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ABSTRACT
In the study of deterministic distributed algorithms it is
commonly assumed that each node has a unique O(logn)-bit
identifier. We prove that for a general class of graph problems,
local algorithms (constant-time distributed algorithms) do
not need such identifiers: a port numbering and orientation
is sufficient.

Our result holds for so-called simple PO-checkable graph
optimisation problems; this includes many classical packing
and covering problems such as vertex covers, edge covers,
matchings, independent sets, dominating sets, and edge dom-
inating sets. We focus on the case of bounded-degree graphs
and show that if a local algorithm finds a constant-factor
approximation of a simple PO-checkable graph problem with
the help of unique identifiers, then the same approximation
ratio can be achieved on anonymous networks.

As a corollary of our result and by prior work, we derive
a tight lower bound on the local approximability of the
minimum edge dominating set problem.

Our main technical tool is an algebraic construction of
homogeneously ordered graphs: We say that a graph is (α, r)-
homogeneous if its nodes are linearly ordered so that an α
fraction of nodes have pairwise isomorphic radius-r neighbour-
hoods. We show that there exists a finite (α, r)-homogeneous
2k-regular graph of girth at least g for any α < 1 and any r,
k, and g.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; F.1.3 [Computation by Abstract Devices]:
Complexity Measures and Classes; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—computations on discrete structures
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approximation algorithms, deterministic distributed algo-
rithms, edge dominating set, local algorithms, unique identi-
fiers

c© ACM, 2012. This is the authors’ version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version was published in Proc. 31st Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC’12, July 16–18, 2012, Madeira, Portugal).
http://doi.acm.org/10.1145/2332432.2332465

1. INTRODUCTION
In this work, we study deterministic distributed algorithms

under three different assumptions; see Figure 1a for illustra-
tions.

(ID) Networks with unique identifiers. Each node is given
a unique O(logn)-bit label.

(OI) Order-invariant algorithms. There is a linear order on
nodes.

Equivalently, the nodes have unique labels, but the
output of an algorithm is not allowed to change if we
relabel the nodes while preserving the relative order
of the labels.

(PO) Anonymous networks with a port numbering and ori-
entation. For each node, there is a linear order on
the incident edges, and for each edge, there is a linear
order on the incident nodes.

Equivalently, a node of degree d can refer to its neigh-
bours by integers 1, 2, . . . , d, and each edge is oriented
so that the endpoints know which of them is the head
and which is the tail.

While unique identifiers are often useful, we will show that
they are seldom needed in local algorithms (constant-time
distributed algorithms): there is a general class of graph
problems such that local algorithms in PO are able to produce
as good approximations as local algorithms in OI or ID.

1.1 Graph Problems
We study graph problems that are related to the structure

of an unknown communication network. Each node in the
network is a computer; each computer receives a local input,
it can exchange messages with adjacent nodes, and eventually
it has to produce a local output. The local outputs constitute
a solution of a graph problem—for example, if we study
the dominating set problem, each node produces one bit of
local output, indicating whether it is part of the dominating
set. The running time of an algorithm is the number of
synchronous communication rounds.

From this perspective, the models ID, OI, and PO are easy
to separate. Consider, for example, the problem of finding
a maximal independent set in an n-cycle. In ID model the
problem can be solved in Θ(log∗ n) rounds [6, 18], while in
OI model we need Θ(n) rounds, and the problem is not
solvable at all in PO, as we cannot break symmetry—see
Figure 1b. Hence ID is strictly stronger than OI, which is
strictly stronger than PO.

http://doi.acm.org/10.1145/2332432.2332465
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Figure 1: (a) Three models of distributed comput-
ing. (b) In model ID, the numerical identifiers break
symmetry everywhere—for example, in a cycle, a
maximal independent set can be found in O(log∗ n)
rounds. In model OI, we can have a cycle with only
one “seam”, and in model PO we can have a com-
pletely symmetric cycle.

1.2 Local Algorithms
In this work we focus on local algorithms, i.e., distributed

algorithms that run in a constant number of synchronous
communication rounds, independently of the number of nodes
in the network [20,23]. The above example separating ID, OI,
and PO no longer applies, and there has been a conspicuous
lack of natural graph problems that would separate ID, OI,
and PO from the perspective of local algorithms.

Indeed, there are results that show that many problems
that can be solved with a local algorithm in ID also admit
a local algorithm in OI or PO. For example, the seminal
paper by Naor and Stockmeyer [20] studies so-called locally
checkable labellings, or LCL problems for short—these include
problems such as graph colouring and maximal matchings
on bounded-degree graphs. The authors show that ID and
OI are indeed equally expressive among LCL problems. The
followup work by Mayer, Naor, and Stockmeyer [19] hints of
a stronger property:

(i) Weak 2-colouring is an LCL problem that can be solved
with a local algorithm in ID model [20]. It turns out
that the same problem can be solved in PO model as
well [19].

Granted, contrived counterexamples do exist: there are LCL
problems that are solvable in OI but not in PO. However,
most of the classical graph problems that are studied in the

field of distributed computing are optimisation problems, not
LCL problems.

1.3 Local Approximation
In what follows, we will focus on graph problems in the case

of bounded-degree graphs; that is, there is a known constant
∆ such that the degree of any node in any graph that we
may encounter is at most ∆. Parity often matters; hence we
also define ∆′ = 2b∆/2c.

In this setting, the best possible approximation ratios are
surprisingly similar in ID, OI, and PO. The following hold
for any given ∆ ≥ 2 and ε > 0:

(ii) Minimum vertex cover can be approximated to within
factor 2 in each of these models [3, 5]. This is tight:
(2− ε)-approximation is not possible in any of these
models [9, 17,23].

