity
We now prove the following bounds for the time complexity of

problem ΠM ; recall that f (k) = kд(k), where д is the growth

of link machine M . In the following, n denotes the number of

nodes in the input graph, and n̂ is the smallest number satisfy-

ing n ≤ n̂ · f −1(T (n̂)). The intuition here is that the “worst-case

instances” of size n will be grids of width approximately n̂ and

height approximately f −1(T (n̂)).

Theorem 3. Problem ΠM can be solved in O
(
f −1

(
T (n̂)

))
rounds.

Theorem 4. Problem ΠM cannot be solved in o
(
f −1

(
T (n̂)

))
rounds.

5.2.1 Upper Bound – Proof of Theorem 3. We start by observing

that the link machine encoding graphs essentially provide a ‘speed-

up’ in terms of how quickly the nodes on the bottom cycle can see

other nodes on the bottom cycle. Recall that f (k) = kд(k), where д

is the growth of link machineM ; also recall that д(k) = 2
O (k)

.

Lemma 5. LetG be a link machine encoding graph forM , and let u
and v be nodes on the bottom cycle. If u can be reached from v in ℓ
steps following edges labelled with R, then u can be reached from v
in O

(
f −1(ℓ)

)
steps following edges labelled with U, D, R or register

labels.

Proof. Starting from a node v on the cycle, in O(k) steps it is
possible to see a node on the cycle that is f (k) = kд(k) steps away:
take k steps up, k steps right along shortcuts, and k steps down. We

will use a similar procedure to go to a node at any distance ℓ.

Let k be the smallest value such that f (k) ≥ ℓ. By assumption,

f (k − 1) = (k − 1)д(k − 1) < ℓ. Since д(k) = 2
O (k)

, we have

д(k)/д(k − 1) ≤ k − 1 for large enough graphs, and hence д(k) ≤
(k − 1)д(k − 1) = f (k − 1) < ℓ.

We find a path P from v to u by a greedy procedure. First go

up for k steps. Recall that at height k there are shortcuts of length

д(k). Go right along shortcuts until the distance to the column of

u is less than д(k) (taking one more shortcut would bring us to a

node that is on the right of u). This takes at most k steps. Next step

down and do a greedy descent to get to the column of u. At each
level h, if the remaining distance to the column of u is at least д(h),
take steps along the longest shortcut until the distance is less than

д(h). Since д(k) = 2
O (k)

, the length of the shortcuts at level h is at

most a constant number of times the length at level h − 1, hence

this number of steps is bounded by O(1). Finally, step down. We

either reach the column of u or the bottom cycle, and in this case

the distance to the column of u is less than д(1).
Since f (k − 1) < ℓ, then k < f −1(ℓ) + 1. We take a total of at

most k steps up and down, at most k steps right at level k , andO(1)
steps for each of the k levels, for a total of O(f −1(ℓ)) steps. □

Lemma 6. If a node not having an edge labelled D sees no errors
within distance r = C f −1(T (n̂)) for a sufficiently large constant C ,
then it can produce a valid output for the problem Π.

Proof. First consider a global problem, i.e., T (n) = Θ(n). If we
explore the grid up and right for r = C f −1(T̂ (n)) steps, and we

do not encounter any errors, and the grid does not wrap around,

then we would discover a grid fragment of dimensions at least

Df −1(n̂) ×Dn̂ for a D = Ω(C). Such a grid fragment would contain

D2n nodes, and for a sufficiently large D this would contradict the

assumption that the input has n nodes. Hence we must encounter

errors (which by assumption is not the case), or the grid has to

wrap around cleanly without any errors, in which case we also see

the entire bottom row and we can solve Π there by brute force.

Second, consider the case where T (n) = Θ(log
∗ n). By a sim-

ilar reasoning, the node can gather a grid fragment of dimensions

Df −1(log
∗ n̂) × D log

∗ n̂. In particular, it can see a fragment of

length D log
∗ n̂ of the bottom row. Furthermore, we have log

∗ n =
O(log

∗ n̂): to see this, note that д is non-decreasing, f (k) ≥ k , and
hence n = o(n̂2). Therefore in r rounds, for a sufficiently largeC , we
can gather a fragment of the bottom row that spans up to distance

at least T (n), and this is enough to solve Π. □

As a consequence, we obtain an upper bound for the complexity

of ΠM .

