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Abstract

Assume we have a graph problem that is locally checkable but not locally solvable—given
a solution we can check that it is feasible by verifying all constant-radius neighborhoods, but
to find a feasible solution each node needs to explore the input graph at least up to distance
Ω(log n) in order to produce its own part of the solution.

Such problems have been studied extensively in the recent years in the area of distributed
computing, where the key complexity measure has been distance: how far does a node need
to see in order to produce its own part of the solution. However, if we are interested in e.g.
sublinear-time centralized algorithms, a much more appropriate complexity measure would
be volume: how large a subgraph does a node need to see in order to produce its own part of
the solution.

In this work we study locally checkable graph problems on bounded-degree graphs and we
give a number of constructions that exhibit different tradeoffs between deterministic distance,
randomized distance, deterministic volume, and randomized volume:

• If the deterministic distance is linear, it is also known that randomized distance is
near-linear. We show that volume complexity is fundamentally different: there are
problems with a linear deterministic volume but only logarithmic randomized volume.

• We prove a volume hierarchy theorem for randomized complexity: Among problems
with (near) linear deterministic volume complexity, there are infinitely many distinct
randomized volume complexity classes between Ω(log n) and O(n). Moreover, this
hierarchy persists even when restricting to problems whose randomized and deterministic
distance complexities are Θ(log n).

• Similar hierarchies exist for polynomial distance complexities: we show that for any
k, ` ∈ N with k ≤ `, there are problems whose randomized and deterministic distance
complexities are Θ(n1/`), randomized volume complexities are Θ̃(n1/k), and whose

deterministic volume complexities are Θ̃(n).

Additionally, we consider connections between our volume model and massively parallel
computation (MPC). We give a general simulation argument that any volume-efficient
algorithm can be transformed into a space-efficient MPC algorithm.
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Figure 1: Prior work: locally checkable graph problems (LCLs) classified based on their distance complexity
[2, 3, 5, 9, 12, 13, 15, 20, 21, 23, 33, 37, 38, 44]. Blue dots represent examples of LCL problems with a
known deterministic and randomized complexity, and the orange shading represents a region in which no
LCL problems exist.

1 Introduction

Distance complexity. In message-passing models of distributed computing, time is intimately
connected to distance: in T communication rounds, nodes can potentially learn some information
that was originally within distance T from them, but not further. This idea is formalized in
the LOCAL model [33, 41] of distributed computing, in which a distributed algorithm with a
running time T is, in essence, a function that maps radius-T neighborhoods to local outputs.
The key question in the theory of distributed computing can be stated as follows:

How far does an individual node need to see in order to produce its own part of the
solution?

To give some simple examples, assume we have got a graph with n nodes and a maximum degree
∆ = O(1), and all nodes are labeled with unique identifiers:

• Finding a proper vertex coloring with ∆ + 1 colors: Each node can pick its own color based
on its radius-O(log∗ n) neighborhood [15, 33, 37].

• Finding a proper vertex coloring with ∆ colors: Each node needs to see up to distance
Ω(log log n) in order to succeed with high probability and up to distance Ω(log n) if we are
using a deterministic algorithm [9, 13, 21, 39].

Graph coloring is an example of a locally checkable labeling (LCL) [38]. I.e., it is a graph
problem in which we label nodes with labels from some finite set, and a solution is globally
feasible if it looks feasible in a constant-radius neighborhood of each node. In the past several
years our understanding of the distance complexity of LCLs has advanced rapidly [2–10, 12–
14, 20, 21, 23, 24, 44], and it is now known that all LCL problems can be broadly classified in
four classes, as shown in Figure 1. One of the key insights is that there are broad gaps between
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the classes, and such gaps have immediate algorithmic applications: for example, if you can
solve any LCL problem with o(log n) deterministic distance, it directly implies also a solution
with O(log∗ n) distance.

Volume complexity. While there has been a lot of progress on understanding how far each
node must see in a graph to solve a given graph problem, this line of research has limited
direct applicability beyond message-passing models of distributed computing. In many other
settings—e.g., parallel algorithms and centralized sublinear-time algorithms—a key question is
not how far do we need to explore the input graph, but how many nodes of the input graph we
need to explore. One formalization of this idea is the (stateless) local computation algorithms
(LCAs, a.k.a. centralized local algorithms or CentLOCAL) [45], where the key question is this:

How much of the input does an individual node need to see in order to produce its
own part of the solution?

We will refer to this as the volume complexity of a graph problem. We will formalize the model
of computing in Section 2, but in brief, the idea is this:

In time T each node can adaptively gather information about a connected component
of size T around itself.

A bit more precisely, in each time step a node can choose to query any neighbor of a node that
it has discovered previously. The query will reveal the unique identifier of the node, its degree,
and its local input (if any). In randomized algorithms, each node has an independent stream of
random bits that is part of its local input. Eventually, each node has to stop and produce its
own part of the solution (e.g. its own color if we are solving graph coloring). While we assume
that a node gathers a connected region, we point out that we can make this assumption without
loss of generality for a broad range of graph problems [26].

Parnas and Ron [40] introduced a general framework that transforms algorithms in the
LOCAL model to LCAs. In their framework, an algorithm with complexity f(n) yields an LCA
with probe1 complexity ∆Θ(f(n)). Recently, Ghaffari and Uitto [22] asked if the ∆Ω(f(n)) barrier
inherent to Parnas and Ron’s technique can be overcome by “sparsifying” the underlying LOCAL
algorithm. They provide affirmative answers for several well-studied problems, such as maximal
independent set, maximal matching, and approximating a minimum vertex cover. While there
is a large body of work that introduces algorithms with a low volume complexity—see, e.g.,
[1, 11, 17–19, 22, 30–32, 34, 35, 40, 43, 45]—what is currently lacking is an understanding of
the landscape of the volume complexity.

Connections to Massively Parallel Computation. Another motivation for studying vol-
ume complexity is its connection to massively parallel computation (MPC) frameworks, such as
MapReduce [28]. In the MPC model, a system consists of M machines each with S local memory.
An execution proceeds in synchronous rounds. In each round, each machine can communicate
with all other machines—sending and receiving at most S bits in total—and perform arbitrary
local computations. The goal is to perform a task while minimizing the space requirement S per
machine as well as the number of communication rounds.

In the case where each machine represents a vertex in a network with maximum degree ∆,
any algorithm with distance complexity T can be trivially simulated in the MPC model with
space S = ∆O(T ) in T rounds. Using graph exponentiation [29], this runtime can be improved to
O(log T ) rounds. Recently, sparsification—i.e., exploiting volume efficient algorithms—has been
applied to give strongly sub-linear space algorithms in the MPC model [22]. The volume model

1The word “probe” is used in the LCA literature to refer to an atomic interaction with a data structure,
whereas we use “query.” The latter is standard terminology, e.g., in the literature on sublinear time graph
algorithms and property testing.
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we describe in Section 2 allows us to formalize a close connection between volume and the MPC
model. Specifically, in Section 2.4 we show that any algorithm with volume complexity VOL
can be simulated using space roughly O(VOL + nc) and O(VOL) rounds in the MPC model for
any positive constant c. In some cases, the runtime can be improved to O(log VOL).

1.1 Towards a Theory of Volume Complexity

In this work, we initiate the study of the volume complexity landscape of graph problems. As
the study of LCL problems has proved instrumental in our understanding of distance complexity,
we will follow the same idea here. Some of the key research questions include the following:

• What are possible deterministic and randomized volume complexities of LCL problems?

• Do we have the same four distinct classes of problems as what we saw in Figure 1, and
similar gaps between the classes?

• For distance complexity, randomness is known to help exponentially for all problems of
class C, while it is of limited use in class D and useless in classes A and B. Does a similar
picture emerge for volume complexity?

• There are infinite families of distinct distance complexities in classes B and D (this is a
distributed analogue of the time hierarchy theorem)—does it hold also for the volume
complexity?

• How tightly can we connect the volume complexity of a problem with its computational
complexity in other models of computing (e.g. time and message complexity in LOCAL
and CONGEST models of distributed computing, and time complexity in various models
of massively parallel computing)?

1.2 Preliminary Observations

Let us now make some preliminary observations on what we can say about the volume complexity
of the four classes of LCL problems that are listed in Figure 1. We will summarize these results
in Figure 2.

Class A. Volume complexity is at least as much as the distance complexity. In graphs of
maximum degree ∆ = O(1), volume complexity is at most exponential in distance complexity.
A distance-T algorithm can be simulated if each node gathers a ball of volume ∆O(T ), and
a volume-T algorithm can be simulated if each node gathers a ball of radius O(T ). Hence it
trivially follows that the following classes of LCL problems are equal:

• problems with distance complexity Θ(1),
• problems with volume complexity Θ(1).

Class B. Let us now look at the class of LCL problems that are solvable with distance
between Ω(log log∗ n) and O(log∗ n). The trivial bounds for their volume complexity would be
Ω(log log∗ n) and ∆O(log∗ n).

However, we can prove also a nontrivial upper bound. Any LCL problem in this class can be
solved in two steps [13]:

1. find a distance-k coloring for a suitable constant k = O(1),
2. apply a constant-distance mapping to the colored graph.
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Figure 2: Preliminary observations on the landscape of volume complexities. Blue dots are some examples
of LCL problems for which the volume complexity is easy to establish.

It has already been known for decades that the first step can be solved in O(log∗ n) distance[15].
However, recently Even et al. [17] introduced a graph coloring technique that makes it possible
to solve the problem also in O(log∗ n) volume. It follows that these classes of LCL problems are
equal:

• problems with distance complexity between Ω(log log∗ n) and O(log∗ n),
• problems with volume complexity between Ω(log log∗ n) and O(log∗ n).

Moreover, the derandomization result by Chang et al. [13] can be used to show that randomness
does not help in this region in either model (subject to some mild assumptions on the model of
computing).

Classes C and D. Finally, we are left with the LCL problems that have deterministic distance
between Ω(log n) and O(n) and randomized distance between Ω(log log n) and O(n). Trivially,
the volume complexity of any problem is bounded by O(n), and hence the following four classes
of LCL problems are equal:

• problems with randomized distance complexity between Ω(log log n) and O(n),
• problems with deterministic distance complexity between Ω(log n) and O(n),
• problems with randomized volume complexity between Ω(log log n) and O(n),
• problems with deterministic volume complexity between Ω(log n) and O(n).

In the distance model, it is known that in this region randomness helps at most exponentially [13].
For example, if the randomized distance complexity is O(log logn), then the deterministic distance
complexity has to be O(log n). The same proof goes through verbatim for the volume model
(under some technical assumptions on the model of computing), and hence we can conclude that
e.g. randomized volume O(log log n) implies deterministic volume O(log n).
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Figure 3: An overview of our contributions. Each blue line represents one LCL problem; the left end
of the line indicates the randomized and deterministic volume complexity, and the right end of the line
indicates the randomized and deterministic distance complexity.

1.3 Our Contribution

While problems of classes A and B are well-understood both from the perspective of volume and
distance, the volume complexity of problems in classes C and D is wide open—indeed, it is not
even known if there are distinct classes C and D for volume complexity.

In this work, we start to chart problems of class D, i.e., “global” problems that require Ω(log n)
distance and hence also Ω(log n) volume for both deterministic and randomized algorithms. This
is a broad class of problems, with infinitely many distinct distance complexities [2, 3, 12].

We will show that in this region there are infinite families of LCL problems that exhibit
different combinations of randomized volume, deterministic volume, randomized distance, and
deterministic distance. The new complexities are summarized in Figure 3 and Table 1. We make
the following observations:

• There are infinitely many LCLs with distinct randomized volume complexities between
ω(log n) and o(n).

• Randomness can help exponentially, even if the deterministic volume complexity is Θ(n).
This is very different from distance complexities, in which, e.g. a linear deterministic
distance implies near-linear randomized distance [23].

• There are LCL problems in which distance complexity equals randomized volume, and there
are also LCL problems in which distance complexity is logarithmic in randomized volume.
Hence distance and volume are genuinely distinct concepts in this region. Moreover, our
constructions yield a volume hierarchy theorem for randomized algorithms: There are
infinitely many distinct randomized volume complexity classes between Ω(log n) and O(n),
even when restricting attention to problems whose distance complexities are Θ(log n).

2 Model and Preliminaries

We will now define the model of computing and the problem family that we study in this work.
Here is a brief overview for a reader familiar with the LOCAL model [33, 41] of distributed
computing and LCAs (local computation algorithms, a.k.a., centralized local algorithms) [17, 45]:

• Deterministic distance = round complexity in the deterministic LOCAL model.
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Problem (section discussed) R-DIST D-DIST R-VOL D-VOL

LeafColoring (§3) Θ(log n) Θ(log n) Θ(log n) Θ(n)
BalancedTree (§4) Θ(log n) Θ(log n) Θ(n) Θ(n)

Hierarchical-THC(k) (§5) Θ(n1/k) Θ(n1/k) Θ̃(n1/k) Θ̃(n)

Hybrid-THC(k) (§6) Θ(log n) Θ(log n) Θ̃(n1/k) Θ̃(n)

HH-THC(k, `) (§6.1) Θ(n1/`) Θ(n1/`) Θ̃(n1/k) Θ̃(n)

Table 1: The new LCL problems constructed in this work. Here k and ` are natural numbers, k ≤ `. We
use Θ̃ to suppress factors that are poly-logarithmic in the argument.

• Randomized distance = round complexity in the randomized LOCAL model (like deter-
ministic distance, but each node has a private random string).
• Deterministic volume ≈ probe complexity in the stateless deterministic LCA model.
• Randomized volume = like deterministic volume, but each node has a private random

string.

Our goal here is to have a clean model that is as close to the standard LOCAL model as
possible, but which captures the idea of paying for the volume that the algorithm explores. The
deterministic volume model is very close to stateless deterministic LCAs—we restrict queries to
a connected region, but for many graph problems this assumption does not matter [26]. However,
the randomized volume model is somewhat different from randomized LCAs; one key difference
is that randomized LCAs typically have direct access to shared randomness, while in our model
each node has a private random string. That said, low randomized volume clearly implies that
there exists also an efficient randomized LCA for solving the problem. We will discuss different
flavors of randomness in more detail in Section 7.6.

2.1 Graphs

Our main object of study in this paper is distributed graph algorithms. In this context, an
undirected graph G = (V,E) represents both a communication network and the (partial) input
to a problem. We denote the number of nodes in G by n = |V |. For each node v ∈ V , we denote
its degree by deg(v), and we assume that for some fixed constant ∆ ∈ N, all nodes have degree
at most ∆. In any input, we assume that each node v ∈ V is given a unique identifier from the
range [nα] for some arbitrary fixed α ≥ 1. For any positive integer d and node v ∈ V , Nv(d)
denotes the d-radius neighborhood of v. That is, Nv(d) is the induced subgraph of G containing
all nodes w ∈ V with dist(v, w) ≤ d.

While we consider undirected graphs—where each edge serves as a bi-directional commu-
nication link—it is convenient to view each edge {v, w} ∈ E as a pair of ordered edges (v, w)
(from v to w) and (w, v) (from w to v). We assume that input graphs additionally specify
a port ordering . For each vertex v and incident edge (v, w), there is an associated number
p(v, w) ∈ [deg(v)]—the port number of (v, w)—such that p is a bijection between (ordered)
edges incident to v and [deg(v)]. Thus, on any input, we may speak unambiguously of v’s ith

neighbor, as the neighbor w satisfying p(v, w) = i (if any).
The input to a graph problem may additionally specify an input string for each node v ∈ V .