(iii) Minimum edge cover can be approximated to within
factor 2 in each of these models [23]. This is tight:
(2− ε)-approximation is not possible in any of these
models [9, 17,23].

(iv) Minimum dominating set can be approximated to
within factor ∆′ + 1 in each of these models [4]. This
is tight: (∆′ + 1− ε)-approximation is not possible in
any of these models [9, 17,23].

(v) Maximum independent set cannot be approximated
to within any constant factor in any of these models
[9, 17].

(vi) Maximum matching cannot be approximated to within
any constant factor in any of these models [9, 17].

This phenomenon has not been fully understood: while there
are many problems with identical approximability results for
ID, OI, and PO, it has not been known whether these are
examples of a more general principle or merely isolated coin-
cidences. In fact, for some problems, tight approximability
results have been lacking for ID and OI, even though tight
results are known for PO:

(vii) Minimum edge dominating set can be approximated
to within factor 4− 2/∆′ in each of these models [22].
This is tight for PO but only near-tight for ID and
OI: (4 − 2/∆′ − ε)-approximation is not possible in
PO [22], and (3− ε)-approximation is not possible in
ID and OI [9, 17,23].

In this work we prove a theorem unifying all of the above
observations—they are indeed examples of a general principle.
As a simple application of our result, we settle the local
approximability of the minimum edge dominating set problem
by proving a tight lower bound in ID and OI.

1.4 Main Result
A simple graph problem Π is an optimisation problem in

which a feasible solution is a subset of nodes or a subset of
edges, and the goal is to either minimise or maximise the size
of a feasible solution. We say that Π is a PO-checkable graph
problem if there is a local PO-algorithm A that recognises
a feasible solution. That is, A(G,X, v) = 1 for all nodes
v ∈ V (G) if X is a feasible solution of problem Π in graph G,
and A(G, X, v) = 0 for some node v ∈ V (G) otherwise—here
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Figure 2: Graph H is a lift of G. The covering map
ϕ : V (H) → V (G) maps ai 7→ a, bi 7→ b, ci 7→ c, and
di 7→ d for each i = 1, 2. The fibre of a ∈ V (G) is
{a1, a2} ⊆ V (H); all fibres have the same size.

A(G,X, v) is the output of a node v if we run algorithm A
on graph G and the local inputs form an encoding of X.

Let ϕ : V (H)→ V (G) be a surjective graph homomorphism
from graph H to graph G. If ϕ preserves vertex degrees, i.e.,
degH(u) = degG(ϕ(u)), then ϕ is called a covering map, and
H is said to be a lift of G. The fibre of u ∈ V (G) is the set
ϕ−1(u) of pre-images of u. We usually consider n-lifts that
have fibres of the same cardinality n. It is a basic fact that
a connected lift H of G is an n-lift for some n. See Figure 2
for an illustration.

Let F be a family of graphs. We say that F is closed
under lifts if G ∈ F implies H ∈ F for all lifts H of G. A
family is closed under connected lifts if G ∈ F implies H ∈ F
whenever H and G are connected graphs and H is a lift of G.

Now we are ready to state our main theorem.

Theorem 1 (Main Theorem). Let Π be a simple PO-
checkable graph problem. Assume one of the following:

– General version: F is a family of bounded degree graphs,
and it is closed under lifts.

– Connected version: F is a family of connected bounded
degree graphs, it does not contain any trees, and it is
closed under connected lifts.

If there is a local ID-algorithm A that finds an α-approxi-
mation of Π in F , then there is a local PO-algorithm B that
finds an α-approximation of Π in F .

While the definitions are somewhat technical, it is easy to
verify that the result is widely applicable:

(a) Vertex covers, edge covers, matchings, independent sets,
dominating sets, and edge dominating sets are simple
PO-checkable graph problems.

(b) Bounded-degree graphs, regular graphs, and cyclic
graphs are closed under lifts.

(c) Connected bounded-degree graphs, connected regular
graphs, and connected cyclic graphs are closed under
connected lifts.

1.5 An Application
The above result provides us with a powerful tool for

proving lower-bound results: we can easily transfer negative
results from PO to OI and ID. We demonstrate this strength
by deriving a new lower bound result for the minimum edge
dominating set problem.

Theorem 2. Let ∆ ≥ 2, and let A be a local ID-algorithm
that finds an α-approximation of a minimum edge dominating
set on connected graphs of maximum degree ∆. Then α ≥ α0,
where α0 = 4− 2/∆′ and ∆′ = 2b∆/2c. This is tight: there
is a local ID-algorithm that finds an α0-approximation.

Proof. By prior work [22], it is known that there is a
connected ∆′-regular graph G0 such that the approximation
factor of any local PO-algorithm on G0 is at least α0. Let
F0 consist of all connected lifts of G0, and let F consist of
all connected graphs of degree at most ∆. We make the
following observations.

(a) We have F0 ⊆ F ; by assumption, A finds an α-approx-
imation in F0.

(b) Family F0 consists of connected graphs of degree at
most ∆. As G0 is not a tree, family F0 does not contain
any trees. Moreover, F0 is by construction closed under
connected lifts. Hence we can apply the connected ver-
sion of the main theorem: there is a local PO-algorithm
B that finds an α-approximation in F0.

(c) However, G0 ∈ F0, and hence α ≥ α0.

The matching upper bound is presented in prior work [22].

1.6 Overview
Informally, our proof of the main theorem is structured as

follows.

(a) Fix a graph problem Π, a graph family F , and an ID-
algorithm A as in the statement of Theorem 1. Let r
be the running time of ID-algorithm A.

(b) Let G ∈ F be a graph with a port numbering and
orientation.

(c) Section 3.2: We construct a certain lift Gε ∈ F of G.
Graph Gε inherits the port numbering and the orienta-
tion from G.

