Local 3-approximation algorithms for weighted dominating set and vertex cover in quasi unit-disk graphs

Marja Hassinen, Valentin Polishchuk, Jukka Suomela

HIIT, University of Helsinki, Finland

LOCALGOS 14 June 2008

Introduction

Local algorithms: output at each node depends only on the constant-radius neighbourhood of the node (Linial 1992, Naor and Stockmeyer 1995)

Assumptions:

- Unit-disk graph
- Each node knows its coordinates

Problems:

- Dominating set
- Vertex cover

Prior work

Dominating set:

- 15-approximation
- 5-approximation
- \blacktriangleright (1 + ϵ)-approximation

(Urrutia 2007)

(Czyzowicz et al. 2008)

(Wiese and Kranakis 2007)

Vertex cover:

- 12-approximation trivial
- \blacktriangleright (1 + ϵ)-approximation

(Wiese and Kranakis 2008)

Our contributions

Simple local algorithm

3-approximation

Small local horizon (locality distance):

- Present algorithm: r = 83
- Wiese and Kranakis (2007): r = 46814 for 3-approximation

Quasi unit-disk graphs

Weighted versions

Dominating set

Input — assumed to be a unit-disk graph

Dominating set

An optimal solution

Tile the plane with 2×4 rectangles

3-colour the rectangles

For each rectangle...

For each rectangle construct an extended rectangle

Extended rectangles are non-intersecting for each colour

Extended rectangles are non-intersecting for each colour

Extended rectangles are non-intersecting for each colour

For each extended rectangle...

For each extended rectangle, form a subproblem...

... and solve the subproblem optimally

Only inside needs to be dominated

Repeat for each rectangle

Repeat for each rectangle

Repeat for each rectangle

Union of local solutions

Dominating set: feasibility

Each node is dominated in at least one subproblem

Factor 3 approximation from 3-colouring

Vertex cover

The same basic approach applies here as well

Consider a shortest path within an extended rectangle

Pick even nodes — distance between any pair > 1

Place disks of radius 1/2 on even nodes — non-intersecting

Area bound: at most 42 such disks \implies at most 83 edges

Local horizon: average case

Local horizon: average case

Conclusions

Local 3-approximation algorithm for dominating set and vertex cover

Assumptions: (quasi) unit-disk graphs, coordinates known

Unweighted case: local and poly-time

Weighted case: local — but not necessarily poly-time!

Other complexity measures for local algorithms besides the local horizon?

Challenge: apply the same idea to other problems!

http://www.hiit.fi/ada/geru — jukka.suomela@cs.helsinki.fi

References (1)

- J. Czyzowicz, S. Dobrev, T. Fevens, H. González-Aguilar, E. Kranakis, J. Opatrny, and J. Urrutia. Local algorithms for dominating and connected dominating sets of unit disk graphs with location aware nodes. In *Proc. 8th Latin American Theoretical Informatics Symposium (LATIN, Búzios, Brazil, April 2008)*, volume 4957 of *Lecture Notes in Computer Science*, pages 158–169, Berlin, Germany, 2008. Springer-Verlag. [DOI]
- M. Hassinen, V. Polishchuk, and J. Suomela. Local 3-approximation algorithms for weighted dominating set and vertex cover in quasi unit-disk graphs. In Proc. 2nd International Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks (LOCALGOS, Santorini Island, Greece, June 2008), 2008. To appear.
- N. Linial. Locality in distributed graph algorithms. *SIAM Journal on Computing*, 21(1):193–201, 1992. [DOI]

References (2)

- M. Naor and L. Stockmeyer. What can be computed locally? *SIAM Journal on Computing*, 24(6):1259–1277, 1995. [DOI]
- J. Urrutia. Local solutions for global problems in wireless networks. *Journal of Discrete Algorithms*, 5(3):395–407, 2007. [DOI]
- A. Wiese and E. Kranakis. Local PTAS for dominating and connected dominating set in location aware unit disk graph. Technical Report TR-07-17, Carleton University, School of Computer Science, Ottawa, Canada, Oct. 2007.
- A. Wiese and E. Kranakis. Local PTAS for independent set and vertex cover in location aware unit disk graphs. In Proc. 4th IEEE/ACM International Conference on Distributed Computing in Sensor Systems (DCOSS, Santorini Island, Greece, June 2008), Berlin, Germany, 2008. Springer-Verlag. To appear.