Theorem 3. Problem ΠM can be solved in O
(
f −1

(
T (n̂)

))
rounds.

Proof. The idea of the algorithm that solves the described LCL
problem is the following. First, each node gathers its constant-radius

neighbourhood, and sees if there is a local error:

• If a node witnesses a local error, it marks itself as ‘witness’

• If a node is either a witness itself, or it is adjacent to a witness,

it marks itself as a near-witness, and outputs E.

1315

STOC’18, June 25–29, 2018, Los Angeles, CA, USA A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D.Olivetti, J. Suomela

Now let r = c f −1(T (n̂)), for a large enough constant c . Each node
v in the bottom cycle – not having an edge labelled D – attempts

to gather full information about an r × f (r) rectangle to the up and

right from nodev , that is, a rectangle composed by the bottom-most

r nodes of the first f (r) columns to the right of v . By Lemma 5, in

O(r) rounds we can either successfully gather the entire rectangle if

it is error-free, or we can discover the nearest column that contains

a near-witness:

(1) If the entire rectangle is error-free, we can solve Π on the

bottom row by Lemma 6.

(2) Otherwise, we find the nearest column containing a near-

witness w̄ . In such a case, node v will output its modulo-2

distance from that column, the input i(w̄) of the witness, and
produce a path of error pointers that spans a sequence of

edges labelled R followed by a sequence of edges labelled

U, reaching w̄ . Notice that this path is unique and always

exists, since all columns before the nearest one containing a

witness must be fault-free (up to height r), and if a witness

is in the same column of v , the lowest one can be always

reached by a fault-free path spanning only edges labelled U.

Finally, nodes that are not on the bottom cycle and do not see

bottom nodes wanting to produce error pointer paths produce

empty outputs.

Clearly, this produces a valid solution to ΠM on extended link

machine encoding graphs, since they satisfy Lemma 6. Also, if there

are no witnesses and every node has an edge labelled D, all nodes
produce empty outputs, that is valid.

Now, consider a graph that is not an extended link machine

encoding graph. A node will explore the graph for Θ(r) rounds. If
the node satisfies the requirements of Lemma 6, then it produces a

valid solution for the problem Π. Otherwise the node sees a witness.
If a node v decides to produce an error pointer towards a near-

witness w̄ , then all the nodes on the error path will produce an

error pointer towards w̄ . This follows from the observation that,

on valid fragments, nodes on the same row reach the same height

while visiting the graph, due to the rectangular visit. Thus, if v
outputs a pointer towards w̄ , then all the intermediate nodes will

output a pointer, and these pointers will correctly produce a path

from v to w̄ with the right modulo-2 distance and cw labelling. □

5.2.2 Lower Bound – Proof of Theorem 4. Next, we prove that
the upper bound in Theorem 3 is tight. The worst-case instances are

truncated link machine encoding graphs, defined as follows: take a

valid link machine encoding graph and remove rows from the top,

until it is satisfied that n ≤ n̂ · f −1(T (n̂)), where n̂ is the length of

the bottom cycle. The basic idea is to show that on truncated link

machine encoding graphs, any algorithm has two choices, both of

them equally bad:

• We can solve problemΠ on the bottom cycle, but this requires

time Ω
(
f −1(T (n̂))

)
.

• We can report an error, but this also requires Ω
(
f −1(T (n̂))

)
rounds.

Note that truncated link machine encoding graphs have errors, and

hence it is fine for a node to report an error. However, all witnesses

are on the top row (or next to it), and constructing a correctly

labelled error pointer chain from the bottom row to the top row

takes time linear in the height of the construction. We will formalise

this intuition in what follows.

Lemma 7. Let G be a truncated link machine encoding graph, v
be a node on the bottom row, and let h be any function satisfying
h(ℓ) = o

(
f −1(ℓ)

)
. Let X be the set of all nodes that v can see in h(ℓ)

steps. Then X is contained in the subgraph induced by the columns
within distance o(ℓ) of v .