(d) Section 4.1: We show that there exists a linear order
<ε on the nodes of Gε that gives virtually no new
information in comparison with the port numbering
and orientation. If we have an OI-algorithm A′ with
running time r, then we can simulate A′ with a PO-
algorithm B′ almost perfectly on Gε: the outputs of
A′ and B′ agree for a (1 − ε) fraction of nodes. We
deduce that the approximation ratio of A′ on F cannot
be better than the approximation ratio of B′ on F .

(e) Section 4.2: We apply Ramsey’s theorem to show that
the unique identifiers do not help, either. We can
construct a PO-algorithm B that simulates A in the
following sense: there exists an assignment of unique
identifiers on a lift H ∈ F of Gε such that the outputs
of A and B agree for a (1 − ε) fraction of nodes. We
deduce that the approximation ratio of A on F cannot
be better than the approximation ratio of B on F .

Now if graph G was a directed cycle, the construction would
be standard; see, e.g., Czygrinow et al. [9]. In particular, Gε
and H would simply be long cycles, and <ε would order the
nodes along the cycle—there would be only one “seam” in
(Gε, <ε) that could potentially help A′ in comparison with
B′, and only an ε fraction of nodes are near the seam.



However, the case of a general G is more challenging. Our
main technical tool is the construction of so-called homo-
geneous graphs; see Section 3.1. Homogeneous graphs are
regular graphs with a linear order that is useless from the per-
spective of OI-algorithms: for a (1− ε) fraction of nodes, the
local neighbourhoods are isomorphic. Homogeneous graphs
trivially exist; however, our proof calls for homogeneous
graph of an arbitrarily high degree and an arbitrarily large
girth (i.e., there are no short cycles—the graph is locally
tree-like). In Section 5 we use an algebraic construction to
prove that such graphs exist.

1.7 Discussion
In the field of distributed algorithms, the running time of

an algorithm is typically analysed in terms of two parameters:
n, the number of nodes in the graph, and ∆, the maximum
degree of the graph. In our work, we assumed that ∆ is
a constant—put otherwise, our work applies to algorithms
that have a running time independent of n but arbitrarily
high as a function of ∆. The work by Kuhn et al. [13–15]
studies the dependence on ∆ more closely: their lower bounds
on approximation ratios apply to algorithms that have, for
example, a running time sublogarithmic in ∆.

While our result is very widely applicable, certain exten-
sions have been left for future work. One example is the
case of planar graphs [9], [16, §13]. The family of planar
graphs is not closed under lifts, and hence Theorem 1 does
not apply. Another direction that we do not discuss at all is
the case of randomised algorithms; if each node has access
to a stream of random bits, the distinction between ID, OI,
and PO essentially vanishes, as the random bits can be used
to generate unique identifiers w.h.p.

2. THREE MODELS OF DISTRIBUTED
COMPUTING

In this section we make precise the notion of a local algo-
rithm in each of the models ID, OI and PO. First, we discuss
the properties common to all the models.

We start by fixing a graph family F where every G =
(V (G), E(G)) ∈ F has maximum degree at most ∆ ∈ N.
We consider algorithms A that operate on graphs in F ; the
properties of A (e.g., its running time) are allowed to depend
on the family F (and, hence, on ∆). We denote by A(G, u) ∈
Ω the output of A on a node u ∈ V (G). Here, Ω is a finite
set of possible outputs of A in F . If the solutions to Π are
sets of vertices, we shall have Ω = {0, 1} so that the solution
produced by A on G, denoted A(G), is the set of nodes u with
A(G, u) = 1. Similarly, if the solutions to Π are sets of edges,
we shall have Ω = {0, 1}∆ so that the ith component of the
vector A(G, u) indicates whether the ith edge incident to u is
included in the solution A(G)—in each of the models a node
will have a natural ordering of its incident edges.

Let r ∈ N denote the constant running time of A in F .
This means that a node u can only receive messages from
nodes within distance r in G, i.e., from nodes in the radius-r
neighbourhood

BG(u, r) =
{
v ∈ V (G) : distG(u, v) ≤ r

}
.

Let τ(G, u) denote the structure (G, u) restricted to the ver-
tices BG(u, r), i.e., in symbols, τ(G, u) = (G, u) � BG(u, r).
Then A(G, u) is a function of the data τ(G, u) in that

A(G, u) = A(τ(G, u)).

The models ID, OI and PO impose further restrictions on
this function.

2.1 Model ID
Local ID-algorithms are not restricted in any additional

way. We follow the convention that the vertices have unique
O(logn)-bit labels, i.e., an instance G ∈ F of order n =
|V (G)| has V (G) ⊆ {1, 2, . . . , s(n)} where s(n) is some fixed
polynomial function of n. Our presentation assumes s(n) =
ω(n), even though this assumption can often be relaxed as
we discuss in Remark 1.

2.2 Model OI
A local OI-algorithm A does not directly use unique vertex

identifiers but only their relative order. To make this notion
explicit, let the vertices of G ∈ F be linearly ordered by <,
and call (G, <) an ordered graph. Denote by τ(G, <, u) the
restriction of the structure (G, <, u) to the r-neighbourhood
BG(u, r), i.e., in symbols,

τ(G, <, u) = (G, <, u) � BG(u, r).

Then, the output A(G, <, u) depends only on the isomorphism
type of τ(G, <, u), so that if τ(G, <, u) ' τ(G′, <′, u′) then
A(G, <, u) = A(G′, <′, u′).

2.3 Model PO
In the PO model the nodes are considered anonymous

and only the following node specific structure is available:
a node can communicate with its neighbours through ports
numbered 1, 2, . . . ,deg(u), and each communication link has
an orientation.

