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ABSTRACT
This work studies sleep scheduling in mobile-device centric
sensor networks. The objective is to maximise the lifetime
by exploiting redundancy in an over-deployed network. Re-
dundancy is described by a redundancy graph; it turns out
that typical realistic redundancy graphs are members of the
family of local graphs. By using a divide-and-conquer tech-
nique based on modular grids, it is shown that sleep schedul-
ing admits a polynomial-time approximation scheme in local
graphs; this is not the case in arbitrary graphs.

1. INTRODUCTION
Large-scale sensor networks [5] may be overly deployed.
Some sensors may be redundant; for example, the entire
detecting range of a motion detector may be covered by
neighbouring sensors. Such redundancy is desired for fault-
tolerance, and it may also be caused by chance in a mobile
sensor network where, for example, movements of people
carrying mobile sensing devices are not centrally controlled.

Over-deployment can be exploited to obtain a longer lifetime
of a battery-powered sensor network. One possible approach
is sleep scheduling. Put simply, each node can be asleep
occasionally, as long as the active nodes cover the entire
monitored area.

Much work on sleep scheduling focuses on the issue of pre-
serving the connectivity of a wireless network [5, §7.2]. How-
ever, connectivity is not an issue in many mobile-device cen-
tric sensor networks. For example, cellular phones can trans-
mit sensor measurements, alerts, and other information over
a mobile data service such as GPRS, regardless of whether
or not neighbouring devices are active. This work focuses
on such applications.

1.1 Sleep Scheduling Problem
Let V denote the set of sensor nodes. We write b(v) for the
maximum time that the node v ∈ V can be active; this is
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determined by the battery capacity and power consumption
of the node. If a subset of nodes A ⊆ V is able to cover
the entire monitored area, we call A a covering set. The
collection of all covering sets is denoted by A. We write
A(v) = 1 if v ∈ A and A(v) = 0 if v /∈ A. A function
x : A → R is a sleep schedule if

P

A∈A
A(v)x(A) ≤ b(v) for all v ∈ V,

x(A) ≥ 0 for all A ∈ A.

The length of the sleep schedule is
P

A
x(A). In the sleep

scheduling problem, the objective is to find a sleep schedule
of the maximum length.

A solution of the sleep scheduling problem can be used to
determine when each sensor is active. For example, we can
order the active sets arbitrarily, say A = {A1, A2, . . . , Am}.
First, the nodes that are members of A1 are active for x(A1)
units of time; the remaining nodes are asleep. Second, the
nodes in A2 are active for x(A2) units of time, and so on.
This way the total lifetime of the network equals

P

A
x(A),

which may be considerably more than minv b(v), and at any
point in time, the entire monitored area is covered.

The sleep scheduling problem is a linear program (LP), and
thus it can be solved in a time polynomial in the size of the
LP. However, the number of variables in the LP equals the
size of A, which may be exponential in the number of the
nodes. Thus, explicit construction of the set A or the LP is
not feasible in the case of large-scale sensor networks.

1.2 Redundancy Graphs
This work focuses on the following case where A is given
implicitly. Instead of the collection A, it is assumed that a
redundancy graph G = (V, E) is given. An edge {u, v} ∈ E
indicates that the nodes u and v are mutually redundant: if
node v is active, node u may be asleep and vice versa. The
collection of covering sets A consists of all dominating sets
of G.

Naturally, a redundancy graph is a simplification of the real
world. It may be that the redundancy is not symmetric;
furthermore, it may be that the interactions of the sensors
cannot be described by a pairwise redundancy. However, the
formulation captures, at least approximately, many practi-
cal problems. For example, in environment monitoring, a
pair of sensors close to each other typically produces highly
correlated measurements, and they can be considered to be
mutually redundant.



Furthermore, this work focuses on the special case of uniform
sensors, that is, b(v) = 1 for all v ∈ V . This special case
of sleep scheduling turns out to be closely related to the
problem of a domatic partition.

1.3 Fractional Domatic Partition
A domatic partition of graph G = (V, E) is a partitioning
of V into disjoint dominating sets. The domatic number
of the graph is the maximum size of its domatic partition,
that is, the maximum number of disjoint dominating sets.
Determining whether the domatic number is above a given
value is a well-known NP-complete problem [3]. In the cor-
responding optimisation problem, the objective is to find a
domatic partition of the maximum size.

The maximum domatic partition problem can be formulated
as an integer program

maximise
P

D
x(D)

subject to
P

D
D(v)x(D) ≤ 1 for all v,

x(D) ≥ 0 for all D,

x(D) ∈ Z for all D,

where v ranges over all vertices and D ranges over all domi-
nating sets; again, D(v) = 1 if v ∈ D and D(v) = 0 if v /∈ D.
Given a feasible solution x, the collection {D : x(D) = 1} is
a domatic partition.

By relaxing the integrality constraint, an LP is obtained:

maximise
P

D
x(D)

subject to
P

D
D(v)x(D) ≤ 1 for all v,

x(D) ≥ 0 for all D.