An input labeling L of a graph G specifies O(log n)-bit unique identifiers for each node, a port
ordering, and any additional input required for the graph problem. We denote the input label
of a particular node v by L(v). We also assume that n—the number of nodes in the graph—is
provided as input to every algorithm.
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2.2 Algorithms and Complexity

Each node v ∈ V represents a single processor. Throughout an execution of an algorithm A
initiated at a vertex v ∈ V , A maintains a set Vv of visited nodes, initialized to Vv = {v}. An
execution proceeds in discrete steps , where in each step, A performs a single local query of the
form query(w, j) where w ∈ Vv and j ∈ [deg(w)] is a port number. In response, A receives

• the identity of the vertex u satisfying p(w, u) = j,
• the degree deg(u), and
• the entire input of u.

Additionally, v updates Vv ← Vv ∪ {u}. Following the response to a query, A updates its local
state, and determines its next query, or decides to produce output and halt. Given a graph
G = (V,E), labeling L of G, and vertex v ∈ V , we denote the output of A on (G,L) initiated at
v by A(v,G,L). The set of outputs of A induces a new labeling L′, where L′(v) = A(v,G,L).

We consider both deterministic and randomized algorithms. For randomized algorithms,
random bits used by the algorithm are treated as part of the input at each node. Specifically,
each node v ∈ V has a random string rv : N→ {0, 1}, where each bit rv(i) is an i.i.d. 0–1 random
variable with Pr(rv(i) = 1) = Pr(rv(i) = 0) = 1/2. Since we treat rv as part of v’s input, rv is
seen by every node that queries in v. For technical reasons, we assume that algorithms access
the random strings rv sequentially, and that for any algorithm A and any labeled graph (G,L)
there exists some finite bound b (which may depend on the input) such that with probability
1−O(1/n) the execution of algorithm A on (G,L) accesses at most b random bits.2

We are primarily interested in two complexity measures: distance and volume.

Definition 2.1. Let A be an algorithm, G = (V,E) a graph, L a labeling of G, and v ∈ V a
node. Then the distance cost of A on (G,L) initiated from v is

DIST(A,G,L, v) = max {dist(v, w) |w ∈ Vv} ,

where Vv is the set of nodes visited by the execution when A terminates. Let Gn denote the
family of labeled graphs on at most n nodes with maximum degree at most ∆. The distance
cost of A on graphs of n nodes is defined by

DISTn(A) = sup
{

DIST(A,G,L, v)
∣∣ (G,L) ∈ Gn, G = (V,E), v ∈ V

}
.

Definition 2.2. Let A be an algorithm, G = (V,E) a graph, L a labeling of G, and v ∈ V a
node. Then the volume cost of A on (G,L) initiated from v is

VOL(A,G,L, v) = |Vv| ,

where Vv is the set of nodes visited by the execution when A terminates. Let Gn denote the
family of labeled graphs on at most n nodes. The volume cost of A on graphs of n nodes is
defined by

VOLn(A) = sup
{

VOL(A,G,L, v)
∣∣ (G,L) ∈ Gn, G = (V,E), v ∈ V

}
.

Remark 2.3. The distance cost of an algorithm in our model is closely related to the well-known
LOCAL model of computation [33, 41]. In the LOCAL model, in T rounds each node can query
all of its nodes within distance T . Thus, on input (G,L), an algorithm A can be implemented
in T rounds in the LOCAL model if and only if it DIST(A,G,L, v) ≤ T for all v ∈ V .

2With this assumption the derandomization result by Chang et al. [13, Theorem 3] holds also in the volume
model. This seems to be a very mild assumption, and it should be automatically satisfied for most “natural”
models of computation, e.g., probabilistic Turing machines. However, in standard message passing models no
computational assumptions are made about individual processors. We suspect that for LCL problems, our
restriction on how randomness is used is essentially without loss of generality. See the discussion in Section 7.6.
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Definition 2.4. Let Π be a graph problem—that is, a family of triples (G, I,O), where
I and O are input and output labelings (respectively) of G. We say that a deterministic
algorithm A solves Π if for every allowable input I the output O = (L′, G) formed by taking
L′(v) = A(v,G,L) satisfies (G, I,O) ∈ Π. A randomized algorithm A solves Π if for all inputs I

Pr
r

((G, I,O) ∈ Π) = 1−O(1/n)

where the probability is taken over the (joint) randomness of all nodes, and n is the number of
nodes in G.

Given a problem Π, the complexity of the problem Π is the infimum over all algorithms
A computing Π of the cost of A. We denote the deterministic distance, randomized distance,
deterministic volume, and randomized volume complexities of Π by

D-DIST(Π), R-DIST(Π), D-VOL(Π), R-VOL(Π)

respectively.

2.3 Comparing Distance and Volume

Here we give an elementary relationship between distance and volume complexities.

Lemma 2.5. Let Π be a problem defined on the family of graphs of maximum degree at most
∆. Then we have

R-DIST(Π) ≤ R-VOL(Π) ≤ ∆R-DIST(Π) + 1 (1)

and
D-DIST(Π) ≤ D-VOL(Π) ≤ ∆D-DIST(Π) + 1. (2)

Proof. For the first inequalities in Equations (1) and (2), suppose A is an algorithm that solves Π
on G = (V,E) with labeling L using volume m. For any v ∈ V , let Vv ⊆ V denote the subset of
nodes queried by an execution of A initiated from v, so that |Vv| ≤ m. Since the subgraph of G
induced by Vv is connected, we have dist(v, w) ≤ m for all w ∈ Vv, hence DIST(A,G,L, v) ≤ m.

For the second inequalities, suppose A solves Π using distance at most m, and let Nv(m)
denote the m-neighborhood of (v) (i.e., Nv(m) = {w ∈ V |dist(v, w) ≤ m}). Since G has
maximum degree at most ∆, we have |Nv(m)| ≤ ∆m + 1. Since Vv ⊆ Nv(m), we have
VOL(A,G,L, v) = |Vv| ≤ ∆m + 1, which gives the desired result.

2.4 Comparing Volume and MPC

In the MPC model [28], there are M machines each with S memory. An execution proceeds in
synchronous rounds of all-to-all communication, with each node sending and receiving at most S
bits per round. For simplicity, consider the case where each machine stores the adjacency list of
a single vertex in G so that M = n (and S � ∆). Here we describe how an arbitrary algorithm
with volume cost VOL can be simulated efficiently in the MPC model.

Lemma 2.6. Suppose an algorithm A for Π has volume cost VOL when executed on a (labeled)
graph G. Then for any number c > 0, there exists a (randomized) algorithm in the MPC model
solving Π in O(VOL) rounds using space S = O(VOL + nc + ∆) per node.

We only sketch the proof of Lemma 2.6. We show that for S = O(nc + ∆), we can simulate
each node v ∈ V performing a single step (i.e., query and response) of A in O(1) rounds. The
lemma follows by having each machine store the component queried by the vertex it represents
in the simulation of A. Without loss of generality, assume the machines are labeled 1, 2, . . . , n.
Each query is of the form (v, w, i), interpreted as, “node v queries for the ith neighbor of node
w.” We refer to v as the source of the query, and w the destination . The difficulty of the
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simulation arises because a single node w could be the destination of many queries from different
sources. Thus, queries cannot simply be sent directly from source to destination. However, all
queries with a single destination must have at most ∆ unique responses, corresponding to the
(at most) ∆ neighbors of the destination. The crux of our argument is showing how to identify
the set of unique queries, and route the responses back to their sources in O(1) rounds.

The basic idea is the following:

1. Sort the set of queries made in a single step (v1, w1, i1), (v2, w2, i2), . . . , (vn, wn, in) with
wj ≤ wj+1 for all j, breaking ties first by ij , then by vj . This sorting can be performed
in O(1) rounds using memory O(nc) per machine (with high probability) by applying an
algorithm of Goodrich, Sitchinava, and Zhang [25]. After sorting, all queries of the form
(·, wj , ij) will be stored in consecutive machines.

2. If (wj , ij) 6= (wj+1, ij+1), machine j sends its query to (the machine hosting) wj , and wj
sends its response to machine j in the following round. Since only a single request of the
form (·, wj , ij) is sent to wj , wj receives/sends at most ∆ requests in total.

3. Machines receiving responses propagate the responses backwards (to smaller j’s) in O(1)
rounds. Specifically, let t be the round in which a machine j receives the response
to (vj , wj , ij) directly from wj . Then in round t + 1, j sends the response to nodes
j − 1, j − 2, . . . , j − nc. In round t + 2, each machine j′ with j − nc ≤ j′ ≤ j and
(wj′ , ij′) = (wj , ij) sends the responses to nodes j′ − nc, j′ − 2nc, . . . , j′ − n2c. This
continues for O(1/c) = O(1) rounds, at which point every machine j stores the response to
the query (vj , wj , ij). During each of these rounds, each node sends and receives at most
nc messages.

4. Machine j sends the response to the query (vj , wj , ij) to vj . Each node sends and receives
a single message.

Lemma 2.6 follows directly from analyzing the simulation described above. We note that
the same argument also applies to simulating LCAs in the MPC model. We discuss further
connections between the volume model and MPC in Section 7.

2.5 LCLs

In this paper, we are primarily interested in the study of locally checkable labeling problems
(LCLs) [38]. Suppose Π = {(G, I,O)} is a graph problem such that the sets of possible input
and output labels are finite. Informally, Π is an LCL if a global output O is valid if and only if
O is valid on a bounded radius neighborhood of every node in the network. Since we consider
families of graphs such that maximum degree ∆ is bounded, every LCL has a finite description:
it is enough to enumerate every possible input labeling of every c-radius neighborhood of a node,
together with the list of valid output labelings for each input-labeled neighborhood. Familiar
examples of LCLs include k-coloring (for fixed k), maximal independent set, and maximal
matching.

Definition 2.7. Fix a positive integer ∆ and let G∆ denote the family of graphs with maximum
degree at most ∆. Let Lin and Lout be finite sets of input and output labels, respectively.
Suppose

Π ⊆
{

(G, I,O)
∣∣ G = (V,E) ∈ G∆, I : V → Lin,O : V → Lout

}
is a graph problem. We call Π a locally checkable labeling problem or LCL if there exists
an absolute constant c such that (G, I,O) ∈ Π if and only if for every v ∈ V ,

(Nv(c), I|Nv(c),O|Nv(c)) ∈ Π.

Here Nv(c) denotes the distance c neighborhood of v, and for a subgraph H of G, I|H and O|H
denote the restrictions of I and O (respectively) to H.
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2.6 Lower Bounds via Communication Complexity

Here, we briefly review a technique (introduced in [16]) of applying lower bounds from communi-
cation complexity to yield query lower bounds. The basic concepts for the technique are the
notions of embedding of a function and query cost.

Definition 2.8. For N ∈ N, let f : {0, 1}N × {0, 1}N → {0, 1} be a Boolean function. Let
Gn denote the set of (labeled) graphs on n vertices. Suppose E : {0, 1}N × {0, 1}N → Gn, and
let g : Gn → {0, 1}. We say that the pair (E , g) is an embedding of f if for all x, y ∈ {0, 1}N ,
f(x, y) = g(E(x, y)).

Suppose two parties, Alice and Bob, hold private inputs x and y respectively, and wish to
compute f(x, y). Given an embedding (E , g) of f as above, any algorithm A that computes g on
Gn gives rise to a two-party communication protocol that Alice and Bob can use to compute f .
Alice an Bob individually simulate an execution of A on E(x, y). Whenever A queries E(x, y),
Alice and Bob exchange sufficient information about their private inputs x and y to simulate
the response to A’s query to E(x, y). If the responses to all such queries can be computed by
Alice and Bob with little communication, then we may infer a lower bound on the number of
queries needed by A to compute g. Indeed, the number of queries needed to compute g is at
least the communication complexity of f divided by the maximum number of bits Alice and
Bob must exchange in order to answer a query.

Definition 2.9. Let q : Gn → {0, 1}∗ be a query and (E , g) an embedding of f . We say that q has
communication cost at most B and write costE(q) ≤ B if there exists a (zero-error) two-party
communication protocol Πq such that for all x, y ∈ {0, 1}N we have Πq(x, y) = q(E(x, y)) and
|Πq(x, y)| ≤ B.

The main result of [16] shows that given an embedding (E , g) of f , the query complexity of g
is bounded from below by the communication complexity of f divided by the communication
cost of simulating each query.

Theorem 2.10 ([16]). Let Q be a set of allowable queries, f : {0, 1}N × {0, 1}N → {0, 1}, and
(E , g) an embedding of f . Suppose that each query q ∈ Q satisfies costE(q) ≤ B, and A is an
algorithm that computes g using T queries (in expectation) from Q. Then T = Ω(R(f)/B),
where R(f) is the (randomized) communication complexity of f .

In Section 4, we apply Theorem 2.10 using an embedding of the disjointness function, disj,
defined as follows:

disj(x, y) =

{
1 if

∑N
i=1 xiyi = 0

0 otherwise.

We apply the following fundamental result of Kalyanasundaram and Schnitger on the communi-
cation complexity of disj.

Theorem 2.11 ([27, 42]). The randomized communication complexity of the disjointness
function is R(disj) = Ω(N). This result holds even if x and y are promised to satisfy

∑N
i=1 xiyi ∈

{0, 1}.

2.7 Tail Bounds

In our analysis of randomized algorithms, we will employ the following standard Chernoff bounds.
See, e.g., [36] for derivations.

Lemma 2.12 ([36], Theorems 4.4 and 4.5). Suppose Y1, Y2, . . . , Ym are independent random
variables with Pr(Yi = 1) = pi and Pr(Yi = 0) = 1− pi. Let Y =

∑m
i=1 and µ = E(Y ) =

∑m
i=1 pi.

Then for any δ with 0 < δ < 1 we have

Pr(Y ≥ (1 + δ)µ) ≤ e−µδ2/3 (3)
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and
Pr(Y ≤ (1− δ)µ) ≤ e−µδ2/2. (4)

We will also require tail bounds for the negative binomial distribution, defined as follows.
For any positive integer k and p ∈ (0, 1], let Y1, Y2, . . . be a sequence of independent Bernoulli
random variables with parameter p (i.e., Pr(Yi = 1) = p and Pr(Yi = 0) = 1− p for all i). Then
the random variable

N = inf

{
m

∣∣∣∣∣
m∑
i=1

Yi ≥ k
}

is distributed according to the negative binomial distribution N (k, p). (For completeness,
we use the convention that inf ∅ = 0.)

Notice that for N ∼ N (k, p), we have

Pr(N > m) = Pr

(
m∑
i=1

Yi < k

)
.

Setting m = c · k/p for any c > 1, the sum on the right has expected value µ = c · p ·m = c · k.
Taking Y =

∑m
i=1 Yi, we then obtain N > m if and only if Y < (1 − δ)µ for δ = (c − 1)/c.

Applying the Chernoff bound (4) to bound the right side of the expression above gives the
following result.

Lemma 2.13. Suppose N ∼ N (k, p). Then

Pr(N > c · k/p) ≤ e−k(c−1)2/2c.

3 Leaf Coloring

In this section, we describe an LCL problem, LeafColoring, whose randomized distance, deter-
ministic distance, and randomized volume complexities are O(log n), but whose deterministic
volume complexity is Ω(n).

Before defining LeafColoring formally, we describe a “promise” version of the problem that
restricts the possible input graphs. Specifically, consider the promise that all input graphs
G = (V,E) are binary trees in which every node has either 0 or 2 children, and all edges are
directed from parent to child. Moreover, each internal node (i.e., node with 2 children) has a
pre-specified right and left child. Each node v ∈ V is assigned an input color χin(v) ∈ {R,B}
(R for red, B for blue). The LeafColoring problem requires each node v to output a color
χout(v) ∈ {R,B} such that (1) if v is a leaf, χout(v) = χin(v), and (2) if v is internal, it outputs
the same color as one of its children.

In the non-promise version of LeafColoring, the input may be an arbitrary graph (with
maximum degree at most ∆). In order to mimic the promise problem described above, each
node receives as input a “tree labeling” (defined below) that assigns a parent, right child, and
left child to each node. Using this assignment, each node can locally check that its own and its
neighbors input labelings are locally consistent with a binary tree structure as described in the
promise version of the problem. We observe (Observation 3.8) that the set of locally consistent
nodes and edges form a binary sub-pseudo-forest of G (i.e., a subgraph in which each connected
component contains at most a single cycle). The generic LeafColoring problem then requires
each leaf in this pseudo-forest to output its input color, while each internal node outputs the
same color as one of its children.