2.3.1 Edge-Labelled Digraphs
To model the above, we consider L-edge-labelled directed

graphs (or L-digraphs, for short) G = (V (G), E(G), `G), where
the edges E(G) ⊆ V (G)×V (G) are directed and each edge e ∈
E(G) carries a label `G(e) ∈ L. We restrict our considerations
to proper labellings `G : E(G) → L that for each u ∈ V (G)
assign the incoming edges (v, u) ∈ E(G) distinct labels and
the outgoing edges (u,w) ∈ E(G) distinct labels; we allow
`G(v, u) = `G(u,w). We refer to the outgoing edges of a node
by the labels L and to the incoming edges by the formal
letters L−1 = {`−1 : ` ∈ L}. In the context of L-digraphs,
covering maps ϕ : V (H)→ V (G) are required to preserve edge
labels so that `H(u, v) = `G(ϕ(u), ϕ(v)) for all (u, v) ∈ E(H).

A port numbering on G gives rise to a proper labelling
`G(v, u) = (i, j), where u is the ith neighbour of v, and v is
the jth neighbour of u; see Figure 3. We now fix L to contain
every possible edge label that appears when a graph G ∈ F
is assigned a port numbering and an orientation. Note that
|L| ≤ ∆2.

2.3.2 Views
The information available to a PO-algorithm computing

on a node u ∈ V (G) in an L-digraph G is usually modelled as
follows [1,23,24]. The view of G from u is an L-edge-labelled
rooted (possibly infinite) directed tree T = T (G, u), where
the vertices V (T ) correspond to all non-backtracking walks
on G starting at u; see Figure 3c. Formally, a k-step walk can
be identified with a word of length k in the letters L ∪ L−1.
A non-backtracking walk is a reduced word where neither
``−1 nor `−1` appear. If w ∈ V (T ) is a walk on G from u to
v, we define ϕ(w) = v. In particular, the root of T is the
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Figure 3: (a) A graph G with a port numbering and
an orientation. (b) A proper labelling `G that is
derived from the port numbering. We have an L-
digraph with L = {a, b, c}, a = (1, 2), b = (2, 1), and
c = (3, 1). (c) The view of G from u is an infinite
directed tree T = T (G, u); there is a covering map ϕ
from T to G that preserves adjacencies, orientations,
and edge labels. For example, ϕ(λ) = ϕ(aab−1) = u.

empty word λ with ϕ(λ) = u. The directed edges of T (and
their labels) are defined in such a way that ϕ : V (T )→ V (G)
becomes a covering map. Namely, w ∈ V (T ) has an out-
neighbour w` for every ` ∈ L such that ϕ(w) has a outgoing
edge labelled `.

2.3.3 Local PO-Algorithms
The inability of a PO-algorithm B to detect cycles in a

graph is characterised by the fact that B(G, u) = B(T (G, u)).
In fact, we define a local PO-algorithm as a function B
satisfying

B(G, u) = B(τ(T (G, u))).

An important consequence of this definition is that the
output of a PO-algorithm is invariant under lifts, i.e., if
ϕ : V (H) → V (G) is a covering map of L-digraphs, then
B(H, u) = B(G, ϕ(u)). The intuition is that nodes in a com-
mon fibre are always in the same state during computation
as they see the same view.

The following formalism will become useful. Denote by
(T ∗, λ) the complete L-labelled rooted directed tree of radius
r with V (T ∗) consisting of reduced words in the letters
L ∪ L−1, i.e., every non-leaf vertex in T ∗ has an outgoing
edge and an incoming edge for each ` ∈ L; see Figure 4. The
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Figure 4: The complete L-labelled rooted directed
tree (T ∗, λ) of radius r = 2, for L = {a, b}.

output of B on every graph G ∈ F is completely determined
after specifying its output on the subtrees of (T ∗, λ). More
precisely, let W consist of vertex sets W ⊆ V (T ∗) such
that (T ∗, λ) � W = τ(T (G, u)) for some G ∈ F and u ∈
V (G). Then a function B : W → Ω defines a PO-algorithm
by identifying

B((T ∗, λ) �W ) = B(W ).

3. ORDER HOMOGENEITY
In this section we introduce some key concepts that are

used in controlling the local symmetry breaking information
that is available to a local OI-algorithm.

3.1 Homogeneous Graphs
In the following, we take the isomorphism type of an r-

neighbourhood τ = τ(G, <, u) to be some canonical represen-
tative of the isomorphism class of τ .

Definition 1. Let (H, <) be an ordered graph. If there is
a set U ⊆ V (H) of size |U | ≥ α|H| such that the vertices
in U have a common r-neighbourhood isomorphism type τ∗,
then we call (H, <) an (α, r)-homogeneous graph and τ∗ the
associated homogeneity type of H.

Homogeneous graphs are useful in fooling OI-algorithms:
an (α, r)-homogeneous graph forces any local OI-algorithm to
produce the same output in at least an α fraction of the nodes
in the input graph. However, there are some limitations to
how large α can be: Let (G, <) be a connected ordered graph
on at least two vertices. If u and v are the smallest and the
largest vertices of G, their r-neighbourhoods τ(G, <, u) and
τ(G, <, v) cannot be isomorphic even for r = 1. Thus, non-
trivial finite graphs are not (1, 1)-homogeneous. Moreover, an
ordered (2k−1)-regular graph cannot be (α, 1)-homogeneous
for any α > 1/2; this is the essence of the weak 2-colouring
algorithm of Naor and Stockmeyer [20].



Our main technical tool will be a construction of graphs
that satisfy the following properties:

(1) (1− ε, r)-homogeneous for any ε > 0 and r,
(2) 2k-regular for any k,
(3) large girth,
(4) finite order.