Proof. By the construction of linkmachine encoding graphs, the

maximum distance in columns we can reach in ℓ steps is bounded

by f (ℓ). Since f (ℓ) = ω(ℓ), we have that f
(
ℓ/C

)
≤ f (ℓ)/C for any

positive integer C . Thus, for any C , there is ℓ0 such that h(ℓ) <
f −1(ℓ)/C for all ℓ ≥ ℓ0, and thus

f (h(ℓ)) < f
(
f −1(ℓ)/C

)
≤ ℓ/C

for all ℓ ≥ ℓ0, which implies the claim. □

Theorem 4. Problem ΠM cannot be solved in o
(
f −1

(
T (n̂)

))
rounds.

Proof. The nodes on the bottom rowhave the following possible

outputs:

(1) At least one node v produces an error pointer U. Then we

must have a chain of U pointers all the way to the near-

witnessw near the top row, and the chain has to be labelled

with the input ofw . The distance fromv tow isΘ(f −1(T (n̂))),
and the claim follows.

(2) None of the nodes on the bottom row produce an error

pointer U, but at least one of them produces an error pointer

R. But then all nodes on the bottom row must output R, and
the bottom cycle has to be properly 2-coloured.

(3) None of the nodes produce any error pointers. Then all nodes

on the bottom row must solve problem Π.

As 2-colouring the bottom row is at least as hard as solving problem

Π on the bottom row, it is sufficient to argue that the third case re-

quires Ω(f −1(T (n̂))) rounds. The proof is by simulation. We assume

a faster algorithm for ΠM and use it to speed up the corresponding

problem Π on cycles.

Let A be an algorithm for ΠM with running time o(f −1(T (n̂))).
The algorithm has to solve the problem Π on the bottom cycle. Now,

given a cycleC of length n̂ as input, we create a virtual link machine

encoding graph on top of the cycle as follows: each node creates

the nodes in its column, their identifiers defined to be the identifier

of the bottom node padded with the node’s height, encoded in logh
bits.

To simulate an algorithm with running time t = o(f −1(T (n̂)))
in this virtual graph, each node needs to learn the identifiers of

all nodes in its radius-t neighbourhood in the virtual graph. By

Lemma 7, the columns of those nodes are contained within distance

o(T (n̂)) in the virtual graph. Thus, we can recover the identifiers of

the nodes by scanning the cycleC up to distance o(T (n̂)). Now each

node v can apply A and find a solution for Π on the cycleC in time

o(T (n̂)), by outputting the output of the node at the bottom of the

virtual column created by node v . This yields an algorithm with

running time o(T (n̂)) on cycles of length n̂, a contradiction. □

Remark 8. Note that we did not use the fact that our algorithms

are deterministic in this proof. In fact, a similar argument can be

applied to randomised algorithms. This is due to the fact that, as

1316

New Classes of Distributed Time Complexity STOC’18, June 25–29, 2018, Los Angeles, CA, USA

we will see later, we consider problems that are equally hard for

randomised and deterministic algorithms. Also, on truncated link

machine encoding graphs the only way to cheat with error pointers

is to produce a 2-colouring or copy the input of nodes that are far

on the graph, that is, to solve problems that are equally hard for

randomised and deterministic algorithms.

5.3 Instantiating the LCL Construction
We consider the problems Πд and Πl defined on cycles as follows:

Πl (3-colouring): Output a proper 3-colouring.

The time complexity of this problem is Θ(log
∗ n) [8, 21],

and it can be solved with one-sided algorithms. This is also

clearly an LCL problem.

Πд (safe 2-colouring): Given an input in {0, 1}, label the nodes

with {0, 1, 2, E} such that

• input-0 nodes are labelled with 0,

• input-1 nodes are labelled with 1, 2, or E,
• 1 is never adjacent to 1,

• 2 is never adjacent to 2,

• E is never adjacent to 0, 1, or 2.

In essence, if we have an all-1 input, we can produce an all-E
output, and if we have an all-0 input, we can produce an

all-0 output. However, if we have a mixture of 0s and 1s,

we must properly 2-colour each contiguous chain of 1s. The

worst-case instance is a cycle with only one 0, in which case

we must properly 2-colour a chain of length n − 1.