Definition 3.1. Let G = (V,E) be a graph of maximum degree at most ∆, and P = [∆] ∪ {⊥}.
A (binary) tree labeling consists of the following for each v ∈ V :

• a parent , P(v) ∈ P,
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• a left child , LC(v) ∈ P,
• a right child , RC(v) ∈ P.

A colored tree labeling additionally specifies for each v ∈ V

• a color , χin(v) ∈ {R,B}.

We refer to R as red and B as blue in our depictions of colored tree labelings. For a fixed
node v, we call the labeling of v well-formed if the non-⊥ ports P(v), LC(v), and RC(v) are
pair-wise distinct. For example, we have P(v) 6= LC(v), unless both are ⊥.

Notation 3.2. While the labels P, LC, and RC are formally elements of P , it will be convenient
to associate, for example, P(v) with the node adjacent to v via the edge whose port label is P(v).
In particular, this convention allows us to compose labels; for example, P(LC(v)) is the parent
of v’s left child.

Remark 3.3. In what follows, we assume without loss of generality that in all tree labelings,
the labels of all nodes are well-formed in the sense of Definition 3.1. Indeed, an arbitrary labeling
L can be transformed to a well-formed instance in the following manner: If v is not well-formed,
it sets P(v),LC(v),RC(v) = ⊥; if v is well-formed, but, e.g., P(v) is not, then v sets P(v) =⊥.
This preprocessing can be performed using ∆ = O(1) queries.

Definition 3.4. Let G = (V,E) be a graph and L a well-formed tree labeling of G. We say
that a node v ∈ V is:

• internal if

1. LC(v) 6= ⊥ and P(LC(v)) = v,

2. RC(v) 6= ⊥ and P(RC(v)) = v;

• a leaf if

1. LC(v) = RC(v) = ⊥
2. P(v) is internal.

A node is consistent if it is internal or a leaf. A node that is neither internal nor a leaf is
inconsistent .

Definition 3.5. The problem LeafColoring consists of the following:

Input: a colored tree labeling L

Output: for each v ∈ V , a color χout ∈ {R,B}

Validity: for each v ∈ V we have

• χout(v) = χin(v) if v is a leaf or inconsistent,

• χout(v) ∈ {χout(LC(v)), χout(RC(v))} if v is internal.

Lemma 3.6. LeafColoring is an LCL.

Proof. It follows directly from Definition 3.1 that a node being internal, leaf, or inconsistent
is locally checkable. Thus, both validity conditions in Definition 3.5 are locally checkable as
well.
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Figure 4: An input (left) and valid output (right) for an instance of LeafColoring. On the left, the
consistent nodes have black borders, while the inconsistent nodes have gray borders. The subgraph
consisting of black (directed) edges is the graph GT described in Observation 3.8. The node colors on the
left indicate input colors, while the colors on the right are output colors. For example, the input label of v
is given by χin(v) = B, P(v) = 4, RC(v) = 1, LC(v) = 3. In the output (right), black edges indicate that
the parent and child in GT output the same color. Validity of the output follows because all leaves and
inconsistent nodes output their input color, while all internal nodes output the color of some child in GT .

Theorem 3.7. The complexity of LeafColoring is

R-DIST(LeafColoring) = Θ(log n),

D-DIST(LeafColoring) = Θ(log n),

R-VOL(LeafColoring) = Θ(log n),

D-VOL(LeafColoring) = Θ(n).

Before proving Theorem 3.7 in detail, we provide a high level overview of the proof. The
upper bounds on R-DIST and D-DIST following from the observation that all internal nodes
are within distance O(log n) of a leaf node. Thus, in O(log n) distance, each internal node finds
its nearest leaf (breaking ties by choosing the left-most leaf at minimal distance) and outputs
the color of that leaf. In Section 3.1, we show that this deterministic process correctly solves
LeafColoring with distance complexity O(log n). This upper bound is tight, as in a balanced
binary tree, the root has distance Ω(log n) from its closest leaf. Thus, in order to distinguish the
cases where all leaves are red vs blue, the root must query a node at distance Ω(log n). (Note
that if all leaves have input color, say, red, then the root must output red in any legal solution.)
See Section 3.3 for details.

The idea of the R-VOL upper bound is that a “downward” random walk in a binary tree
in which every internal node has two children will reach a leaf after O(log n) steps with high
probability. To simulate such a random walk, each node in our volume-efficient algorithm chooses
a single child at random. An execution of the algorithm from v follows the path of chosen
children until a leaf is found, and v outputs the color of this child. Since all nodes along this
path reach the same leaf, they all output the same color. The only complication that may arise
is if v encounters a (necessarily unique) cycle, in which case the path of chosen children returns
to v. In this case, v follows the edge to its child not chosen in the first step, and continues
until a leaf is encountered. This second path is guaranteed to be cycle-free. Details are given in
Section 3.2.

Finally, the argument for the lower bound on D-VOL is as follows. Given any deterministic
algorithm A purporting to solve LeafColoring in using q � n queries, we can adaptively construct
a binary tree G rooted at v with n ≤ 3q such that the execution A initiated from v never queries
a leaf of G. By giving each leaf the input color that is the opposite of v’s output, we conclude
that some node in G must output incorrectly in this instance. See Section 3.3 for details.
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3.1 Distance Upper Bounds

Observation 3.8. Let G = (V,E) be a graph and L a tree labeling of G. Define the directed
graph GT = (VT , ET ) by

VT = {v ∈ V | v is internal or a leaf}
and

ET = {(u, v) ∈ VT × VT |u is internal and u = P(v)} .
That is, GT is the subgraph of internal nodes and leaves in G where we consider only edges
directed from internal parents to children. Then every node in GT has out-degree 0 or 2, and
in-degree 0 or 1. In particular, this implies that GT is a (directed) pseudo-forest, and each
connected component of GT contains at most one (directed) cycle. Moreover, all internal nodes
have two descendants in GT , and v ∈ V is a leaf in the sense of Definition 3.1 if and only if v is
a leaf in GT .

Lemma 3.9. Let G = (V,E) and be a graph and L a tree labeling of G. Suppose v0 ∈ V is an
internal node. Then there exists a path P = (v0, v1, . . . , v`) in GT with ` ≤ log n such that v` is
a leaf and for all i ∈ [`], vi−1 = P(vi).

Proof. Fix v0 to be an internal node in V , and take GT as in Observation 3.8. By Observation 3.8,
v0 has at least one child v1 such that the (directed) edge (v0, v1) is not contained in any cycle in
GT . Thus, the set of descendants of v1 forms a (directed) binary tree rooted at v1.

For each r ∈ N, r ≥ 1 define B(r) ⊆ VT to be the set of nodes containing v0 and all
descendants of v1 (in GT ) up to distance r − 1 (from v1). Observe that if B(r) contains only
internal nodes, then

|B(r)| = 1 +

r−1∑
i=0

2i = 2r.

In particular, if r ≥ log n, then B(r) must contain a non-internal node, w. By Observation 3.8,
w is a leaf, which gives the desired result.

We are now ready to prove the claims of Theorem 3.7.

Proposition 3.10. Let G = (V,E) be a graph on n nodes, L a colored tree labeling, and
v ∈ V . Then there exists a deterministic algorithm A that solves LeafColoring on G with
DIST(A,G,L, v) = O(log n). Thus

D-DIST(LeafColoring),R-DIST(LeafColoring) = O(log n).

Proof. The algorithm solving LeafColoring works as follows. In O(1) rounds, v determines if it is
internal, a leaf, or inconsistent. If it is not internal, v outputs χout(v) = χin(v). If v is internal,
in r = O(log n) rounds, v queries its distance log n neighborhood, Nv(r), and for each w ∈ Nv(r),
v determines if w is internal, leaf, or inconsistent. From this information, v computes

d = min {d(v, u) |u is a descendant of v and u is a leaf} .

For any leaf w that is a descendant of v at distance d, we associate the path

(v = wd, wd−1, . . . , w1, w0 = w)

from v to w with the sequence Pw ∈ {LC,RC}d where the ith term in the sequence indicates
if wd−i is the left or right child of wd−i+1. The node v then takes w0 to be its “left-most”
descendant leaf at distance d and outputs χout(v) = χin(w0). That is w0 is v’s distance d
leaf descendant that minimizes the associated sequence Pw0 with respect to the lexicographic
ordering.
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Let (v = wd, wd−1, . . . , w1, w0) denote the path from v to w0 described above. We claim that
for all i = 0, 1, . . . , d, χout(wi) = χin(w0). In particular, this implies that χout(v) = χout(wd−1),
hence the second validity condition in Definition 3.5 is satisfied. We prove the claim by induction
on d.

For base case d = 0, w0 is a leaf hence χout(w0) = χin(w0) by the algorithm description. For
the inductive step, suppose the lemma holds for all internal nodes having a descendant leaf at
distance less than d. Suppose v is a node who’s nearest descendant leaf is at distance d. Let w0

be the left-most such leaf, and let (v = wd, wd−1, . . . , w0) be the path from v to w0 as above.
Observe that wd−1’s nearest descendant leaf is at distance d− 1, and w0 is also the left-most
such leaf for wd−1. Therefore, χout(wd−1) = χin(w0), as required.

3.2 Randomized Volume Upper Bound

Proposition 3.11. Let G = (V,E) be a graph on n nodes. Then there exists a randomized
algorithm that solves LeafColoring on G in O(log n) volume. Thus, R-VOL(LeafColoring) =
O(log n).

To prove Proposition 3.11 consider the algorithm, RWtoLeaf(v,⊥) (Algorithm 1). If v is a
leaf or inconsistent, it outputs χin(v). Otherwise, if v is internal, RWtoLeaf performs a (directed)
random walk towards v’s descendants in GT . When the random walk is currently at a node w,
w’s private randomness is used to determine the next step of the random walk. This ensures
that all walks visiting w choose the same next step of the walk, hence all such walks will reach
the same leaf.

The only complication arises if GT contains cycles (in which case, each connected component
of GT contains at most one cycle by Observation 3.8). In this case, the random walk may return
to the initial node v0. If the walk returns to v0, the algorithm steps towards the previously
unexplored child of v0. Since GT contains at most one directed cycle, the branch below v0’s
second child is cycle-free, thus guaranteeing that the walk eventually reaches a leaf.

Remark 3.12. To simplify the presentation, we give an algorithm where the runtime (number
of queries) is random, and may be linear in n. We will show that the runtime is O(log n) with
high probability. In order to get a worst-case runtime of O(log n), an execution can be truncated
after O(log n) steps—as n is known to each node—with the node producing arbitrary output.

Algorithm 1 RWtoLeaf(v, v0). Random walk step from v towards leaves. v0 is the starting
node of the walk, and v is the current location of the walk.

1: if v is a leaf or inconsistent then
2: return χin(v)
3: end if
4: if v revisits v0 then
5: b← 1− rv(0)
6: else
7: b← rv(0)
8: end if
9: if b = 0 then

10: return RWtoLeaf(LC(v), v0)
11: else
12: return RWtoLeaf(RC(v), v0)
13: end if
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Proof of Proposition 3.11. Consider the algorithm where each node v ∈ V outputs χout(v) ←
RWtoLeaf(v, v). If v is a leaf or inconsistent, then Line 2 ensures that the first validity condition
of Definition 3.5 is satisfied.

Now consider the case where v is internal. Let πv = (v = v0, v1, v2, . . .) denote the sequence
of nodes visited by the random walk in the invocation of RWtoLeaf(v, v). Thus πv is a directed
path in GT . Suppose there exist indices i < j with vi = vj , so that πv contains a cycle. By
Observation 3.8, GT contains at most one cycle C, and all non-cycle edges are directed away
from C in GT . Therefore, it must be the case that i = 0, so that the condition of Line 4 was
satisfied when RWtoLeaf(vj , v0) was called. Thus, vj+1 6= v1, and vj+1 is not contained in any
cycle in GT . Accordingly, define

π′v =

{
πv if π is cycle-free

(v0, vj+1, vj+2, . . .) otherwise

Since vj+1 is not contained in any cycle, π′v is a finite sequence, and by the description of
RWtoLeaf, π′v terminates at a leaf v`. Let w = π′v(1) be the second node in the path π′v. Then a
straightforward induction argument (on `) shows that π′v = v ◦ π′w. In particular, π′v and π′w
terminate at the same leaf v` so that χout(v) = χout(w) = χin(v`). Thus the second validity
condition in Definition 3.5 is satisfied, as desired.

It remains to bound the number of queries made by an invocation of RWtoLeaf. Since
checking if a node is internal, a leaf, or inconsistent can be done with O(1) queries, each recursive
call to RWtoLeaf can be performed with O(1) queries. Thus, the total number of queries used
by RWtoLeaf(v, v0) is O(|πv|), where |πv| denotes the length of πv. We will show that with high
probability for all v ∈ V , |πv| = O(log n), whence the desired result follows.

First consider the case where an internal node v is not contained in any cycle. Let nv
denote the number of nodes reachable from v in GT . Since v is not contained in any cycle,
nv = 1 +nu +nw where u and w are v’s (distinct) children. Therefore, nu or nw is at most nv/2.
For any edge (w,w′) in the path π′v, we call the edge good if nw′ ≤ nw/2. Since nv ≤ n, there
cannot be more than log n good edges in π′v. Moreover, by the selection in Line 7, each edge in
π′v is good independently with probability at least 1/2.

Claim. Pr(|π′v| ≥ 16 log n) ≤ 1/n3

Proof of Claim. For i = 1, 2, . . ., let Zi be the indicator random variable for the event that the
ith step of the random walk crosses a good edge. The Zi are independent, and we have
Pr(Zi = 1) ≥ 1/2 for all i. In fact, Pr(Zi = 1) ∈ {1/2, 1}. We define a coupled sequence of
random variables Yi as follows. For i ≤ |π′v| we set

Yi =

{
Zi if Pr(Zi = 1) = 1/2

independent Bernoulli r.v. with p = 1/2 if Pr(Zi = 1) = 1.

For i > |π′v|, Yi is an independent Bernoulli random variable with p = 1/2. Thus, the
sequence Y1, Y2, . . . is a sequence of independent Bernoulli random variables with p = 1/2
(coupled to the sequence Z1, Z2, . . .).

Since every good edge (v, w) satisfies nw ≤ 1
2nv, π

′
v can contain at most log n good edges.

Therefore, we have
|π′v |∑
i=1

Yi ≤
|π′v |∑
i=1

Zi ≤ log n,

where the first equality holds because Yi ≤ Zi (by construction) for i ≤ |π′v|. Now define
the random variable N by

N = inf

{
m

∣∣∣∣∣
m∑
i=1

Yi ≥ log n

}
.
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Thus N ∼ N (log n, 1/2) has a negative binomial distribution. Thus, by Lemma 2.13,
Pr(N > 16 log n) ≤ e−72(logn)/2·8 < n−3. The claim follows by observing that |π′v| >
16 log n implies that N > 16 log n.

Applying a simple union bound, the claim shows that all v not contained in some cycle in
GT will output after O(log n) queries with high probability. If v is contained in a cycle C, we
consider two cases separately. If |C| ≤ 16 log n, then the random walk will leave the cycle C after
at most 16 log n steps (if it returns to the initial node). On the other hand, if |C| > 16 log n,
essentially the same argument as given in the proof of the claim shows that the random walk
started at v will leave the cycle after at most 16 log n steps with probability at least 1− 1/n3.
Combining these observations with the conclusion of the claim, we obtain that for all v ∈ V

Pr(
∣∣π′v∣∣ ≥ 32 log n) ≤ 2/n3.