Note that it is relatively easy to satisfy any three of these
properties:

(1), (2), (3) Infinite 2k-regular trees admit a (1, r)-homoge-
neous linear order; see Figure 5 for an example.

(1), (2), (4) We can construct a sufficiently large k-dimen-
sional toroidal grid graph (cartesian product
of k directed cycles) and order the nodes lexi-
cographically coordinate-wise; see Figure 6 for
an example. However, these graphs have girth
4 when k ≥ 2.

(1), (3), (4) A sufficiently large directed cycle is (1− ε, r)-
homogeneous and has large girth. However,
all the nodes have degree 2.

(2), (3), (4) It is well known that regular graphs of arbi-
trarily high girth exist.

Our construction satisfies all four properties simultaneously.

Theorem 3. Let k, r ∈ N. For every ε > 0 there exists
a finite 2k-regular (1 − ε, r)-homogeneous connected graph
(Hε, <ε) of girth larger than 2r+ 1. Furthermore, the follow-
ing properties hold:

(a) The homogeneity type τ∗ of (Hε, <ε) does not depend
on ε.

(b) The graph Hε and the type τ∗ are k-edge-labelled di-
graphs.

We defer the proof of Theorem 3 to Section 5. There, it turns
out that Cayley graphs of soluble groups suit our needs: The
homogeneous toroidal graphs mentioned above are Cayley
graphs of the abelian groups Zkn. Analogously, we use the
decomposition of a soluble group into abelian factors to
guarantee the presence of a suitable ordering. However, to
ensure large girth, the groups we consider must be sufficiently
far from being abelian, i.e., they must have large derived
length [7].

3.2 Homogeneous Lifts
We fix some notation towards a proof of Theorem 1. By

Theorem 3 we let (Hε, <ε), ε > 0, be a family of 2|L|-regular
(1 − ε, r)-homogeneous connected graphs of girth > 2r + 1
interpreted as L-digraphs. The homogeneity type τ∗ that is
shared by all Hε is then of the form τ∗ = (T ∗, <∗, λ), where
T ∗ is the complete L-labelled tree of Section 2.3.

We use the graphs Hε to prove the following theorem.

Theorem 4. Let G be an L-digraph. For every ε > 0
there exists a lift (Gε, <Gε) of G such that a (1− ε) fraction of
the vertices in (Gε, <Gε) have r-neighbourhoods isomorphic
to a subtree of τ∗ = (T ∗, <∗, λ). Moreover, if G is connected,
Gε can be made connected.
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Figure 5: A fragment of a 4-regular infinite ordered
tree (G, <). The numbering of the nodes indicates
a (1, r)-homogeneous linear order in the neighbour-
hood of node 27; grey nodes are larger than 27 and
white nodes are smaller than 27.

61 6663 6562 64

51 5653 5552 54

41 4643 4542 44

31 3633 3532 34

21 2623 2522 24

11 1613 1512 14

Figure 6: A 4-regular graph G constructed as the
cartesian product of two directed 6-cycles. We de-
fine the ordered graph (G, <) by choosing the linear
order 11 < 12 < · · · < 16 < 21 < 22 < · · · < 66. The
radius-1 neighbourhood of node 25 is isomorphic to
the radius-1 neighbourhood of node 42. In general,
there are 16 nodes (fraction 4/9 of all nodes) that
have isomorphic radius-1 neighbourhoods; hence
(G, <) is (4/9, 1)-homogeneous. It is also (1/9, 2)-
homogeneous.
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Figure 7: Homogeneous lifts. In this example L = |2|,
and the two labels are indicated with two different
kinds of arrows. Graph Hε is a homogeneous 2|L|-
regular ordered L-digraph with a large girth—in par-
ticular, the local neighbourhood of a node looks like
a tree. Graph G is an arbitrary L-digraph, not neces-
sarily ordered. Their product Gε is a lift of G, but it
inherits the desirable properties of Hε: a high girth
and a homogeneous linear order.

Proof. For brevity, write

(C, <C) = (Gε, <Gε), (H, <H) = (Hε, <ε).

Our goal is to construct (C, <C) as a certain product of
(H, <H) and G; see Figure 7. This product is a modification
of the common lift construction of Angluin and Gardiner [2].

The lift C is defined on the product set

V (C) = V (H)× V (G)

by “matching equi-labelled edges”: the out-neighbours of
(h, g) ∈ V (C) are vertices (h′, g′) ∈ V (C) such that (h, h′) ∈
E(H), (g, g′) ∈ E(G) and `H(h, h′) = `G(g, g′). An edge
((h, g), (h′, g′)) ∈ E(C) inherits the common label `H(h, h′) =
`G(g, g′).

The properties of C are related to the properties of G and
H as follows.

(a) The projection ϕG : V (C)→ V (G) mapping (h, g) 7→ g
is a covering map. This follows from the fact that each
edge incident to g ∈ V (G) is always matched against
an edge of H in the fibre V (H)× {g}.

(b) The projection ϕH : V (C)→ V (H) mapping (h, g) 7→ h
is not a covering map in case G is not 2|L|-regular.
In any case ϕH is a graph homomorphism, and this
implies that C has girth > 2r + 1.

Next, we define a partial order <p on V (C) as u <p v ⇐⇒
ϕH(u) <H ϕH(v), for u, v ∈ V (C). Note that this definition
leaves only pairs of vertices in a common ϕH-fibre incompa-
rable. But since H has large girth, none of the incomparable
pairs appear in an r-neighbourhood of C. We let <C be any
completion of <p into a linear order. The previous discus-
sion implies that <C satisfies τ(C, <C , u) = τ(C, <p, u) for all
u ∈ V (C).

