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Introduction

Local algorithms: output at each node depends only
on the constant-radius neighbourhood of the node
(Linial 1992, Naor and Stockmeyer 1995)

Assumptions:
Unit-disk graph

Each node knows its coordinates

Problems:

Dominating set

Vertex cover



Prior work

Dominating set:

15-approximation
5-approximation

(1 + €)-approximation

Vertex cover:

12-approximation trivial

(1 + €)-approximation

(Urrutia 2007)
(Czyzowicz et al. 2008)

(Wiese and Kranakis 2007)

(Wiese and Kranakis 2008)



Our contributions

Simple local algorithm
3-approximation
Small local horizon (locality distance):

Present algorithm: r = 83

Wiese and Kranakis (2007):
r = 46814 for 3-approximation

Quasi unit-disk graphs

Weighted versions



Dominating set

Input — assumed to be a unit-disk graph
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Dominating set

An optimal solution



Dominating set: local algorithm
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Dominating set: local algorithm

Tile the plane with 2 x 4 rectangles
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Dominating set: local algorithm

3-colour the rectangles
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Dominating set: local algorithm

For each rectangle. ..
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Dominating set: local algorithm

For each rectangle construct an extended rectangle
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Dominating set: local algorithm

Extended rectangles are non-intersecting for each colour
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Dominating set: local algorithm

Extended rectangles are non-intersecting for each colour
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Dominating set: local algorithm

Extended rectangles are non-intersecting for each colour
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Dominating set: local algorithm

For each extended rectangle. ..
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Dominating set: local algorithm

For each extended rectangle, form a subproblem. ..
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Dominating set: local algorithm

...and solve the subproblem optimally
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Dominating set: local algorithm

Only inside needs to be dominated
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Dominating set: local algorithm

Repeat for each rectangle
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Dominating set: local algorithm

Repeat for each rectangle
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Dominating set: local algorithm

Repeat for each rectangle
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Dominating set: local algorithm

Union of local solutions
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Dominating set: feasibility

Each node is dominated in at least one subproblem
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Dominating set: approximation ratio

OPT is a feasible solution to each subproblem
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Dominating set: approximation ratio

OPT is a feasible solution to each subproblem
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Dominating set: approximation ratio

OPT is a feasible solution to each subproblem

m

2713



Dominating set: approximation ratio

OPT is a feasible solution to each subproblem
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Dominating set. approximation ratio

Factor 3 approximation from 3-colouring
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Vertex cover

The same basic approach applies here as well
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Local horizon:; worst case

Consider a shortest path within an extended rectangle




Local horizon:; worst case

Pick even nodes — distance between any pair > 1




Local horizon:; worst case

Place disks of radius 1/2 on even nodes — non-intersecting
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Local horizon:; worst case

Area bound: at most 42 such disks = at most 83 edges
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Local horizon: average case
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Local horizon: average case
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Conclusions

Local 3-approximation algorithm for dominating set
and vertex cover

Assumptions: (quasi) unit-disk graphs, coordinates known
Unweighted case: local and poly-time

Weighted case: local — but not necessarily poly-time!

Other complexity measures for local algorithms
besides the local horizon?

Challenge: apply the same idea to other problems!

http://www.hiit.fi/ada/geru — jukka.suomela@cs.helsinki.fi
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