The time complexity of this problem is Θ(n), and it can be

solved with one-sided algorithms. It is also clearly an LCL
problem. Note that, unlike 2-colouring, safe 2-colouring is

always solvable for any input (including odd cycles).

We now instantiate our LCL construction using the link ma-

chines defined in Section 3. The general recipe of these instanti-

ations will be the following:

• We start with a link machine program M with growth д,
and compute the function f (ℓ) = ℓд(ℓ) that controls the
speed-up.

• Next, we observe that there can be link machine encoding

graphs with n nodes, in which the bottom cycle has length

n̂ satisfying n = Θ
(
n̂ · f −1(T (n̂))

)
, in which nodes of the

bottom cycle see no errors within distance Θ(f −1(T (n̂))).
• Now it follows from Theorems 3 and 4 that when we instan-

tiate the construction, we get problems of complexity

(1) T1(n) = Θ
(
f −1(n̂)

)
when starting from Πд , and

(2) T2(n) = Θ
(
f −1(log

∗ n̂)
)
when starting from Πl .

By considering each of the composite functions of Table 4, and by

applying Theorems 3 and 4, we obtain all of the new time complex-

ities listed in Table 2.

Theorem 9. There exist LCL problems of complexities

(1) Θ
(
nr/s

)
,

(2) Θ
(
(log
∗ n)q/p

)
,

where r ,s , p and q are positive integer constants, satisfying q/p ≤ 1

and r/s < 1/2.

Proof. LetM = powp ◦root
′
q with growth д(ℓ) = Θ(ℓp/q). We

have

• f (ℓ) = Θ
(
ℓ(p+q)/q

)
, and

• f −1(x) = Θ
(
xq/(p+q)

)
.

When Π is Πд we obtain:

• n = Θ(n̂(p+2q)/(p+q))

• n̂ = Θ
(
n(p+q)/(p+2q))

• T1(n) = Θ
(
n̂q/(p+q)

)
= Θ

(
nq/(p+2q))

.

By setting q = r and p = s − 2r the claim follows.

When Π is Πl we obtain:

• n̂ = Θ̃(n)
• T2(n) = Θ

(
(log
∗ n)q/(p+q)

)
.

The claim follows by setting the values of p and q appropriately. □

Theorem 10. There exist LCL problems of complexities

(1) Θ(log
p/q n), and

(2) Θ(log
p/q

log
∗ n),

where p and q are positive integer constants such that p/q ≥ 1.

Proof. LetM = exp◦powq◦root
′
p with growthд(ℓ) = 2

Θ(ℓq/p)
.

We have

• f (ℓ) = 2
Θ(ℓq/p)

and f −1(x) = Θ(log
p/q x),

• n̂ = Θ̃(n).

Thus, the LCL problem ΠM has complexity

• T1(n) = Θ
(
log

p/q n̂
)
= Θ

(
log

p/q n
)
when Π is Πд , and

• T2(n) = Θ
(
log

p/q
log
∗ n̂

)
= Θ

(
log

p/q
log
∗ n

)
when Π is Πl .

□

Theorem 11. There exist LCL problems of complexities

(1) 2
Θ(log

q/p n), and
(2) 2

Θ(log
q/p

log
∗ n),

where p and q are positive integer constants such that q/p ≤ 1.

Proof. LetM = exp◦powp ◦rootq ◦log◦countwith growth

д(ℓ) = 2
Θ(log

p/q ℓ)
. We have

• f (ℓ) = 2
Θ(log

p/q ℓ)
and f −1(x) = 2

Θ(log
q/p x)

,

• n̂ is Ω(n1/2) and O(n).

Thus, the LCL problem ΠM has complexity

• T1(n) = 2
Θ(log

q/p n̂) = 2
Θ(log

q/p n)
when Π is Πд , and

• T2(n) = 2
Θ(log

q/p
log
∗ n̂) = 2

Θ(log
q/p

log
∗ n)

when Π is Πl . □

ACKNOWLEDGEMENTS
We thank Christopher Purcell for discussions, Sebastian Brandt for

spotting an error in the preliminary version of the paper, and the

anonymous reviewers for their useful comments. This work was

supported in part by the Academy of Finland, Grant 285721, the

Ulla Tuominen Foundation, and ANR Project DESCARTES.