Let UH ⊆ V (H), |UH| ≥ (1 − ε)|H|, be the set of type
τ∗ vertices in (H, <H). Set UC = ϕ−1

H (UH) so that |UC| ≥
(1−ε)|C|. Let u ∈ UC . By our definition of <p, ϕH maps the r-
neighbourhood τu = τ(C, <C, u) into τ(H, <H, ϕH(u)) ' τ∗
while preserving the order. But because τ∗ is a tree, ϕH must
be injective on the vertex set of τu so that τu is isomorphic
to a subtree of τ∗ as required.

Finally, suppose G is connected. Then, by averaging, some
connected component of C will have vertices in UC with den-
sity at least (1−ε). This component satisfies the theorem.

4. PROOF OF MAIN THEOREM
Next, we use the tools of the previous section to prove The-

orem 1. For clarity of exposition we first prove Theorem 1 in
the special case where A is an OI-algorithm. The subsequent
proof for an ID-algorithm A uses a somewhat technical but
well-known Ramsey type argument.

4.1 Proof of Main Theorem for OI-algorithms
We will prove the general and connected versions of Theo-

rem 1 simultaneously; for the proof of the connected version
it suffices to consider only connected lifts below. We do not
need the assumption that F does not contain any trees.

Let Π be as in the statement of Theorem 1. Suppose an
OI-algorithm A finds an α-approximation of Π in F . We
define a PO-algorithm B simply by setting for W ∈W,

B(W ) = A
(
(T ∗, <∗, λ) �W

)
.

Now, Theorem 4 translates into saying that for every G ∈ F
and ε > 0 we have that A(Gε, <Gε, u) = B(Gε, u) for at least
a (1 − ε) fraction of nodes u ∈ V (Gε). The claim that B
works as expected follows essentially from this fact as we
argue next.

For simplicity, we assume the solutions to Π are sets of
vertices so that A(G) ⊆ V (G); solutions that are sets of edges
are handled similarly.

Fix G ∈ F and let ϕε : V (Gε) → V (G), ε > 0, be the
associated covering maps.

4.1.1 Feasibility
Let us first show that algorithm B finds a feasible solution

of Π on G. Let V be a local PO-algorithm verifying the
feasibility of a solution for Π; we may assume V also runs in
time r. For ε > 0 sufficiently small, each v ∈ V (G) has a pre-
image v′ ∈ ϕ−1

ε (v) such that A and B agree on the vertices⋃
v∈V (G)BGε(v

′, r). Thus, V accepts the solution B(Gε) on

the vertices v′. But because ϕε({v′ : v ∈ V (G)}) = V (G)
it follows that V accepts the solution B(G) = ϕε(B(Gε)) on
every node in G.



4.1.2 Approximation
Now we proceed to show that algorithm B finds an α-

approximation of Π on G. We assume Π is a minimisation
problem; maximisation problems are handled similarly. Let
X ⊆ V (G) and Xε ⊆ V (Gε) be some optimal solutions of Π.

As ε→ 0, the solutions B(Gε) and A(Gε) agree on almost
all the vertices. Indeed, a simple calculation shows that
|B(Gε)| ≤ f(ε) · |A(Gε)| for some f with f(ε)→ 1 as ε→ 0.
Furthermore,

|B(G)|
|X| =

|ϕ−1
ε (B(G))|
|ϕ−1
ε (X)|

≤ |B(Gε)|
|Xε|

≤ f(ε) · |A(Gε)|
|Xε|

≤ f(ε)α,

where the first equality follows from ϕε being an n-lift, and
the first inequality follows from ϕ−1

ε (B(G)) = B(Gε) and
the fact that ϕ−1

ε (X) is a feasible solution so that |Xε| ≤
|ϕ−1
ε (X)|. Since the above inequality holds for every ε > 0

we must have that |B(G)|/|X| ≤ α, as desired.

4.2 Proof of Main Theorem for ID-algorithms
We extend the above proof to the case of local ID-algorithms

A by designing“worst-case”vertex identifiers for the instances
in F in order to make A behave similarly to a PO-algorithm
on tree neighbourhoods. To do this we use the Ramsey tech-
nique of Naor and Stockmeyer [20]; see also Czygrinow et
al. [9]. For a reference on Ramsey’s theorem see Graham et
al. [12].

We use the following notation: if (X,<X) and (Y,<Y ) are
linearly ordered sets with |X| ≤ |Y |, we write f : (X,<X) ↪→
(Y,<Y ) for the unique order-preserving injection f : X → Y
that maps the ith element of X to the ith element of Y . A
t-set is a set of size t, and the set of t-subsets of X is denoted
X(t).

Write ΩW for the family of functions W→ Ω; recall that
each B ∈ ΩW can be interpreted as a PO-algorithm. Set
k = |ΩW| and t = |T ∗|. We consider every t-subset A ∈ N(t)

to be ordered by the usual order < on N. For W ∈W we let
fW,A : (W,<∗) ↪→ (A,<) so that the vertex-relabelled tree
fW,A((T ∗, λ) � W ) has the |W | smallest numbers in A as

vertices. Define a k-colouring c : N(t) → ΩW by setting

c(A)(W ) = A(fW,A((T ∗, λ) �W )).

For each m ≥ t we can use Ramsey’s theorem to obtain a
number R(m) ≥ m, so that for every R(m)-set I ⊆ N there

exists an m-subset J ⊆ I such that J(t) is monochromatic
under c, i.e., all t-subsets of J have the same colour. In
particular, for every interval

I(m, i) = [(i− 1)R(m) + 1, iR(m)], i ≥ 1,

there exist an m-subset J(m, i) ⊆ I(m, i) and a colour (i.e.,
an algorithm) Bm,i ∈ ΩW such that c(A) = Bm,i for all
t-subsets A ⊆ J(m, i).