Taking the union bound over all v, we find that all nodes output after O(log n) queries with
probability at least 1−O(1/n2), which gives the desired result.

3.3 Lower Bounds

Proposition 3.13. There exists a graph G on n nodes and a probability distribution on colored
tree labelings of G such that for any (randomized) algorithm A whose distance complexity is
less than log n− 1, the probability that A solves LeafColoring is at most 1/2.

Proof. Let G be a complete (rooted) binary tree of depth k, so that n = 2k+1 − 1. Consider the
port ordering where the parent of each (non-root) node has port 1, and the children of each
(non-leaf) node have ports 2 and 3. Suppose the node identities are 1 through n, where the root
has ID 1, its left and right children are 2 and 3, and so on. Finally, fix L to be the tree labeling
where the root has LC(v) = 1,RC(v) = 2, all (non-root) nodes have P (v) = 1, and all internal,
non-root nodes have LC(v) = 2, RC(v) = 3. That is, L is the tree labeling consistent with the
tree structure of G. Finally, consider the distribution D over input colorings where all internal
nodes have χin(v) = R, while all leaves have the same color χ0 chosen to be R or B each with
probability 1/2.

Since every leaf v in G has χin(v) = χ0, the first validity condition of Definition 3.5 stipulates
that χout(v) = χ0. A simple induction argument on the height of a node (i.e., the distance from
the node to a leaf) shows that the unique solution to LeafColoring is for all v ∈ V to output
χout(v) = χ0.

Suppose A is any deterministic algorithm whose distance complexity is at most k − 1.
Then an execution of A initiated at the root r of G will not query any leaf. Therefore,
PrD(χout(r) = χ0) = 1/2. By the conclusion of the preceding paragraph, the probability that A
solves LeafColoring is therefore at most 1/2. By Yao’s minimax principle, the no randomized
algorithm with distance complexity at most k − 1 solves LeafColoring with probability better
than 1/2 as well.

Proposition 3.14. For any deterministic algorithm A, there exists a graph G = (V,E) on n
nodes, a colored tree labeling L on G such that if A uses fewer than n/3 queries, then A fails to
solve LeafColoring. Thus, D-VOL(LeafColoring) = Ω(n).

Proof. Suppose A uses fewer than n/3 queries on all graphs G on n nodes. We define a process
P that interacts with A and constructs a graph GA and a labeling L such that A does not solve
LeafColoring on GA. The basic idea is that P constructs a binary tree GA such that A never
queries a leaf of the tree. The leaves of GA are then given input colors that disagree with A’s
output.
P constructs a sequence of labeled binary trees G0, G1, G2, . . . where Gt is the tree constructed

after A’s tth query. Initially G0 is the graph consisting of a single node v0 with ID 0 and two ports,
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1 and 2. The label of v0 is P (v0) = ⊥, LC(v0) = 1, RC(v0) = 2. Suppose P has constructed
Gt−1, and A’s tth query asks for the neighbor of v from port i ∈ [3]. If i = 1, P returns v’s parent,
and we set Gt = Gt−1. If i = 2 or 3, P forms Gt by adding a node w to Gt−1 together with an
edge {v, w}. The ordered edge (w, v) gets assigned port 1, while w has two “unassigned” ports
2 and 3. The label of w is P (w) = 1,LC(w) = 2,RC(w) = 3, and w’s input color is χin(w) = R.

It is straightforward to verify (by induction on t) that at each step, Gt is a subgraph of a
binary tree G′t on at most 3t nodes: take G′t to be the tree formed by appending a leaf to each
unassigned port in Gt. If A halts after T queries and outputs χout(v0) = C, define GA = G′T ,
and complete the tree labeling of GA by assigning P (w) = 1,LC(w) = ⊥,RC(w) = ⊥ for all
new leaves. Finally, for each leaf w in GA, set χin(w) = χ1 6= χ0 (the color not output by v0).
Since all leaves have χin(w) = χ1, validity of LeafColoring requires that all nodes in GA output
χ1. However, χout(v0) = χ0 6= χ1, so that A does not solve LeafColoring on GA.

4 Balanced Tree Labeling

Here, we introduce an LCL called BalancedTree. The input labeling, which we call a “balanced tree
labeling” extends a tree labeling (Definition 3.1) by additionally specifying “lateral edges” between
nodes. We define a locally checkable notion of “compatibility” (formalized in Definition 4.2) such
that the subgraph GT of consistent nodes (in the underlying tree labeling) admits a balanced
tree labeling in which all nodes are compatible if and only if GT is a balanced (complete) binary
tree and G contains certain additional edges between nodes at each fixed depth in GT .

To solve BalancedTree, each node v outputs a pair (β(v), p(v)), where β(v) is a label in the set
{B,U} (for Balanced, Un-balanced) and p(v) ∈ P is a port number. The interpretation is that
if every vertex w in the sub-tree of GT rooted at v is compatible, then v should output (B,P(v)).
If v is incompatible, it outputs (U,⊥). Finally, if v is compatible, but some descendant of v is
incompatible, then v outputs (U, p), where p ∈ {RC(v),LC(v)} is a port number corresponding
to the first hop on a path to an incompatible node below v. Thus, a valid output has the
following global interpretation: Starting from any vertex, following the path of port numbers
(edges) output each subsequent node terminates either at the root of a balanced binary tree, or
at an incompatible node.

Definition 4.1. Let G = (V,E) be a graph of maximum degree at most ∆. A balanced tree
labeling consists of a tree labeling (Definition 3.1) together with the following labels for each
node v ∈ V :

• a left neighbor LN(v) ∈ P,
• a right neighbor RN(v) ∈ P.

Definition 4.2. Let G = (V,E) be a graph and L a balanced tree labeling on G. Suppose v
is consistent in the sense of Definition 3.4. We say that L is compatible at a node v if the
following conditions hold:

• type-preserving : If v is internal (respectively a leaf), then RN(v) and LN(v) are internal
(respectively leaves) or ⊥.

• agreement : If LN(v) 6= ⊥ then RN(LN(v)) = v; if RN(v) 6= ⊥ then LN(RN(v)) = v.

• siblings: If LC(v),RC(v) 6= ⊥ (i.e., v is internal) then RN(LC(v)) = RC(v) and
LN(RC(v)) = LC(v).

• persistence : If v is internal and w = RN(v) 6= ⊥, then w is internal and RN(RC(v)) =
LN(LC(w)). Symmetrically, if u = LN(v) 6= ⊥ then u is internal and LN(LC(v)) =
RN(RC(v)).
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• leaves: If v is a leaf then LN(v) 6= ⊥ =⇒ LN(v) is a leaf and RN(v) 6= ⊥ =⇒ RN(v) is
a leaf.

The labeling L is globally compatible if every consistent vertex v is compatible.

Definition 4.3. The problem BalancedTree consists of the following:

Input: a balanced tree labeling L

Output: for each v ∈ V , a pair (β(v), p(v)) ∈ {B,U} × P

Validity: for each consistent v ∈ V we have

1. if v is not compatible, then v outputs (U,⊥)

2. if v is a compatible leaf then v outputs (B,P(v))

3. if v is compatible and internal then

(a) if LC(v) and RC(v) output (B,P(LC(v))) and (B,P(RC(v))), respectively, then
v outputs (B,P(v))

(b) if LC(v) (resp. RC(v)) outputs (U, ·), then v outputs (U,LC(v)) (resp. (U,RC(v)))

Lemma 4.4. BalancedTree is an LCL.

Proof. As noted before, checking if a node is internal, a leaf, or inconsistent can be done locally.
Also, it is clear that all of the conditions for compatibility (Definition 4.2) are locally checkable.
Thus, the validity conditions of BalancedTree are also locally checkable.

Theorem 4.5. The complexity of BalancedTree is

R-DIST(BalancedTree) = Θ(log n),

D-DIST(BalancedTree) = Θ(log n),

R-VOL(BalancedTree) = Θ(n),

D-VOL(BalancedTree) = Θ(n).

The proof of Theorem 4.5 is as follows. In Section 4.1, we show that in a valid output for
BalancedTree, any consistent internal node is either the root of a balanced binary tree, or it has
an inconsistent descendant within distance log n. Thus, each node can determine its correct
output by examining its O(log n) radius neighborhood. The upper bound is tight, as a node may
need to see up to distance Ω(log n) in order to see its nearest incompatible or inconsistent node.

For the volume lower bounds, consider a balanced binary tree with lateral edges such that
there exists a globally compatible labeling, and let L be such a labeling (see Figure 5). By
modifying the input of a single pair of sibling leaves, we can form an input labeling L′ which is
not globally compatible. The validity conditions of BalancedTree imply that the root of the tree
must be able to distinguish L from L′ to produce its output. Therefore, to solve BalancedTree,
the root must query a large fraction of the leaves—i.e., Ω(n) nodes. We formalize this argument
using the communication complexity framework of Eden and Rosenbaum [16] in Section 4.2.

4.1 Structure of Valid Outputs

Lemma 4.6. Suppose G = (V,E) is a graph, L a balanced tree labeling of G, and v ∈ V is
consistent. Then either the sub-(pseudo)tree of GT rooted at v is a balanced binary tree (i.e.,
all leaves below v are at the same distance from v), or there exists a descendant w of v with
dist(v, w) < log n such that w is incompatible.
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Figure 5: An instance of BalancedTree constructed in the proof of Proposition 4.9. The diagonal edges
are directed from parent to child, as specified by the underlying binary tree labeling. The horizontal
edges are left and right neighbors. The dashed edges between leaves are included in G. Given strings
a, b ∈ {0, 1}N , the labeling of the leaves are determined as follows: we have RN(ui) = LN(wi) = ⊥ if
ai = bi = 1; otherwise RN(ui) = 5 and LN(wi) = 4. The labeling constructed in this way is globally
compatible if and only if disj(a, b) = 1. In this case, the unique valid output is to label each node (U, p).

Proof. Let H denote the sub-(pseudo)tree of GT rooted at v. Suppose H is not a balanced
binary tree. We will show that there is an incompatible w in H within log n distance from v. To
this end for d ∈ N, let Dv(d) denote the set of descendants w of v in H such that there exists
a path from v to w of length d. That is, Dv(0) = {v}, and for each d ≥ 1, Dv(d) consists of
the children of nodes in Dv(d − 1).3 Let Hd be the (induced) subgraph of G with vertex set
Dv(0) ∪Dv(1) ∪ · · · ∪Dv(d).

Claim. Suppose every vertex v in Hd is compatible. Then Dv(d) is laterally connected. That is,
for every u,w in Dv(d), there exists a path connecting u and w consisting only of edges
{x, y} such that y = RN(x) (and symmetrically x = LN(y)).

Proof of claim. We argue by induction on d. The case d = 0 is trivial as Dv(0) consists of a single
vertex. Now suppose the claim holds for d−1, and take u,w ∈ Dv(d−1). By the inductive
hypothesis, there exists a path v0, v1, . . . v` with P(u) = v1 and P(w)v`, and without loss
of generality (by possibly exchanging the roles of u and w) we have vi = RN(vi−1) for
i = 1, 2, . . . , `. For each i, let ui = LC(vi) and wi = RC(vi). By the siblings property of
compatibility, we have wi = RN(vi), and by persistence, vi+1 = RN(wi). Therefore, the
sequence v0, w0, v1, . . . , v`, w` forms a path. Since u ∈ {v0, w0} and w ∈ {v`, w`}, the claim
follows.

Using the claim, we will show that H contains an incompatible node w. Since H is assumed not
to be balanced, there exist leaves u and u′ at distances d and d′ (respectively) from v with d′ > d.
In particular, take u to be the nearest leaf to v, and u′′ be u′’s (unique) ancestor in Dv(d). By the
claim, there exists a path v0, v1, . . . , v` between u and u′′ in Dv(d) such that for each i we have
vi = RN(vi−1). Without loss of generality, assume u = v0 and u′′ = v`. Since v0 is a leaf and v`
is internal, there exists some i ∈ [`] such that vi−1 is a leaf, and vi is internal or inconsistent.
However, this implies that w = vi−1 is incompatible. Moreover, dist(v, w) = dist(v, u) = d which
is at most log n (as u was chosen to be the nearest leaf to v), which gives the desired result.

3Since GT is a pseudo-forest, and hence, could contain cycles, it may be that the same vertex is contained in
Dv(di) for different values of d1, d2, . . .. Since each node has at most a single parent, there is still a unique path
from v to w of each length di.
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Lemma 4.7. Suppose G = (V,E) is a graph and L a globally compatible labeling. Then in
every valid solution to BalancedTree, every consistent node v outputs (B,P(v)). Conversely, if v
has a descendant w in GT that is incompatible, then v outputs (U, ·) in any valid solution to
BalancedTree.

Proof. First consider the case where L is globally compatible. We argue by induction on the
height of v that v outputs (B,P(v)). For the base case, the height of v is 0, hence v is a leaf.
Then by Condition 2 of validity v outputs (B,P(v)). For the inductive step, suppose all nodes
at height h − 1 output (B,P(v)), and v is at height h. In particular, the children of v both
output (B, v). Therefore, v outputs (B,P(v)) by Condition 3(a) of validity. This gives the first
conclusion of the lemma.

Now suppose v has a descendant w in GT that is incompatible. Let v = u`, u`−1, . . . , u0 = w
be the path from v to w in GT . We argue by induction on i that ui outputs (U, ·). The base case
i = 0 follows from Condition 1 of validity. The inductive step follows from Condition 3(b) of
validity: since ui has a child that outputs (U, ·) (namely, ui−1), ui must output (U, ·) as well.

Proposition 4.8. There exists an algorithm A with the following property. Let G = (V,E) be
a graph on n nodes and L a balanced tree labeling. Then A solves BalancedTree on (G,L) and
for all v ∈ V , DIST(A,G,L, v) = O(log n). Therefore,

D-DIST(BalancedTree),R-DIST(BalancedTree) = O(log n).

Proof. Consider the following algorithm, A. Starting from a vertex v, A searches the O(1)
neighborhood to determine if v is internal, a leaf, or inconsistent. If v is inconsistent, it outputs
(B,⊥). If v is a leaf, it outputs (B,P(v)) if all of the conditions of compatibility (Definition 4.2)
are satisfied, and (U,⊥) otherwise. Finally, if v is internal, A queries v’s log n+O(1) neighborhood
in order to find its nearest leaf, which is at distance d ≤ log n. If v sees a descendant within
distance d that is incompatible, then v outputs (U, p) where p is the port towards the nearest
such in compatible node, breaking ties by choosing the left-most descendant. Otherwise, v
outputs (B,P(v)).

Conditions 1 and 2 in the validity of Definition 4.3 are trivially satisfied for all node. Consider
the case where v is internal and compatible. By Lemma 4.6, if the subtree H of GT rooted at v
is not balanced, then there is a (closest, leftmost) incompatible node w in H at distance at most
log n. Thus, in this case v outputs (U, p(v)) where p(v) is the port towards w. Similarly, the
child v′ = p(v) will output (U, p(v′)) so that condition 3(b) of validity is also satisfied. Finally, if
H is balanced and all nodes in H are compatible, then v will output (B,P(v)), as will all other
nodes w in H. Thus condition 3(a) of validity is also satisfied.

4.2 Volume Lower Bounds

Proposition 4.9. Any (randomized) algorithm A that solves BalancedTree with probability
bounded away from 1/2 requires Ω(n) queries in expectation. Thus

R-VOL(BalancedTree),D-VOL(BalancedTree) = Ω(n).