REFERENCES
[1] Leonid Barenboim. 2016. Deterministic (∆ + 1)-coloring in sublinear (in ∆)

time in static, dynamic, and faulty networks. J. ACM 63, 5 (2016), 47:1–47:22.

https://doi.org/10.1145/2979675

[2] Leonid Barenboim, Michael Elkin, and Fabian Kuhn. 2014. Distributed (∆ + 1)-

coloring in linear (in ∆) time. SIAM J. Comput. 43, 1 (2014), 72–95. https:

//doi.org/10.1137/12088848X

1317

https://doi.org/10.1145/2979675
https://doi.org/10.1137/12088848X
https://doi.org/10.1137/12088848X

STOC’18, June 25–29, 2018, Los Angeles, CA, USA A. Balliu, J. Hirvonen, J. H. Korhonen, T. Lempiäinen, D.Olivetti, J. Suomela

[3] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen,

Joel Rybicki, Jukka Suomela, and Jara Uitto. 2016. A lower bound for the distrib-

uted Lovász local lemma. In Proc. 48th Annual ACM Symposium on the Theory of
Computing (STOC 2016). ACM, 479–488. https://doi.org/10.1145/2897518.2897570

arXiv:1511.00900.
[4] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen,

Patric R.J. Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and

Przemysław Uznański. 2017. LCL problems on grids. In Proc. 35th ACM Sym-
posium on Principles of Distributed Computing (PODC 2017). ACM, 101–110.

https://doi.org/10.1145/3087801.3087833

[5] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. 2018. The

complexity of distributed edge colouring with small palettes. In Proc. 29th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2018). SIAM, 2633–2652.

https://doi.org/10.1137/1.9781611975031.168

[6] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2016. An exponential separation

between randomized and deterministic complexity in the LOCAL model. In Proc.
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016).
IEEE, 615–624. arXiv:1602.08166.

[7] Yi-Jun Chang and Seth Pettie. 2017. A time hierarchy theorem for the

LOCAL model. In Proc. 58th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2017). IEEE, 156–167. https://doi.org/10.1109/FOCS.2017.23
arXiv:1704.06297.

[8] Richard Cole and Uzi Vishkin. 1986. Deterministic coin tossing with applications

to optimal parallel list ranking. Information and Control 70, 1 (1986), 32–53.

https://doi.org/10.1016/S0019-9958(86)80023-7

[9] Michael Elkin, Seth Pettie, and Hsin-Hao Su. 2015. (2∆−1)-edge-coloring is much

easier than maximal matching in the distributed setting. In Proc. 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2015). SIAM, 355–370.

https://doi.org/10.1137/1.9781611973730.26

[10] Manuela Fischer. 2017. Improved deterministic distributed matching via rounding.

In Proc. 31st International Symposium on Distributed Computing (DISC 2017).
Schloss Dagstuhl – Leibniz Center for Informatics, 17:1–17:15. https://doi.org/10.

4230/LIPIcs.DISC.2017.17

[11] Manuela Fischer and Mohsen Ghaffari. 2017. Sublogarithmic distributed al-

gorithms for Lovász local lemma, and the complexity hierarchy. In Proc. 31st
International Symposium on Distributed Computing (DISC 2017). Schloss Dagstuhl
– Leibniz Center for Informatics, 18:1–18:16. https://doi.org/10.4230/LIPIcs.DISC.

2017.18

[12] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. 2017. Deterministic dis-

tributed edge-coloring via hypergraph maximal matching. In Proc. 58th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2017). IEEE, 180–191.
https://doi.org/10.1109/FOCS.2017.25

[13] Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. 2016. Local conflict

coloring. In Proc. 57th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2016). IEEE, 625–634. https://doi.org/10.1109/FOCS.2016.73

[14] Mohsen Ghaffari. 2016. An improved distributed algorithm for maximal inde-

pendent set. In Proc. 27th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2016). SIAM, 270–277. https://doi.org/10.1137/1.9781611974331.ch20

[15] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, Yannic Maus, Jukka Suomela,

and Jara Uitto. 2017. Improved distributed degree splitting and edge coloring. In

Proc. 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl – Leibniz Center for Informatics, 19:1–19:15. https://doi.org/10.4230/

LIPIcs.DISC.2017.19

[16] Mohsen Ghaffari and Hsin-Hao Su. 2017. Distributed degree splitting, edge color-

ing, and orientations. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA 2017). SIAM, 2505–2523. https://doi.org/10.1137/1.9781611974782.