This construction has the following property.

Proposition 1. Suppose m ≥ |Gε|+ t. Algorithms A and
Bm,i produce the same output on at least a (1− ε) fraction of
the vertices in the vertex-relabelled L-digraph fm,i(Gε), where

fm,i : (V (Gε), <Gε) ↪→ (J(m, i), <).

Proof. By Theorem 4, let U ⊆ V (fm,i(Gε)), |U | ≥ (1−
ε)|Gε|, be the set of vertices u with τ(fm,i(Gε), <, u) isomor-
phic to a subtree of τ∗. In particular, for a fixed u ∈ U we can
choose W ∈W such that τ(fm,i(Gε), <, u) ' (T ∗, <∗, λ) � W .
Now, as m is large, there exists a t-set A ⊆ J(m, i) such that

τ(fm,i(Gε), u) = fW,A((T ∗, λ) � W ). Thus, A and Bm,i agree
on u by the definition of Bm,i.

For every n ∈ N some colour appears with density at
least 1/k (i.e., appears at least n/k times) in the sequence
Bm,1,Bm,2, . . . ,Bm,n. Hence, let Bm be a colour that appears
with density at least 1/k among these sequences for infinitely
many n. Let B be a colour appearing among the Bm for
infinitely many m. We claim B satisfies Theorem 1. In fact,
Theorem 1 follows from the following proposition together
with the considerations of Section 4.1.

Proposition 2. For every Gε there exists an n-lift H
of Gε such that V (H) ⊆ {1, 2, . . . , s(|H|)} and A(H, u) =
B(H, u) for a (1− ε) fraction of nodes u ∈ V (H). Moreover,
if Gε is connected and not a tree, H can be made connected.

Proof. Let m be such that m ≥ |Gε| + t and B = Bm.
For infinitely many n there exists an n-set I ⊆ [nk] of indices
such that B = Bm,i for i ∈ I. Consider the following n-lift of
Gε obtained by taking disjoint unions:

H =
⋃
i∈I

fm,i(Gε).

Algorithms A and B agree on a (1− ε) fraction of the nodes
in H by Proposition 1. Furthermore, we have |H| = n|Gε|
and V (H) ⊆ {1, 2, . . . , nkR(m)}. We are assuming that
s(n) = ω(n) so choosing a large enough n proves the non-
connected version of the claim.

Finally, suppose Gε is connected and not a tree. We may
assume that there is an edge e = (u, v) ∈ E(Gε) so that Gε
remains connected when e is removed and that a (1− ε) frac-
tion of vertices in Gε have r-neighbourhoods not containing e
that are isomorphic into τ∗. Now H above is easily modified
into a connected graph by redefining the directed matching
between the fibre {ui}i∈I of u and the fibre {vi}i∈I of v.
Namely, let π be a cyclic permutation on I and set

E′ =
(
E(H) r {(ui, vi)}i∈I

)
∪ {(ui, vπ(i))}i∈I .

Then H′ = (V (H), E′) is easily seen to be a connected n-lift
of Gε satisfying the claim.

Remark 1. Above, we assumed that instances G have node
identifiers V (G) ⊆ {1, 2, . . . , s(n)}, n = |G|, for s(n) = ω(n).
By choosing identifiers more economically as in the work of
Czygrinow et al. [9] one can show lower bounds for the graph
problems of Section 1.3 even when s(n) = n.

5. CONSTRUCTION OF HOMOGENEOUS
GRAPHS OF LARGE GIRTH

In this section we prove Theorem 3. Our construction uses
Cayley graphs of semi-direct products of groups. First, we
recall the terminology in use here; for a standard reference on
group theory see, e.g., Rotman [21], and for more background
information, see the full version of this work [11].

5.1 Semi-Direct Products
Let G and H be groups with H acting on G as a group of

automorphisms. We write h · g for the action of h ∈ H on
g ∈ G so that the mapping g 7→ h · g is an automorphism of
G. The semi-direct product G oH is defined to be the set
G×H with the group operation given by

(g, h)(g′, h′) = (g(h · g′), hh′).



5.2 Cayley Graphs
The Cayley graph C(G,S) of a group G with respect to a

finite set S ⊆ G is an S-digraph on the vertex set G such
that each g ∈ G has an outgoing edge (g, gs) labelled s for
each s ∈ S. We require that 1 /∈ S so as not to have any
self-loops. We do not require that S is a generating set for
G, i.e., the graph C(G,S) need not be connected.

If ϕ : H → G is an onto group homomorphism and S ⊆ H
is a set such that the mapping ϕ is injective on S ∪{1}, then
ϕ naturally induces a covering map of digraphs C(H,S) and
C(G,ϕ(S)).

5.3 Proof of Theorem 3
Let n ∈ N be an even number. We consider three families of

groups, {Hi}i≥1, {Wi}i≥1, and {Ui}i≥1, that are variations
on a common theme. The families are defined iteratively as
follows:

H1 = Zn, W1 = Z2, U1 = Z,

Hi+1 = H2
i o Zn, Wi+1 = W 2

i o Z2, Ui+1 = U2
i o Z.

Here, the cyclic group Zn = {0, 1, . . . , n − 1} acts on the
direct product H2

i = Hi ×Hi by cyclically permuting the
coordinates, i.e., the subgroup 2Zn ≤ Zn acts trivially and
the elements in 1 + 2Zn swap the two coordinates. The
groups Z2 and Z act analogously in the definitions of Wi and
Ui.

The underlying sets of the groups Hi, Wi, and Ui consist
of d(i)-tuples of elements in Z, for d(i) = 2i − 1, so that
Wi ⊆ Hi ⊆ Ui as sets. Interpreting these tuples as points in
Rd(i) we immediately get a natural embedding of every Cayley
graph of these groups in Rd(i). This geometric intuition will
become useful later.