Proof. For any k ∈ N form the graph G by starting with the complete binary tree of depth k.
Assign IDs, port numbers, and labels as in the proof of Proposition 3.13, so that the root has
ID 1, its left child has ID 2, its right child has ID 3, and so on. In particular, the nodes at
depth d have IDs 2d, 2d + 1, . . . , 2d+1 − 1. For each d, add lateral edges between nodes with IDs
2d + i− 1 and 2d + i for all i = 1, 2, . . . , 2d − 1, and assign port numbers so that 2d + i’s port 4
leads to 2d + i − 1, and port 5 leads to 2d + i − 1 (for 1 ≤ i ≤ 2d − 1). Finally, for all nodes
v at depths d ≤ k − 1, assign labels LN(v) and RN(v) to be consistent with the lateral edges
described above. Thus, a balanced tree labeling L has been determined at all nodes except the
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leaves of G. Note that L is constructed such that all nodes at depth d ≤ k − 2 are compatible.
See Figure 5 for an illustration.

Let N = 2k−1(= Ω(n)). We complete the labeling L to be an embedding of the disjointness
function disj : {0, 1}N × {0, 1}N → {0, 1}, as follows. Given i ∈ [N ], let vi be the ith left-most
node at depth k − 1 in G, and let ui and wi be its left and right child, respectively. Thus u1 is
the left-most leaf in G, w1 its right sibling, and so on. For i ≤ N − 1, assign RN(wi) = vi+1 and
LN(vi+1) = wi, and take LN(v1) = RN(wN ) = ⊥. Finally, given any a, b ∈ {0, 1}N , we complete
the balanced tree labeling L as follows:

RN(ui) = LN(wi) = ⊥ if ai = bi = 1

RN(ui) = wi, LN(wi) = ui otherwise.

For the labeling L constructed as above, it is straightforward to verify that all nodes satisfy all
conditions of compatibility with one possible exception: vi fails to satisfy the siblings condition
if and only if ai = bi = 1. That is, L is globally compatible if and only if disj(a, b) = 1. Thus, by
Lemma 4.7, for any solution to BalancedTree on input L, the root outputs (B,⊥) if and only if
disj(a, b) = 1.

Fix v to be the root of G, and consider an execution of any algorithm A solving BalancedTree
from v. We will apply Theorem 2.10. The observation that v outputs (B,⊥) if and only if
disj(a, b) = 1 shows that our construction of E : (a, b) 7→ L and g(G,L) = 1 if and only if
L(v) = (B,⊥) gives an embedding of disj in the sense of Definition 2.8. Moreover, all labels
in L are independent of a and b except for the leaves, and for each i, the labels of ui and wi
depend only on the values of ai and bi. Therefore, all queries to (G,L) have communication cost
0, except the queries of the form query(vi,LC(vi)) and query(vi,RC(vi)). The latter queries
can be answered by exchanging ai and bi, hence the communication cost of such queries is 2.
Therefore, by Theorems 2.10 and 2.11, the expected query complexity of any algorithm A that
solves BalancedTree with probability bounded away from 1/2 is Ω(N) = Ω(n), as desired.

4.3 Proof of Theorem 4.5

Proof of Theorem 4.5. By Proposition 4.8 give the upper bounds on D-DIST and R-DIST. The
corresponding lower bound of Ω(log n) follows by analyzing the same construction used in the
proof of Proposition 4.9. Starting from the root v of G, any algorithm that queries nodes only
up distance d ≤ k− 1 can be simulated by Alice and Bob without communication. Thus, such an
algorithm cannot solve disjointness (hence BalancedTree) with probability bounded away from
1/2.

Finally, the lower bounds of Proposition 4.9 are tight, as all LCLs trivially have R-VOL,
D-VOL = O(n).

5 Hierarchical 21
2

Coloring

In this section, we describe a variant of the family of “hierarchical 21
2 coloring problems”

introduced by Chang and Pettie [12]. Like the original problem, our variant, Hierarchical-THC(k),
has randomized and deterministic distance complexities Θ(n1/k). We will show that the problem
has randomized volume complexity O(n1/k logO(k)(n)), and deterministic volume complexity
Ω(n/ log n).

Like the problems LeafColoring and BalancedTree, the input labels Hierarchical-THC(k) induce
a pseudo-forest structure on (a subgraph of) the input graphG. In the case of Hierarchical-THC(k),
the individual pseudo-trees have the following hierarchical structure: At level 1 of the hierarchy
connected components consist of directed paths and cycles. At a level ` > 1, each node is the
parent of the “root” of a level ` − 1 component. To solve Hierarchical-THC(k), each node v
produces an output color χout(v) ∈ {R,B,D,X}. Nodes outputting D are said to decline , and
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Figure 6: An example of the hierarchical forest induced by a tree labeling. Edges are oriented from parent
to child. Left-diagonal and vertical edges indicate that a node is a left child, while right-diagonal edges
indicate right children. The number in each node gives the node’s level. The shaded region indicates a
subtree H2 up to hierarchy level 2. The level 2 root in H2 is indicated by a diamond-shaped node. The
double struck node in H2 (at level exactly 2) comprise a level 2 backbone, C2. The lower left node in C2

is a level 2 leaf.

nodes outputting X are said to be exempt . Nodes are only allowed to be exempt under certain
locally checkable conditions, described below. Upon removal of exempt nodes, the nodes in
each connected component at each level of the hierarchy are required to output R, B, or D
unanimously, with each “leaf” outputting its input color or D if ` < k.

Definition 5.1. Let L be a (colored) tree labeling. Let G′ be the subgraph of G consisting
of edges {u, v} where u = P(v) and v = LC(u) or RC(u). The level of a node v, denoted
level(v), is defined inductively as follows: If RC(v) = ⊥, then level(v) = 1. Otherwise, level(v) =
1 + level(RC(v)). The hierarchical forest to level k, denoted Gk = (Vk, Ek), is the sub-
(pseudo)-forest of G′ consisting of edges {u, v} with level(u), level(v) ≤ k satisfying one of the
following properties:

• v = P(u), u = LC(v), and level(v) = level(u), or

• v = P(u), u = RC(v), and level(v) = level(u) + 1.

Observation 5.2. The hierarchical forest to level k, Gk, is locally computable in the sense that
each node v can determine level(v), and which of its incident edges are in Gk by examining its
O(k)-radius neighborhood. Moreover, we assume without loss of generality that every non-⊥
label P(v), LC(v), and RC(v) corresponds to an edge in Gk. That is, for example, we have
{v,P(v)} ∈ Ek.
Definition 5.3. Suppose v is a vertex with level(u) = `. Then we call v a level ` root if
P(u) = ⊥ or u = RC(P(u)) (and hence level(P(u)) = ` + 1). We call u a level ` leaf if
LC(v) = ⊥.

Observation 5.4. Since each node in Gk has at most one parent, Gk is a pseudo-forest.
Moreover, it has the following structure: For every ` ≤ k, each connected component of Gk
consisting of nodes v with level(v) = ` is a path or cycle, and every (directed) edge is of the form
(v,LC(v)). If ` = 1, then for all such v we have RC(v) = ⊥. If 1 < ` ≤ k, then each RC(v) is the
level `− 1 root of a (directed) subtree of Gk. Finally, if ` > k, then v is an isolated vertex in Gk.
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Definition 5.5. For any fixed constant k ∈ N, the problem Hierarchical-THC(k) consists of the
following:

Input: a colored tree labeling L

Output: for each v ∈ V , a color χout(v) ∈ {R,B,D,X}

Validity: for each v ∈ V , and ` = level(v)

1. if ` > k, then χout(v) = X

2. if v is a level ` leaf then χout(v) ∈ {χin(v), D,X}
3. if ` = 1 then

(a) χout(v) ∈ {R,B,D}, and

(b) if v is not a level 1 leaf, then χout(v) = χout(LC(v))

4. if 1 < ` < k and v is not a level ` leaf then either

(a) χout(v) = χout(LC(v)) ∈ {R,B,D},
(b) χout(v) = X and χout(RC(v)) ∈ {R,B,X}, or

(c) χout(v) ∈ {χin(v), D} and χout(LC(v)) = X

5. if ` = k then χout(v) ∈ {R,B,X} and

(a) if χout(v) = X then χout(RC(v)) ∈ {R,B,X}, and

(b) if v is not a level ` leaf and χout(v) 6= X, then either

• χout(LC(v)) 6= X and χout(v) = χout(LC(v)), or

• χout(LC(v)) = X and χout(v) = χin(v)

The following observation gives some intuition about valid outputs of Hierarchical-THC(k).

Observation 5.6. Consider a valid output for Hierarchical-THC. Then Conditions 2 and 3 imply
that each connected component of level 1 vertices in Gk is unanimously colored either D or χin(u)
where u is the (unique) level 1 leaf in the connected component. Similarly, Conditions 2 and 4
characterize valid colorings of each connected component of Gk at levels ` satisfying 1 < ` < k,
although components are no longer required to output unanimous colors. Instead, Condition
4(b) allows nodes v to “choose” to output X if RC(v) outputs a color in {R,B,X}. However,
Conditions 4(a) and 4(c) require that nodes that are not allowed to choose X must either output
χout(LC(v)), or χin(v) (if χout(LC(v)) = X). Finally, Condition 5 restricts valid outputs at level
k. By Condition 5(a) a level k node v is only allowed to output X if χout(RC(v)) ∈ {R,B}.
Meanwhile, Conditions 2 and 5(b) stipulate that on a path between X’s at level k, all nodes
output χin(u), where u is the parent of the left vertex outputting X.

Remark 5.7. Our problem Hierarchical-THC differs from the version of hierarchical 21
2 coloring

described by Chang and Pettie [12] in two respects. First, we require that connected components
of non-exempt vertices are unanimously colored R, B, or D, whereas in [12], such components
must either be unanimously colored D or properly colored by R in B (i.e., an R node’s non-
exempt neighbors must output B). By using unanimous (rather than proper) colorings in all
cases, our version of Hierarchical-THC allows us to impose more restrictions on valid outputs by
designating input colors of nodes. This is helpful, for example, in the proof of Proposition 5.20
(the deterministic volume lower bound), where the main claim in the proof relies on unanimous
coloring of components. The second difference between Hierarchical-THC and that of [12] is
that in the latter problem, a node v with χout(RC(v)) 6= D is required to output X, whereas
our Conditions 4(b) and 5(a) merely allow v to output X if RC(v) 6= D. Our relaxation of
the exemption conditions does not affect the distance complexity of the problem, however our
modification seems necessary in order for the problem to have small volume complexity.
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X
<latexit sha1_base64="Y9SW8zztIYZnVgtKoKgBmjw259Q=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15lWlfp7HUYQTOIUL8OAa6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frpuMxA==</latexit>

X
<latexit sha1_base64="Y9SW8zztIYZnVgtKoKgBmjw259Q=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/IzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqu15lWlfp7HUYQTOIUL8OAa6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frpuMxA==</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
<latexit sha1_base64="b34QHfPqkAvmmJYfZ9nYeFa/GsA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPiKexGQY8BPXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+l2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwxp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3mW5Ur8qVc+zOPJwAqdwAR5cQxXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5BLjLA=</latexit>

D
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Figure 7: Input (left) and valid output (right) for Hierarchical-THC(3).

The following lemma is clear from previous discussion.

Lemma 5.8. For every fixed constant k ∈ N, Hierarchical-THC(k) is an LCL.

We now state the main result of this section.

Theorem 5.9. For each fixed positive integer k, the complexity of Hierarchical-THC(k) satisfies

R-DIST(Hierarchical-THC(k)) = Θ(n1/k),

D-DIST(Hierarchical-THC(k)) = Θ(n1/k),

R-VOL(Hierarchical-THC(k)) = O(n1/k logO(k)(n)),

D-VOL(Hierarchical-THC(k)) = Ω(n/k log n).

5.1 Shallow and Light Components

Before proving the claims of Theorem 5.9, we provide some preliminary results on the structure
of Gk for any colored tree labeling L. For the remainder of the section, fix some tree labeling L,
positive integer k, and let Gk be the hierarchical forest to level k.

Definition 5.10. For ` ∈ N with ` ≤ k, let C` be a maximal connected component of Gk
consisting of nodes v at level `. We say that C` is shallow if |C`| ≤ 2n1/k. Otherwise, if
|C`| > 2n1/k, we say that C is deep.

Let H` be a connected component of Gk consisting of C` and all of descendants of nodes
v ∈ C` (at all levels `, `− 1, . . . , 1). We call H` light if |H`| ≤ n`/k. Otherwise H` is said to be
heavy . Similarly, if v is the level ` root of H`, we call v light (resp. heavy) if H` is light (resp.
heavy).

Lemma 5.11. Let C` and let H` be as in Definition 5.10 with 2 ≤ ` ≤ k, and suppose H` is
light. Then at most n1/k nodes in C` have heavy right children.
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Proof. Let W ⊆ C` be the nodes with heavy right children, and let m = |H`|. By the assumption
that H` is light, we have m ≤ n`/k. On the other hand, we have |W | · n(`−1)/k ≤ m, as each
w ∈ W has a heavy right child at level ` − 1. Combining the two previous inequalities gives
|W | · n(`−1)/k ≤ n`/k, which gives |W | ≤ n1/k, as desired.

Lemma 5.11 implies the following dichotomy for light components, H`: Either C` is shallow,
or every subset U of C` of size at least 2n1/k has the property that at least half of the nodes
v ∈ U have light right children. In the case where C` is shallow, the nodes v ∈ C` can be validly
colored according to Definition 5.5 by exploring all of C` using distance and volume O(n1/k).
Indeed, for any ` ∈ [k], it suffices for each v ∈ C` to output χin(u0), where u0 is either the
(unique) leaf in C` (in the case C` is a path), or u0 is the vertex with minimal ID (in the case
when C` is a cycle).

On the other hand, if C` is deep (and H` is light, hence we must have ` ≥ 2), then every
node v ∈ C` has a descendant u ∈ C` and ancestor w ∈ C`, with dist(u,w) ≤ n1/k, such that u
is a leaf or u has a light right child, u′, and w is a root or w has a light right child, w′. In the
case where u′ = RC(u) is light, let H`−1 be the sub-component of H` rooted at u′. Then working
recursively, we will show that H`−1 can be validly colored using distance O(n1/k) such that
u′ outputs a color χout(u

′) ∈ {R,B}. Therefore, u satisfies Condition 4(b) or the implication
of 5(a) of validity, so that χout(u) = X satisfies validity. Similarly, if w′ = RC(w) is light, w
can output X. Choosing u and w to be the closest descendant and ancestor of v in C` with
these properties, v can then output χout(v) = χin(P(u))—as will all other nodes between u and
w—so that v satisfies Condition 4(a/c) or 5(b). We formalize this procedure in Algorithm 2.
The analysis and matching lower bound appear in Section 5.2.

The (deterministic) recursive approach to coloring nodes v in deep components C` gives
an O(n1/k) distance protocol. However, the volume of the protocol may still be large because
all nodes between u and w are recursively checked for solvability with χout(u

′) ∈ {R,B}. In
order to solve Hierarchical-THC in a volume-efficient manner, our next procedure samples a small
fraction of candidates u to try to (validly) color χout(u) = X. By choosing each candidate in
C` with probability p = Θ((log n)/n1/k), the number of such candidates in any 2n1/k radius
neighborhood of v is O(log n). If H` is light, with high probability at least one of the candidates
will correctly output χout(u) = X, thus allowing v to output the χin(P(u)).4 Each node v ∈ C`
must visit at most 2n1/k nodes in C`, and an inductive argument shows that each recursive call
to a sampled u incurs an additional volume of O(n1/k logO(`) n). The argument is formalized in
Section 5.3.

For the deterministic volume lower bound, our argument essentially shows that if a determin-
istic algorithm A has the property that many executions of A on input G never query a leaf of
G, then A cannot solve Hierarchical-THC(k) on G. We formalize this idea in Section 5.4. Given
any deterministic algorithm A purporting to solve Hierarchical-THC(k) with volume complexity
o(n/(k log n)), we describe a procedure P that produces a labeled graph G with n vertices for
which A produces an incorrect output.

5.2 Distance Bounds

Proposition 5.12. There exists a deterministic algorithm A such that for every graph G on
n nodes, tree labeling L, and positive integer k, A solves Hierarchical-THC(k) with distance
complexity O(kn1/k).