166

[17] Mika Göös and Jukka Suomela. 2016. Locally checkable proofs in distributed

computing. Theory of Computing 12, 19 (2016), 1–33. https://doi.org/doi:10.4086/

toc.2016.v012a019

[18] David G. Harris, Johannes Schneider, and Hsin-Hao Su. 2016. Distributed (∆+1)-
coloring in sublogarithmic rounds. In Proc. 48th Annual ACM Symposium on
the Theory of Computing (STOC 2016). ACM, 465–478. https://doi.org/10.1145/

2897518.2897533

[19] Amos Korman, Shay Kutten, and David Peleg. 2010. Proof labeling

schemes. Distributed Computing 22, 4 (2010), 215–233. https://doi.org/10.1007/

s00446-010-0095-3

[20] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2016. Local com-

putation: lower and upper bounds. J. ACM 63, 2 (2016), 17:1–17:44. https:

//doi.org/10.1145/2742012 arXiv:1011.5470.
[21] Nathan Linial. 1992. Locality in distributed graph algorithms. SIAM J. Comput.

21, 1 (1992), 193–201. https://doi.org/10.1137/0221015

[22] Moni Naor and Larry Stockmeyer. 1995. What can be computed locally? SIAM J.
Comput. 24, 6 (1995), 1259–1277. https://doi.org/10.1137/S0097539793254571

[23] Alessandro Panconesi and Romeo Rizzi. 2001. Some simple distributed algorithms

for sparse networks. Distributed Computing 14, 2 (2001), 97–100. https://doi.org/

10.1007/PL00008932

[24] Alessandro Panconesi and Aravind Srinivasan. 1995. The local nature of ∆-
coloring and its algorithmic applications. Combinatorica 15, 2 (1995), 255–280.
https://doi.org/10.1007/BF01200759

[25] Alessandro Panconesi and Aravind Srinivasan. 1996. On the complexity of

distributed network decomposition. Journal of Algorithms 20, 2 (1996), 356–374.
https://doi.org/10.1006/jagm.1996.0017

[26] David Peleg. 2000. Distributed Computing: A Locality-Sensitive Approach. SIAM.

1318

https://doi.org/10.1145/2897518.2897570
http://arxiv.org/abs/1511.00900
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1137/1.9781611975031.168
http://arxiv.org/abs/1602.08166
https://doi.org/10.1109/FOCS.2017.23
http://arxiv.org/abs/1704.06297
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1137/1.9781611973730.26
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.4230/LIPIcs.DISC.2017.17
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1109/FOCS.2017.25
https://doi.org/10.1109/FOCS.2016.73
https://doi.org/10.1137/1.9781611974331.ch20
https://doi.org/10.4230/LIPIcs.DISC.2017.19
https://doi.org/10.4230/LIPIcs.DISC.2017.19
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/doi:10.4086/toc.2016.v012a019
https://doi.org/doi:10.4086/toc.2016.v012a019
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1145/2897518.2897533
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1145/2742012
https://doi.org/10.1145/2742012
http://arxiv.org/abs/1011.5470
https://doi.org/10.1137/0221015
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1007/PL00008932
https://doi.org/10.1007/PL00008932
https://doi.org/10.1007/BF01200759
https://doi.org/10.1006/jagm.1996.0017

	Abstract
	1 Introduction
	1.1 LOCAL Model
	1.2 LCL Problems
	1.3 State of the Art
	1.4 Contributions
	1.5 Proof Ideas
	1.6 Some Technical Details
	1.7 Significance

	2 Preliminaries
	2.1 Model of Computation
	2.2 Graph Problems

	3 Link machines
	3.1 Working with Link Machine Programs
	3.2 Building Blocks
	3.3 Composed Functions

	4 Link machine encoding graphs
	4.1 Formal Definition
	4.2 Local Checkability

	5 LCL constructions
	5.1 The LCL Problem Pi_M
	5.2 Time Complexity
	5.3 Instantiating the LCL Construction

	References