(a) The groups Wi are i-fold iterated regular wreath prod-
ucts of the cyclic group Z2. These groups have order
|Wi| = 2d(i) and they are sometimes called symmetric
2-groups; they are isomorphic to the Sylow 2-subgroups
of the symmetric group on 2i letters [21, p. 176].

(b) The groups Ui are natural extensions of the groups Wi

by the free abelian group of rank d(i): the mapping
ϕi : Ui →Wi that reduces each coordinate modulo 2 is
easily seen to be an onto homomorphism with abelian
kernel (2Z)d(i) ' Zd(i).

(c) The groups Hi are intermediate between Ui and Wi

in that the mapping ψi : Ui → Hi that reduces each
coordinate modulo n is an onto homomorphism, and
the mapping ϕ′i : Hi → Wi that reduces each coordinate
modulo 2 is an onto homomorphism. In summary, the
following diagram commutes:

Ui
ψi //

ϕi   

Hi

ϕ′
i

��
Wi

Our goal will be to construct a suitable Cayley graph H of
some Hi. We will use the groups Wi to ensure H has large
girth, whereas the groups Ui will guarantee that H has an
almost-everywhere homogeneous linear ordering.

5.3.1 Girth
Gamburd et al. [10] study the girth of random Cayley

graphs and prove, in particular, that a random k-subset
of Wi generates a Cayley graph of large girth with high
probability when i� k is large. We only need the following
weaker version of their result [10, Theorem 6]; see the full
version of this work [11] for an alternative, constructive proof.

Theorem 5 (Gamburd et al.). Let k, r ∈ N. There
exists an i ∈ N and a set S ⊆ Wi, |S| = k, such that the
girth of the Cayley graph C(Wi, S) is larger than 2r + 1.

Fix a large enough j ∈ N and a k-set S ⊆ Wj so that
C(Wj , S) has a girth larger than 2r+ 1. Henceforth, we omit
the subscript j and write H, W , U , ϕ, ψ and d in place of Hj ,
Wj , Uj , ϕj , ψj and d(j). Interpreting S as a set of elements
of H and U (so that ϕ(S) = ψ(S) = S) we construct the
Cayley graphs

H = C(H,S), W = C(W,S), and U = C(U, S).

As each of these graphs is a lift of W, none have cycles of
length at most 2r + 1 and their r-neighbourhoods are trees.

5.3.2 Linear Order
Next, we introduce a left-invariant linear order < on U

satisfying

u < v =⇒ wu < wv, for all u, v, w ∈ U.

Such a relation can be defined by specifying a positive cone
P ⊆ U of elements that are greater than the identity 1 = 1U
so that

u < v ⇐⇒ 1 < u−1v ⇐⇒ u−1v ∈ P.

A relation < defined this way is automatically left-invariant;
it is transitive iff u, v ∈ P implies uv ∈ P ; and every pair
u 6= v is comparable iff for all w 6= 1, either w ∈ P or
w−1 ∈ P . The existence of a P satisfying these conditions
follows from the fact that U is a torsion-free soluble group
(e.g., [8]), but it is easy enough to verify that setting

P =
{

(u1, u2, . . . , ui, 0, 0, . . . , 0) ∈ U :

1 ≤ i ≤ d and ui > 0
} (1)

satisfies the required conditions above.
Because U acts (by multiplication on the left) on U as a

vertex-transitive group of graph automorphisms, it follows
that the structures (U , <, u), u ∈ U , are pairwise isomorphic.
A fortiori, the r-neighbourhoods τ(U , <, u), u ∈ U , are all
pairwise isomorphic. Let τ∗ be this common r-neighbourhood
isomorphism type.

5.3.3 Transferring the Linear Order on U to H
Let V (H) be ordered by restricting the order < on U to

the set V (H) = Zdn underlying the group H. Note that <
is not a left-invariant order on H (indeed, no non-trivial
finite group can be left-invariantly ordered). Nevertheless,
we will argue that, as n → ∞, almost all u ∈ V (H) have
r-neighbourhoods of type τ∗.

The neighbours of a vertex u ∈ V (U) are elements us
where

s ∈ S ∪ S−1 ⊆ [−1, 1]d.

The right multiplication action of s ∈ S ∪ S−1 on u can be
described in two steps as follows: First, the coordinates of



s are permuted (as determined by u) to obtain a vector s′.
Then, us is given as the standard addition of the vectors u
and s′ in Zd ⊆ Rd. Hence, us ∈ u+ [−1, 1]d, and moreover,

BU (u, r) ⊆ u+ [−r, r]d. (2)

This means that vertices close to u in the graph U are also
close in the associated geometric Rd-embedding.

Consider the set of inner nodes I = [r, (n− 1)− r]d. Let
u ∈ I. By (2), the vertex set BU (u, r) is contained in Zdn.
This implies that the cover map ψ is the identity on BU (u, r)
and consequently the r-neighbourhood τ(H, <, u) contains
the ordered tree τ(U , <, u) ' τ∗. If τ(H, <, u) had any
additional edges to those of τ(U , <, u), this would entail a
cycle of length at most 2r + 1 in H, which is not possible.
Thus, τ(H, <, u) ' τ∗. The density of elements in H having
r-neighbourhood type τ∗ is therefore at least

|I|
|H| =

(n− 2r)d

nd
≥ 1− ε,

for large n.
Finally, to establish Theorem 3 it remains to address H’s

connectedness. But if H is not connected, an averaging
argument shows that some connected component must have
the desired density of at least (1− ε) of type τ∗ vertices.
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