Proof. Consider the algorithm A where each node v at level ` ≤ k outputs

χout(v) = RecursiveHTHC(v, `),

4Note that sampling each candidate u must be done using u’s private randomness to ensure that all nodes v
visiting u agree on whether or not u is sampled.
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Algorithm 2 RecursiveHTHC(v, `)

1: C ← the level ` component of Gk containing v
2: if |C| ≤ 2n1/k then
3: u0 ← leaf in C if C is a path and node with minimal ID otherwise
4: return χin(u0)
5: else if ` = 1 then
6: return D
7: else if RecursiveHTHC(RC(v), `− 1) ∈ {R,B,X} then
8: return X
9: end if

10: u,w ← v
11: for i = 0 to 2n1/k do
12: if RecursiveHTHC(RC(u)) = D and u not a level ` leaf then
13: u← LC(u) {no exempt left descendant found yet}
14: end if
15: if RecursiveHTHC(RC(w)) = D and w not a level ` root then
16: w ← P(w) {no exempt ancestor found yet}
17: end if
18: end for
19: if u = v then
20: return X {χout(RC(u)) 6= D}
21: end if
22: if dist(u,w) ≤ 2n1/k then
23: if RecursiveHTHC(RC(u)) ∈ {R,B,X} then
24: return χin(P(u)) {χout(u) = X}
25: else
26: return χin(u) {u is a leaf and χout(u) = χin(u)}
27: end if
28: else
29: return D
30: end if

and outputs X if ` > k. We first argue that the output of A satisfies the validity conditions of
Definition 5.5. Fix a vertex v at level `. If ` > k, then χout(v) = X as prescribed by condition 1.
Now consider the case ` = 1, and let C be as in Line 1. By the provisions in Lines 2 and 5, all
C unanimously output D or χin(u0). In particular, Conditions 2 and 3 are satisfied.

Consider 1 ≤ ` < k, and let H be the connected component of Gh consisting of C together
with all descendants of C.

Claim. The output of each v ∈ C is valid. Moreover, if H is light, then χout(v) ∈ {R,B,X}.

Proof of claim. We argue by induction on `. The base case ` = 1 is handled by the previous
paragraph, and the observation that for ` = 1, H = C being light implies C is shallow.
Thus the condition of Line 2 is satisfied and all nodes in C output χin(u0) ∈ {R,B}.
For the inductive step, suppose the claim holds at level ` − 1. If C is shallow, then all
nodes v ∈ C output χin(u0) ∈ {R,B}, so Conditions 2 and 4(a)/5(b) of validity are
satisfied. Further, the level ` root (if any) outputs a color in {R,B}, so the conclusion
of claim follows when C is shallow. Now suppose C is not shallow. Fix v ∈ C. If
RecursiveHTHC(RC(v), ` − 1) ∈ {R,B,X}, then χout(v) = X and v satisfies validity
condition 4(b)/5(a). Otherwise let u and w be v’s descendant and ancestor (respectively)
in C during the execution of Line 22.
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If the condition dist(u,w) ≤ 2n1/k in Line 22 is satisfied, then all nodes v′ ∈ C on the path
from w to u (possibly excluding w or u themselves) will store the same values for w and
u when Line 22 is executed. Therefore, all such v′ will unanimously output χin(P (u)) or
χin(u) (both in {R,B}) according to Line 24 or 26. Thus all nodes between w and u in C
satisfy validity conditions 2/4(a)/4(c) or 5(b). Moreover, if v is a root level ` root, then
v = w and χout(v) = {R,B,X} as claimed.

Finally consider the case where dist(u,w) > 2n1/k. By Lemma 5.11 and the inductive
hypothesis, this case can only occur if H is heavy. In particular, this case can only occur for
` < k. If v is a level ` leaf, then v = u and either v outputs X (at Line 8) or D (at Line 29).
Either way, validity condition 2 is satisfied. If v is not a leaf, then if v outputs X at Line 8,
v satisfies validity condition 4(b). Otherwise, v outputs D in Line 29. Similarly, LC(v) will
output D or X (according to if RecursiveHTHC(RC(LC(v)), `− 1) ∈ {R,B,X}), because
LC(v) and v agree on whether the condition dist(u,w) > 2n1/k in Line 2 is satisfied (even
though v and LC(v) may store different values of u and w). Accordingly, validity condition
4(a) or 4(c) is satisfied. Thus the claim holds for v at level `, as desired.

By the claim, the output of A satisfies validity (where again, we observe that if ` = k, then H
is light. All that remains is to bound the distance complexity of A. To this end, a straightforward
induction argument (on `) shows that RecursiveHTHC(v, `) queries nodes at distance at most
O(` · n1/k) from v. For ` = 1, this is immediate, as v can determine if |C| ≤ 2n1/k using O(n1/k)
queries. For ` > 1, the same applies. Further, RecursiveHTHC(v, `) queries O(n1/k) nodes
in C (at level `) in the loop starting at Line 11, and each such query makes a single call to
RecursiveHTHC(v, `− 1). Thus, applying the inductive hypothesis, the distance complexity of
RecursiveHTHC(v, `) is O(n1/k) +O((`− 1)n1/k), which gives the desired result.

Proposition 5.13. Any (randomized) algorithm A that solves Hierarchical-THC with probability
bounded away from 1/2 has distance complexity Ω(n1/k).

We omit a proof of Proposition 5.13, as the argument is essentially the same as the proof lower
bound proof for Chang and Pettie’s variant of hierarchical 21

2 coloring (Theorem 2.3 in [12]). We
note that the instance achieving the lower bound is a “balanced” instance of Hierarchical-THC(k),
where every “backbone”—i.e., maximal connected component of Gk consisting of nodes at the
same level—has size Θ(n1/k).

5.3 Randomized Volume Upper Bound

Proposition 5.14. There exists a randomized algorithm A′ that for every graph G on n
nodes and tree labeling L, A′ solves Hierarchical-THC with high probability using volume
O(n1/k logO(k)(n)).

The algorithm A′ achieving the conclusion of Proposition 5.14 is a slight modification of
RecursiveHTHC. In A′, only a small fraction of the recursive calls to RecursiveHTHC are made.
Specifically, each node v uses its private randomness to independently become a way-point
with probability p = (c log n)/n1/k (for some constant c to be chosen later). In A′, a recursive
call to RecursiveHTHC(v′, `) (in Line 7, 12, 15, or 23) is made if and only if v′ is a way-point. In
particular, if v is not a way-point, then Line 7 evaluates to false; if u (resp. w) is not a way-point,
then Line 12 (resp. Line 15) evaluates to true.

The proof of correctness of A′ is essentially the same as in the proof of Proposition 5.12, at
least in cases where the distribution of way-points is sufficiently well-behaved. The potential
complication in the analysis arises in deep components C (i.e., C with |C| ≥ 2n1/k), because
light components can be validly colored deterministically using O(|C|) = O(n1/k) volume. For
deep components C, the choice of p = (c log n)/n1/k ensures that in any segment of C of length
O(n1/k) there are O(log n) way-points in the segment with high probability (Lemma 5.16). Thus,
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we bound the number of recursive calls to RecursiveHTHC made by A′. On the other hand, if
C is contained in a light component H, then by Lemma 5.11 any segment of length at least
2n1/k will have at least 1/2-fraction of its nodes being the parents of light right children. The
choice of p allows us to infer that some such “light parent” u is a way-point (Lemma 5.18). We
then argue by induction that u will output X, hence C can be validly colored without any node
outputting D.

Definition 5.15. Fix ` with 1 < ` ≤ k and let C be a maximal connected component of Gk
consisting of nodes at level `. A short segment is a path or cycle S ⊆ C such that |S| ≤ 4n1/k.
We say that S is crowded if it contains more than 8c log n way-points.

Lemma 5.16. Suppose each v ∈ V is chosen to be a way-point independently with probability
p = (c log n)/n1/k. Then

Pr(Gk contains a crowded segment) ≤ O(1/n).

Proof. First observe that if Gk contains a crowded short segment, then it contains a crowded
maximal short segment (i.e., a short segment that is not a subset of any other short segment).
By associating each maximal short segment with its midpoint (in the case of a path), or node
with lowest ID (in the case of a cycle), there are at most n maximal short segments in Gh.

Consider some fixed maximal short segment S. For i ≤ 4n1/k, let Yi be an indicator random
variable for the event that the ith node in S is a way-point if i ≤ |S|, and Yi is an independent
Bernoulli random variable with probability p otherwise. Then

Pr(S is crowded) = Pr

 |S|∑
i=1

Yi ≥ 8c log n

 ≤ Pr

(
m∑
i=1

Yi ≥ 8c log n

)
.

Since the Yi are iid Bernoulli random variables, we can apply the Chernoff bound Lemma 2.12
to Y =

∑m
i=1 Yi. Note that µ = E(Y ) = 4c log n. Therefore, Lemma 2.12 gives

Pr(Y ≥ 8c log n) = Pr(Y ≥ 2µ) ≤ e−µ/3 = e−(4/3)c logn = n−4c/3.

For any c ≥ 3/2, this final expression is at most 1/n2. Thus taking the union bound over all
maximal short segments, we find that

Pr(Gh contains a crowded segment) ≤
∑

S maximal, short

Pr(S is crowded)

≤ n · 1

n2
=

1

n

which gives the desired result.

Definition 5.17. Let `, C, H, and v be as in Lemma 5.18. We call u ∈ C a light way-point
if u is a way-point and RC(u) is light.

Lemma 5.18. Fix ` with 1 < ` ≤ k and let C be a connected component of Gk consisting
of nodes at level `, and let H be the subgraph of Gk consisting of nodes in C together with
all of their descendants. Suppose C is deep (i.e., |C| > 2n1/k and H is light (i.e., |H| ≤ n`/k.
Let v ∈ C, and suppose every node v′ ∈ C is chosen to be a way-point independently with
probability (c log n)/n1/k. Then with probability 1−O(1/n2) there exists a descendant u ∈ C
of v and ancestor w ∈ C of v such that dist(w, u) ≤ 2n1/k and

1. u is either a light waypoint or a level ` leaf, and
2. w is either a light waypoint or a level ` root.
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Proof. We consider the case where C is a path. The case where C is a cycle can be handled
similarly. Let u0 be the leaf in C and let u0, u1, . . . be defined by taking ui+1 = P(ui). For
j = 0, 1, . . . , |C| − 2n1/k, let Sj be the segment of C containing uj , uj+1, . . . , uj+2n1/k . By

Lemma 5.11, at least n1/k nodes ui ∈ Sj have light right children. Therefore

Pr(no ui ∈ Sj is a light waypoint) ≤
n1/k∏
i=1

(1− p) = (1− p)n1/k ≤ e−p·n1/k
= e−c logn = n−c.

Taking any c ≥ 3 and applying the union bound over all j, we have that every Sj contains a
light waypoint with probability 1−O(1/n2). In particular, this implies that with probability
at 1−O(1/n2), the maximum distance between consecutive light way-points is at most 2n1/k,
which gives the desired result.

Corollary 5.19. Suppose every v ∈ V is chosen to be a waypoint independently with probability
p = (c log n)/n1/k. Then with probability 1 − O(1/n) the following holds: for every ` with
1 < ` ≤ k and every v such that v ∈ C ⊆ H where H is light, then v has a descendant u
and ancestor w both in C with dist(w, u) ≤ 2n1/k such that u is either a level ` leaf or a light
waypoint and w is either a level ` root or a light waypoint.

Proof of Proposition 5.14. Suppose way-points are chosen in such a way that the conclusions
of Lemma 5.16 and Corollary 5.19 hold. Note that such events occur with probability 1 −
O(1/n). We claim that in this case, the modification A′ of RecursiveHTHC as described in the
paragraph following Proposition 5.14 gives a valid solution to Hierarchical-THC(k) using volume
O(n1/k logO(k) n).

The idea is to argue inductively that for each level ` and light H`, H` is validly colored with
the level ` root of H` outputting χout(v) 6= D. The base case ` = 1 is straightforward, as H1

being light implies C1 = H1 is shallow. Therefore, all nodes in H1 output χin(u) where u is the
leaf of C1. For the inductive step suppose the claim is true for `− 1, and consider v ∈ C`. If v is
a light waypoint, then by induction χout(RC(v)) 6= D, so that v outputs X in Line 20. Since
all light way-points in C` output X and the conclusion of Corollary 5.19 guarantees that every
connected component of C` \ {exempt nodes} is of size at most 2n1/k. Thus, each component is
unanimously colored by R or B in Line 24. This in turn gives a valid coloring where the root of
H` does not output D, as desired.

Finally, the upper bound on volume follows from Lemma 5.16. By the algorithm description,
an execution initiated at v ∈ C` queries O(n1/k) nodes in C`. Further, conclusion of the
lemma implies that v only recursively calls RecursiveHTHC on O(log n) nodes in C`. Thus, a
straightforward induction argument shows that the total number of queries is O(n1/k log` n),
which gives the desired result.

5.4 Deterministic Volume Lower Bound

Proposition 5.20. Any deterministic algorithm A solving Hierarchical-THC(k) requires volume
Ω(n/k log n).

Proof. Suppose A is any deterministic algorithm with volume complexity at most m purportedly
solving Hierarchical-THC(k). We assume k ≥ 2, and describe a process P that produces a graph G
on n = O(k ·m logm) vertices and labeling L on G such that P does not solve Hierarchical-THC(k)
on G. We begin by observing the following claim, whose (omitted) proof is straightforward.

Claim. Let A be any deterministic algorithm that solves Hierarchical-THC(k), and let Hv be the
subgraph of some input graph G queried by an instance of A initiated at a vertex v in G.
Suppose Hv has the property that every descendant (in Gh) of v in Hv has input color B
(resp. R). Then the output of A must satisfy χout(v) 6= R (resp. χout(v) 6= B).

31



The process P constructs graphs in phases k, k − 1, . . . , 1. In phase i, P constructs a graph Gi
by simulating executions of A initiated at nodes at level i. Each phase consists of O(logm)
subphases, and in subphase P simulates an execution of A initiated at a single vertex. We
illustrate an example iteration of P with some algorithm A in Figure 8.

The procedure P maintains the following invariants. Let Gt denote the labeled tree con-
structed after P simulates the tth query in its simulations. Every node v in Gt has degree 2 or 3
(with some neighbors possibly not yet assigned), with P(v) = 1, LC(v) = 2. If v has degree 3
(i.e., is at level ` > 1) then RC(v) = 3. Gt is a tree with at most k levels. P maintains level(v)
for each vertex v in Gt which will correspond to v’s final level in the completed graph G. In
particular, if level(v) = ` > 1 then level(RC(v)) = `− 1. Finally, P assigns IDs to newly added
nodes serially so that the jth node created has ID j.
P begins phase k, subphase 1 by simulating A from a vertex vB with level(vB) = k and

ID 1, and χin(vB) = B. During step t (i.e., when A makes its tth query), if A queries a new
node (necessarily a neighbor of some u in Gt−1) P forms Gt by adding a corresponding node
ut to Gt−1 whose ID and label maintain the invariants described above, and sets χin(ut) = B.
At the end of subphase 1, every node u queried from the execution of A initiated at vB has
χin(u) = B. Thus, by the claim, we must have χout(vB) 6= R. Moreover, by Condition 5 of
validity (Definition 5.5), the output must satisfy χout(vB) 6= D, so that χout(vB) ∈ {B,X}. If
χout(vB) = X, P ends Phase k, and sets vk−1 = RC(vB).

If χout(vB) = B, P continues to subphase 2 as follows. P simulates A from a new vertex
vR /∈ Gt—and not yet connected to Gt—exactly as in subphase 1, except that all nodes u created
in this subphase have χin(u) = R. When the execution of A initiated at vR terminates, Gt
consists of two connected components: a blue component (containing vB) and a red component
(containing vR). As before, χout(vR) ∈ {R,X}, otherwise A does not solve Hierarchical-THC(k)
on (some completion of) Gt. If χout(vR) = X, P sets vk−1 = RC(vR) and ends Phase k.
Otherwise (if χout(vR) = R), P transforms Gt by connecting the blue and red components as
follows. Let uB be the highest ancestor of vB in the blue component, and let wR be the left-most
descendant of vR in the red component. In particular, level(uB) = level(wR) = k. P includes an
edge between uB and wR and sets wR = P(uB), uB = LC(wR). Thus, in Gt, vB becomes a left
descendant of vR.

Consider the path w0 = vR, u1, . . . , wb = vB from vR to vB. By construction, we have
level(wi) = k for all i, and b ≤ 2m (since the red and blue components each have size at most m).
Since χout(vB) = B and χout(vR) = R, in any completion of Gt, there must either exist some wi
satisfying χout(wi) = X, or adjacent nodes wi−1, wi such that χout(wi−1) = R and χout(wi) = B.
Since the latter case violates validity Condition 5(b), some output of a correct algorithm A
should satisfy the former condition. The procedure P attempts to find such a vertex wi by using
binary search on the path (vR, . . . , vB). More formally, let u1 be the midpoint of the path from
vR to vB. In subphase 3, P simulates an execution of A from u1. As before, every time a new
node (not already in Gt) is queried, P creates a new node u (with the next value of ID) and
forms Gt+1 by appending the node to Gt. The input color of u is chosen to be the same as the
input color of the node from which u was queried. That is, if u is a child/parent of u′, then
χin(u) = χin(u′). Thus, at every step Gt consists of blue and red components connected by a
single edge.

Consider the graph Gt at the end of the execution of A initiated at u1. As before, we must
have χout(u1) ∈ {R,B,X}. (Note that u1 may not satisfy the hypothesis of the claim above, as u1

may query nodes of both input colors). If χout(u1) = X, P ends phase k and sets vk−1 = RC(u1).
If χout(u1) = R (resp. B), P sets u2 to be the midpoint of u1 and vB (resp. vR) and repeats the
procedure of the previous paragraph starting from u2. Continuing in this way P produces a
sequence u1, u2, . . . , ur of nodes in the path from vR to vB until either χout(ur) = X, or adjacent
nodes in the path output R and B, respectively, thus contradicting validity condition 5(b).
Since P uses binary search to determine ui+1 from the previous simulations, phase k requires
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vB
<latexit sha1_base64="q+lpM4+f4b61lNKj0scv8fJ1JYw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrtookeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOredoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlisPV6XqeRZHHk7gFC7Ag2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AG0qNlw==</latexit>

vR
<latexit sha1_base64="EabBpYhpcauXdpfO+ptncpaqOcw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrtookcSLx7xwSOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbD25nfHKHSPJZPZpygH9G+5CFn1FjpcdR96BZLbtmdg6wSLyMlyFDrFr86vZilEUrDBNW67bmJ8SdUGc4ETgudVGNC2ZD2sW2ppBFqfzI/dUrOrNIjYaxsSUPm6u+JCY20HkeB7YyoGehlbyb+57VTE974Ey6T1KBki0VhKoiJyexv0uMKmRFjSyhT3N5K2IAqyoxNp2BD8JZfXiWNStm7LFfur0rV8yyOPJzAKVyAB9dQhTuoQR0Y9OEZXuHNEc6L8+58LFpzTjZzDH/gfP4AM4qNpw==</latexit>

uB
<latexit sha1_base64="coZWjQaQsYKuM7LGtlTHV1t2jAc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9pL2bXqnsVtwZyDLxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwUuymGhPKRnSAHUsljVD72ezUCTm1Sp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2naEPwFl9eJs1qxbuoVO8vy7WzPI4CHMMJnIMHV1CDO6hDAxgM4Ble4c0Rzovz7nzMW1ecfOYI/sD5/AEZxI2W</latexit>

wR
<latexit sha1_base64="6jSyvWzThNDQLSujBDKpv6LZ44o=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrtookcSLx7xwSMBQmaHWZgwO7uZ6dWQDZ/gxYPGePWLvPk3DrAHBSvppFLVne4uP5bCoOt+O7mV1bX1jfxmYWt7Z3evuH/QMFGiGa+zSEa65VPDpVC8jgIlb8Wa09CXvOmPrqd+85FrIyL1gOOYd0M6UCIQjKKV7p96d71iyS27M5Bl4mWkBBlqveJXpx+xJOQKmaTGtD03xm5KNQom+aTQSQyPKRvRAW9bqmjITTednTohJ1bpkyDSthSSmfp7IqWhMePQt50hxaFZ9Kbif147weCqmwoVJ8gVmy8KEkkwItO/SV9ozlCOLaFMC3srYUOqKUObTsGG4C2+vEwalbJ3Xq7cXpSqp1kceTiCYzgDDy6hCjdQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBNRCNqA==</latexit>

u1
<latexit sha1_base64="KgLvDt5FoyHe0giX3m7dFYwV624=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u6vKvXzPI4inMApXIAH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAAAI2F</latexit>

X
<latexit sha1_base64="g6ICiI2L2AmbnNnBl5/zKOZ/o58=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ66JT65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8KVWGM4GzUi/VmFA2pkPsWipphNqfzi+dkTOrDEgYK1vSkLn6e2JKI60nUWA7I2pGetnLxP+8bmrCG3/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJq1b1Lqu1+6tK/TyPowgncAoX4ME11OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AOL/jNg=</latexit>

v2
<latexit sha1_base64="HmFPaTwncvxl3ufccl+RMju1lRY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8NbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbuqVB+uy7WLPI4CnMIZXIIHN1CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEDCo2H</latexit>

X
<latexit sha1_base64="g6ICiI2L2AmbnNnBl5/zKOZ/o58=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ66JT65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8KVWGM4GzUi/VmFA2pkPsWipphNqfzi+dkTOrDEgYK1vSkLn6e2JKI60nUWA7I2pGetnLxP+8bmrCG3/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJq1b1Lqu1+6tK/TyPowgncAoX4ME11OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AOL/jNg=</latexit>

X
<latexit sha1_base64="g6ICiI2L2AmbnNnBl5/zKOZ/o58=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbFU0mqoMeCF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ66JT65Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8KVWGM4GzUi/VmFA2pkPsWipphNqfzi+dkTOrDEgYK1vSkLn6e2JKI60nUWA7I2pGetnLxP+8bmrCG3/KZZIalGyxKEwFMTHJ3iYDrpAZMbGEMsXtrYSNqKLM2HCyELzll1dJq1b1Lqu1+6tK/TyPowgncAoX4ME11OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AOL/jNg=</latexit>

v1
<latexit sha1_base64="08S/MkmVnhAPNh+BEWuIqBSH4ng=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KkkV9Fjw4rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3voZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Vqg/X5dpFHkcBTuEMLsGDG6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gABho2G</latexit>

Figure 8: Illustration of the process P interacting with a deterministic algorithm A purportedly solving
Hierarchical-THC(3). The top figure shows the partial instance constructed at the end of the second
subphase of phase k = 3, assuming the nodes vB and vR output B and R respectively. The second image
shows the region explored by the node u1. Assuming u1 outputs X, the third image gives the result of the
first sub-phase of phase 2, showing the region explored by v2. Finally, if v2 outputs X, the fourth image
shows the region explored by v1. Since v1 sees only red vertices in the subtree below it, and v1’s parent,
v2, outputs X, v2 must output R. However, by construction, v1 does not query a leaf. By appending a
blue leaf to the region explored by v1, we P forces A to produce an incorrect output on the instance.
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O(m logm) queries (i.e., |Gt| = O(m logm) at the end of phase k).
If P has not found outputs violating validity at the end of phase k, then P stores a node

vk−1 such that vk−1 = RC(P(vk)), level(vk−1) = k − 1, and χout(P(vk−1)) = X. By validity
condition 5(a), A must satisfy χout(vk−1) 6= D. Without loss of generality, assume that vk−1 is
in the red component of Gt so that χin(vk−1) = R. (If χin(vk−1) = B, interchange the roles of R
and B in the following discussion.) P begins the first subphase of phase k − 1 by simulating an
execution of A initiated at vk−1, where again the input color of each new node in Gt is consistent
with the red or blue component to which the new node is appended. Since this implies that all
descendants of vk−1 have input color R, vk−1 should output in {R,X}. Again, if χout(vk−1) = X,
P sets vk−2 = RC(vk−1) and ends phase k − 1. Otherwise, if χout(vk−1) = R, then P forms a
new vertex v′k−1 with input color B with level(vk−1) = k − 1. P then simulates an execution
of A from v′k−1 in a new blue component disconnected from the component of Gt constructed
so far, just as it did for vB. P additionally maintains the invariant that all new nodes in this
component are at level at most k − 1 by setting labels so that v′k−1 is the left-most descendant
of all its ancestors of v′k−1

Since v′k−1 is at level k − 1, the claim implies that correct output can satisfy χout(v
′
k−1) ∈

{B,D,X}. Again if χout(v
′
k−1) = X, P sets vk−2 = RC(vk−1) and ends phase k − 1. Otherwise,

if χout(v
′
k−1) ∈ {B,D}, the component of Gt containing v′k−1 is attached to the component

containing vk−1 so that v′k−1 becomes a left descendant of vk−1. Since χout(vk−1) = R and
χout(v

′
k−1) ∈ {B,D}, validity conditions 4 now imply that there is some node v′′k−1 on the path

between vk−1 and v′k−1 such that χout(v
′′
k−1) = X. P finds such a node v′′k−1 using binary search

(simulating at most logm more executions of A), and sets vk−2 = RC(v′′k−1).
Continuing in this way, P either finds a node violating one of the validity conditions, or it

constructs a sequence v′′k , v
′′
k−1, . . . v

′′
2 such that level(v′′i ) = i and χout(v

′′
i ) = X. Now consider

the graph Gt at the beginning of phase 1, and let v1 = RC(v′′2 ). Assume without loss of generality
that v1 lies in a red component, so that χin(v1) = R, and similarly for all of v1’s descendants
of Gt constructed so far. P simulates v1, and appends to Gt accordingly, maintaining that all
of v1’s descendants input colors are R. As before, the claim implies that χout(v1) 6= B, and
validity condition 3(a) implies that χout(v1) 6= X. Further, validity condition 4(b) (applied to
P(v1) = v′′2 ) implies that χout(v1) 6= D. Thus, we must have χout(v1) = R. Now P appends to Gt
a single leaf v′1 that is a left descendant of v1 and setting χin(v1) = B. By validity conditions 2
and 3(a), χout(v1) ∈ {B,D}. However, this together with χout(v1) = R implies that some node
v′′1 on the path from v1 to v′1 violates validity condition 3(b).

When the simulation of v1 is completed, P has simulated O(k · m logm) nodes, hence
|Gt| = O(k ·m logm). To complete G, P appends nodes to each “unassigned” port that are
consisted with the level of each node containing the unassigned port (with arbitrary input colors).
Since there are at most 2 |Gt| unassigned ports, and a minimal tree with ` levels contains O(`)
nodes, the final graph G satisfies n = |G| = O(k2m logm). Therefore for constant k, we must
have m = Ω(n/ log n), which gives the desired result.

6 Hybrid Balanced 21
2

Coloring

Here, we describe a family of LCLs, Hybrid-THC(k), that are hybrids of BalancedTree(k) intro-
duced in Section 4 and Hierarchical-THC(k) described in Section 5. Like Hierarchical-THC(k),
each node has an associated level ` ∈ [k + 1], which in the case of Hybrid-THC(k) is explicitly
given to each node as part of its input label. Each connected component (of GT induced by a
tree labeling) at level ` = 1 corresponds to an instance of BalancedTree, which may either be
solved (with all nodes outputting B or U) or declined (with all nodes outputting D). Nodes
at levels ` ≥ 2 induce an instance of Hierarchical-THC(k), except that validity conditions 4(b)
and 5(a) are modified for level ` = 2. Specifically, a level 2 node v is allowed to output X if and
only if RC(v) (at level 1) outputs a value in {B,U}—i.e., if the instance of BalancedTree below
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v is solved.
The hybrid LCL Hybrid-THC(k) described above is easier than Hierarchical-THC(k) in terms

of distance complexity because the basic problem BalancedTree can be solved in each level 1
component with distance complexity O(log n) (Proposition 4.8). Since nodes at level ` ≥ 2 are
distance `− 1 from (the root of) such a component, every node at any level ` ≥ 2 can simply
output X, knowing that every level 1 sub-instance can be solved.

In terms of volume complexity, Hybrid-THC(k) is no easier than Hierarchical-THC(k) because
there is no volume-efficient method of solving each level 1 sub-instance (Proposition 4.9).
The same algorithmic technique used to solve Hierarchical-THC(k) in randomized volume
O(n1/k logO(k) n) can also be applied to solve Hybrid-THC(k) with the same volume bound.
As one would expect, the deterministic volume complexity of Hybrid-THC(k) is (nearly) linear.

Definition 6.1. For any fixed constant k ∈ N, the problem Hybrid-THC(k) consists of the
following:

Input: a colored balanced tree labeling together with a number level(v) ∈ [k + 1] for each v ∈ V

Output: for each v ∈ V a string encoding either a pair (β(v), p(v)) ∈ {B,U} × P or a symbol in
{R,B,D,X}

Validity: depending on the input label ` = level(v), the output must satisfy

` = 1: the output is valid in the subgraph of all nodes w satisfying level(w) = 1 in the
sense of Definition 4.1, or χout(v) = D and all level 1 neighbors of v (in GT ) also
output D

` = 2: the output satisfies conditions 2 and 4 of Definition 5.5, except that 4(b) is replaced
by “χout(v) = X and χout(RC(v)) ∈ {B,U}”

` > 2: the output is valid in the sense of Definition 5.5

The following lemma is clear from previous discussion.

Lemma 6.2. For every fixed positive integer k, Hybrid-THC(k) is an LCL.

We state the main theorem of this section below. As noted at the beginning of the section, the
proofs of the various claims in Theorem 6.3 are analogous to the results appearing in Sections 4
and 5. Details are left to the reader.

Theorem 6.3. For each fixed positive integer k, the complexity of Hybrid-THC(k) satisfies

R-DIST(Hybrid-THC(k)) = Θ(log n),

D-DIST(Hybrid-THC(k)) = Θ(log n),

R-VOL(Hybrid-THC(k)) = Θ̃(n1/k),

D-VOL(Hybrid-THC(k)) = Θ̃(n).

6.1 More Complexity Classes

In this final technical section, we describe a family of LCLs—called hierarchical-or-hybrid 21
2

coloring (HH-THC) with (randomized and deterministic) volume complexity Θ(n1/`), randomized
volume complexity Θ̃(n1/k), and deterministic volume complexity Θ̃(n) for any k, ` ∈ N with
k ≤ `. The idea of HH-THC is that each node v receives an input label for Hierarchical-THC(`)
or Hybrid-THC(k) together with a single bit bv. The nodes with input bit bv = 0 should solve
Hierarchical-THC(`), while the nodes with input bit bv = 1 should solve Hybrid-THC(k).

Definition 6.4. For any fixed constants k, ` ∈ N, k ≤ `, the problem HH-THC(k, `) consists of
the following:
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Input: a colored balanced tree labeling together with a number level(v) ∈ [k + 1] and bit
bv ∈ {0, 1} for each v ∈ V

Output: for each v ∈ V a string encoding either a pair (β(v), p(v)) ∈ {B,U} × P or a symbol in
{R,B,D,X}

Validity: if G0 and G1 are the induced subgraphs of G consists of nodes with inputs bv = 0 and
bv = 1 respectively, then

• the output labeling in G0 is a valid output for Hierarchical-THC(`) (Definition 5.5)
(with the input level level(v) ignored)

• the output labeling in G1 is a valid output for Hybrid-THC(k) (Definition 6.1)

Since determining membership in G0 or G1 can be done locally, HH-THC(k, `) is an LCL. To
analyze, say, the randomized distance complexity of HH-THC(k, `), observe that each node v can
solve HH-THC(k, `) using distance at most the maximum of O(R-DIST(Hierarchical-THC(`)))
and O(R-DIST(Hybrid-THC(k))). Thus,

R-DIST(HH-THC(k, `)) = O(max {R-DIST(Hierarchical-THC(`)),R-DIST(Hybrid-THC(k))})
= O(n1/`).

Arguing similarly for the other complexity measures, we obtain the following result.

Theorem 6.5. For all positive integers k, ` with k ≤ ` the complexity of HH-THC(k, `) satisfies

R-DIST(HH-THC(k, `)) = Θ(n1/`),

D-DIST(HH-THC(k, `)) = Θ(n1/`),

R-VOL(HH-THC(k, `)) = Θ̃(n1/k),

D-VOL(HH-THC(k, `)) = Θ̃(n).

7 Discussion and Open Questions

7.1 Denser and Deterministic Volume Hierarchies

In the preceding sections, our results establish a randomized volume hierarchy for LCL problems:
for every k ∈ N there exists an LCL whose randomized volume complexity is Θ̃(n1/k). Moreover,
this hierarchy persists even when restricting to problems whose randomized and deterministic
distance complexities are both Θ(log n). However, we do not establish an analogous hierarchy
for deterministic volume complexity.

Question 7.1. Does there exist an LCL Π whose deterministic volume complexity is in
ω(log∗ n) ∩ o(n)?

We conjecture a negative answer to Question 7.1. The conjecture holds in the relaxed
setting where an algorithm is given not n in advance and unique IDs are not required to be
polynomial in n. The argument is as follows. Let A be any deterministic algorithm, and let
G = (V,E) be a (large) instance of an LCL Π such that VOL(A,G,L, v)� n. For fixed v ∈ V ,
let H be the induced (labeled) subgraph of G consisting of nodes that are either queried by
A in an execution initiated from v, or neighbors of nodes queried by A. An instance of A
initiated at v in H will query precisely the same nodes and give the same output as it did
in G. Since Π is an LCL, the solution found by A on H is also a valid solution to Π. But
VOL(A,H,L′, v) = VOL(A,G,L, v) ≥ |H| /(∆−1). Thus, A queries a constant fraction of H. If
D-DIST(Π) = Ω(log∗ n), then we can construct an infinite family of graphs H as above such that
any deterministic algorithm requires linear volume on H, thus implying that D-VOL(Π) = Ω(n).
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Recall from Section 1.2 that the gap between randomized and deterministic volume is
at most exponential, and hence finding any LCL whose randomized volume complexity is in
ω(log∗ n) ∩ o(log n) would immediately imply a positive answer to Question 7.1. Thus, our
conjecture also implies that no such LCLs exist.

We believe that the complexity classes for R-VOL described in this paper—namely problems
with complexities roughly n1/k for all k ∈ N, and log n—are far from exhaustive.

Question 7.2. For what values of α ∈ [0, 1] is there an LCL problem Π with R-VOL(Π) = Θ̃(nα)?
Are there problems with complexities in ω(log n) ∩

(⋂
k∈NO(n1/k)

)
?

We conjecture that problems Π with R-VOL(Π) = Θ̃(nα) exist for all α in a dense subset of
[0, 1]. That is, for every α′ ∈ [0, 1] and ε > 0, there exists an α ∈ [0, 1] with |α′ − α| < ε and an
LCL Π with R-VOL(Π) = Θ̃(nα). We believe that LCL constructions similar to those described
in [2] will yield more R-VOL complexity classes.

7.2 Graph Shattering

The LCLs described in preceding sections all have deterministic and randomized distance
complexities Ω(log n). However, an interesting class of LCLs have randomized and deterministic
distance complexities between Ω(log log n) and O(log n). A canonical example of such a problem
is sinkless orientation (SO), whose randomized distance complexity is Θ(log logn), and whose
deterministic distance complexity is Θ(logn).

Question 7.3. What are D-VOL(SO) and R-VOL(SO)?

We note that a negative answer to Question 7.1 would also settle Question 7.3. Indeed,
if D-VOL(SO) = Ω(n), then R-VOL(SO) = Ω(log n), as randomness helps at most exponen-
tially [13], but at the same time we also have R-VOL(SO) = O(log n), since we can simulate
O(log log n)-distance algorithms with O(log n) volume. Conversely, R-VOL(SO) = o(log n)
would imply D-VOL(SO) = o(n), thus giving a positive answer to Question 7.1.

7.3 Complexity Classes with Restricted Bandwidth

The query model we consider, together with the associated volume complexities, can be viewed
as a refinement of the LOCAL model in distributed computing, where an algorithm incurs a
cost for each query made to a node. Like round complexity in the LOCAL model, volume
complexities are purely combinatorial. The CONGEST model [41] is a refinement of the LOCAL
model where the complexity measure is communication based: in each round, each node can
send at most B (typically O(log n)) bits to each of its neighbors. We believe it is interesting to
compare the relative power of the query model and the CONGEST model. We observe that
fairly naive bounds on the relative complexities in the query and CONGEST models are the
best possible.

Observation 7.4. Suppose a problem Π can be solved in T rounds in the deterministic
CONGEST model. Then D-VOL(Π) = ∆O(T ). This follows immediately from Lemma 2.5, as T
rounds in the CONGEST model can trivially be simulated in T rounds in the LOCAL model. The
same relationship holds for randomized algorithms: if Π can be solved in T rounds of CONGEST
with randomness, then R-VOL(Π) = ∆O(T ). Moreover, these bounds are tight. BalancedTree can
be solved in O(log n) rounds of CONGEST by each inconsistent/incompatible node v announcing
this defect to its neighbors in O(1) rounds. Then after O(log n) rounds of flooding (each node
simply rebroadcasts an “inconsistent” message heard from any neighbor), every unbalanced node
will witness an inconsistency, thus allowing it to (correctly) output. By the Ω(n) query lower
bound of Ω(n) posited in Proposition 4.9, the bounds R-VOL(Π),D-VOL(Π) = ∆O(T ) are the
best possible even when restricting attention to LCL problems.
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Observation 7.5. Suppose Π is a problem with deterministic (resp. randomized) volume
complexity D, such that the input of each node is of size O(log n) (including random bits in the
randomized case). Then Π can be solved in ∆O(D) rounds in the deterministic (resp. randomized)
CONGEST model as follows. Using a simple flooding procedure, each node can learn its distance
D neighborhood in ∆O(D) rounds of CONGEST. Each node then simulates the query based
algorithm on its D-neighborhood. Example 7.6 shows that the bound ∆O(D) is the best possible,
though the example is not an LCL.

Example 7.6. Let G = (V,E) be a graph on n = 2(2k+1 − 1) nodes constructed as follows. G
consists of two balanced binary trees of depth k rooted at nodes u and v respectively, together
with an edge between u and v. All internal nodes have a (specified) left and right child. Let
u1, u2, . . . , u2k and v1, v2, . . . , v2k be the leaves below u and v, respectively, where u1 is u’s
left-most descendant, u2k is u’s right-most descendant, and similarly for v1, . . . , v2k . Each vi has
an input bit bi. To solve the problem Π, each ui must output bi (initially stored in vi). This
problem can easily be solved in O(log n) queries. However, in the CONGEST model, Π requires
Ω(n/B) rounds. Indeed, to solve Π, the entire vector b1b2 · · · b2k must be transmitted across the
single edge {u, v}, which requires Ω(2k/B) = Ω(n/B) rounds.

While the problem Π in Example 7.6 shows that in general the CONGEST round complexity
can be exponentially larger than the volume complexity, Π is not an LCL. It is not clear to us if
this exponential gap is achievable for an LCL problem.

Question 7.7. What is the largest possible gap between volume complexity and CONGEST
round complexity for an LCL? Are there LCLs with (deterministic) volume complexity D that
require ∆Ω(D) rounds in the CONGEST model?

7.4 Pushing, Pulling, and MPC

In our volume model (and LCA models), an algorithm interacts with the graph by “pulling”
information. That is, the output of a node v is determined by a sequence of (adaptively chosen)
read operations; there is no direct interaction between executions instantiated from different
nodes. One could consider a “push” model, in which an algorithm can send messages to other
visited nodes in the network. An execution of an algorithm in such a model could proceed in
three phases as follows:

1. Each node adaptively queries its local neighborhood using at most Qpull queries (as in our
volume model).

2. Each node sends messages to at most Qpush nodes queried in phase 1.

3. Nodes output based on the result of the queries made in phase 1 and messages received in
phase 2.

Thus, such a model would allow for some limited interaction between nodes. Equivalently, this
model can be viewed as a variant of the volume model where an execution of an algorithm is
granted read-write access to (some subset of) nodes it visits, rather than read-only access. One
could further generalize this model by allowing multiple iteration of the phases above, or limiting
the size of messages sent in phase 2.

It is clear that an algorithm as above can be simulated in Qpull rounds of LOCAL computation.
The pull/push model is trivially at least a strong as our volume model as well, as our volume
model is the special case with Qpush = 0. However, it is not clear how much more computational
power is afforded by allowing algorithms to push messages. The following example shows that
pushing can give an exponential improvement in the complexity of a problem.
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Example 7.8. Consider the problem BalancedTree. By Theorem 4.5, R-VOL(BalancedTree) =
Ω(n). However, BalancedTree can be solved in the pull/push model using O(log n) queries. In
phase 1, each node queries its O(1) distance neighborhood to determine if it is compatible in
the sense of Definition 4.2. If so, v waits until phase 3. Otherwise, v queries its log n nearest
ancestors (or until a root is encountered). In phase 2, an incompatible node sends its local
view (after phase 1) to all of its ancestors. In phase 3, incompatible nodes output (U,⊥). A
compatible node receiving an “incompatible” message from a descendant outputs in accordance
with the validity condition of Definition 4.3 (choosing the direction of the left-most nearest
incompatible descendant). All other nodes output (B,P(v)). By Lemma 4.6, all unbalanced
internal nodes will receive an incompatible message from a descendant, so it is straightforward to
verify that this procedure solves BalancedTree with Qpush, Qpull = O(log n). This upper bound
is tight, as R-DIST(BalancedTree) = Ω(log n).

Example 7.8 shows that allowing algorithms read-write access to queried nodes can give
an exponential improvement in volume complexity. Moreover, the example gives an LCL
whose deterministic push-pull query complexity is Θ(log n). We are unaware of any LCLs with
deterministic volume complexity ω(log∗ n) and o(n), and indeed we suspect that no such LCLs
exist. Thus, it may be the case that randomness plays a much smaller role in the push-pull
volume model than it does in the pull-only volume model.

Question 7.9. What does the volume complexity landscape look like in the push-pull volume
model? How is it different from the pull-only volume model?

One reason we believe the push-pull model may be interesting, is that it captures an aspect
of interactivity of message passing models (i.e., LOCAL and CONGEST), but restricts the type
of information that can be conveyed from one node to another. Thus it may be easier to reason
about algorithms in the push-pull model than, say, CONGEST algorithms. In particular, we
believe that efficient push-pull algorithms may be valuable in designing volume efficient protocols
in the MPC model. For example, the O(log n) distance algorithm we describe for BalancedTree
can be simulated using O(n) space and O(log log n) rounds in the MPC model. However, a
sparsified version of the push-pull algorithm described in Example 7.8 solves BalancedTree using
O(nc) space and O(log log n) rounds for any positive constant c. (The O(log logn) run-time
is achieved by using graph exponentiation to propagate “incompatible” messages upward in
the network. To achieve the same effect with O(nc) space, note that each node needs only to
see its leftmost nearest incompatible neighbor. Thus, in each step of the graph exponentiation
procedure, it suffices to propagate a single “incompatible” message upward from each node,
requiring only O(log n) space per step.)

Question 7.10. What algorithms using volume VOL in the push-pull model can be simulated
using O(VOL + nc + ∆) space in the MPC model? Does the analogue of Lemma 2.6 hold in the
push-model?

7.5 Space and Time Efficient Algorithms in MPC

While Lemma 2.6 shows that volume-efficient algorithms can be simulated in a space-efficient
manner, the stated round complexity may be large. For example, consider a problem Π with
distance and volume complexities R-DIST(Π) = O(log n) and R-VOL(Π) = O(nc). Then an
MPC simulation of an O(log n) round LOCAL algorithm using graph exponentiation gives an
O(n)-space, O(log logn)-round algorithm, while Lemma 2.6 gives O(nc)-space and O(nc) rounds.
Thus the improved volume efficiency may come at the cost of a doubly-exponential increase in
run-time! For an arbitrary algorithm using volume VOL, it does not seem likely that we can
achieve, say, O(VOL) space and O(log VOL) rounds by using graph exponentiation (or something
similar). One reason for this potential inefficiency of simulating volume-efficient algorithms in
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the MPC model is that in the volume model, queries are adaptive. That is, executions do not
know in advance which nodes will be queried. Thus graph exponentiation cannot be used naively
without the ability to “guess” which nodes will actually be queried in a given execution. Yet, for
some cases—such as our O(log n)-volume algorithm for LeafColoring—graph exponentiation can
be used: Algorithm 1 can easily be simulated in O(nc) space and O(log log n) volume.

Question 7.11. What subclass of algorithms A with (randomized) volume complexity VOL
can be simulated in O(VOL + nc + ∆) space and O(log VOL) rounds in the MPC model? What
about in the push-pull model?

7.6 Randomness

In this final section, we pose some questions related to randomness in the volume model.
Throughout the paper, we assume that randomness is provided via a private random string
rv : N → {0, 1} for each vertex v ∈ V . When an algorithm A executed from a node v queries
another node w, A has access to rw. We call this model the private randomness model. In
our model, we assumed that an algorithm A accesses random strings sequentially, and that the
number of bits accessed by A is bounded with high probability—some assumption of this flavor
is needed in the proof of the derandomization result by Chang et al. [13, Theorem 3]. We believe
that this assumption is not necessary, at least for LCLs.

Question 7.12. Suppose Π is an LCL and A an algorithm solving Π in R(n) rounds in the
private randomness model. Is there always an algorithm A′ and a function f : N → N that
solves Π in O(R(n)) rounds with high probability using f(n) random bits per node? If so, how
slowly can f(n) grow?

In addition to the amount of randomness used per node, we think it is interesting to consider
other random models. We describe three below, in decreasing power of computation.

public randomness: There is a single random string r : N→ {0, 1} that is seen by every node.

private randomness: Each node v has an independent random string rv : N→ {0, 1}. When v
is queried, rv is given to the process querying v.

secret randomness: Each node v has an independent random string rv, but rv is known only to
v—algorithms querying v do not have access to rv.

It is straightforward to show that any private random protocol can be simulated in the public
random model, and that any secret random protocol can be simulated in the private randomness
model. However, it is not clear if there is strict separation in the computational power of these
models for LCLs.

Question 7.13. Are there strict separations between the public, private, and secret randomness
models for LCLs?

We suspect that the public and private randomness models are essentially the same for
LCL problems. On the other hand, in all of the randomized algorithms described in this
paper, randomized coordination (i.e., non-secret randomness) seems essential. Since secret
randomness does not allow for coordinated random choices between nodes, it is not clear that
secret randomness should give much power over deterministic computation.

To see an example where secret randomness does help, consider the promise version of
LeafColoring (Section 3) where all leaves are promised to have the same input color. To solve
the promise problem, it is enough for all internal nodes to query a single leaf. Using secret
randomness, each internal node can perform a “downward” random walk, and all internal nodes
will visit some leaf with high probability after O(log n) queries. (The analysis is identical to the
proof of Proposition 3.11.) Nonetheless, we do not know of any non-promise LCL problem for
which there is a gap between secret randomness and deterministic volume complexities.
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