In this work, a feasible solution of the above LP is called
a fractional domatic partition and the maximum value of
P

D x(D) is called the fractional domatic number. While
this terminology is not widely used, it is analogous to the
case of graph colouring and the chromatic number. A so-
lution to the analogous LP relaxation of graph colouring is
called a fractional graph colouring and the optimum value
is called the fractional chromatic number. The fractional
graph colouring problem is a covering LP with one variable
for each independent set and one constraint for each vertex;
similarly, the fractional domatic partition problem is a pack-
ing LP with one variable for each dominating set and one
constraint for each vertex.

Observe that sleep scheduling in the case of redundancy
graphs and uniform sensors is the same problem as the frac-
tional domatic partition. Interestingly, in this application,
the practical problem setting motivates the LP relaxation of
a well-known combinatorial problem, not the original inte-
gral version.

1.4 Related Work
Feige et al. [2] study the approximability of the domatic par-
tition. They prove that the domatic partition in arbitrary
graphs can be approximated in polynomial time within a
logarithmic factor but, under plausible complexity-theoretic
assumptions, no better. The approximability of the frac-
tional version of the problem does not seem to be discussed
in the literature.

Domatic partition has been applied to maximising the life-
time of sensor networks. For example, Moscibroda and Wat-
tenhofer [6] present a distributed, randomised approxima-
tion algorithm. However, they consider the case of arbi-
trary redundancy graphs; thus, their analysis achieves only
logarithmic approximation ratios.

Instead of a packing of dominating sets, one can also con-
sider a packing of more general set covers. This leads into
problems such as set cover packing and its LP relaxation.
This problem has also been considered in the context of
sensor networks; Slijepcevic and Potkonjak [7] call it the set
K-cover problem.

Berman et al. [1] is one of the few works that explicitly con-
sider the fractional version of the set cover packing problem.
However, they only obtain logarithmic approximation ratios,
as they focus on the general case.

1.5 Contributions
In Section 2, we extend the known results on approximabil-
ity of domatic partition to the fractional case. It turns out
that the fractional version is as hard to approximate as the
integral version.

While dominating sets and fractional domatic partitions are
hard to optimise and hard to approximate in the general
case, they need not be hard in problem instances that are
relevant to sleep scheduling in sensor networks. Section 3
introduces a solution: so-called local graphs. The family of
local graphs captures realistic redundancy graphs.

As the main contribution, Section 4 shows that there is a
polynomial-time approximation scheme (PTAS) for max-
imising fractional domatic partition in local graphs. This
shows that a simple and realistic assumption on locality in-
deed helps solving the problem.

2. APPROXIMABILITY OF
FRACTIONAL DOMATIC PARTITION

Feige et al. [2] present an algorithm for finding a domatic
partition of size Ω(δ/ log |V |) where δ is the minimum de-
gree of the graph. A domatic partition is also a fractional
domatic partition. Moreover, δ + 1 is not only an upper
bound on the domatic number but also an upper bound
on the fractional domatic number. Thus, the fractional do-
matic partition can also be approximated within a factor
of O(log |V |). As a corollary, the integrality gap in domatic
partition (that is, the ratio of the fractional domatic number
to the domatic number) is O(log |V |) because the domatic
number is at least Ω(δ/ log |V |) and the fractional domatic
number is at most δ + 1.

Let us show that the above-mentioned polynomial-time ap-
proximation algorithm is near the best possible. Feige et
al. [2] prove that it is hard to approximate the domatic
number within a factor of (1 − ǫ) ln |V |. The proof can be
extended to the fractional domatic number, as follows.

• [2, Thm. 11]: The theorem is used as is, in its integral
form.



• [2, Prop. 13]: The reduction is formed from the orig-
inal integral problem to the fractional domatic num-
ber, in a weaker form with only the first upper bound
(p ≤ |V |/r). The same transformation is used. The
lower bound holds: a domatic partition is a fractional
domatic partition. The first upper bound holds: if all
dominating sets are of size at least r, then the frac-
tional domatic number is bounded by |V |/r.

• [2, Prop. 10]: The reduction is formed from the orig-
inal integral problem to the fractional domatic num-
ber. Using the above modified proposition, the origi-
nal proof applies directly. Note that the weaker form
suffices; the second upper bound is not needed here.

Using the above results, we obtain the following extension to
[2, Thm. 9]: for every ǫ > 0, it is hard to approximate the
fractional domatic number within a ratio of (1 − ǫ) ln |V |.
More precisely, there is no such polynomial-time approxi-
mation algorithm unless NP ⊆ DTIME(nO(log log n)).

3. LOCAL GRAPHS
A graph G = (V, E) is called (d, N)-local if V ⊆ R

d such
that ‖u − v‖ < 1 for all {u, v} ∈ E and no ball of radius 1
contains more than N vertices.

Local graphs are bounded-degree graphs. However, note
that local graphs need not be disk graphs; the length of
each edge is bounded, but it is not required that there is an
edge between a pair of nearby vertices.

With a suitable choice of N , typical redundancy graphs are
(2, N)-local or (3, N)-local graphs: For each sensor node,
there is one vertex in the graph, and the identity of the
vertex is the physical location of the sensor node in a 2 or
3 dimensional space (after a suitable scaling of the coor-
dinates). Distant sensors cannot be mutually redundant as
the very reason of installing a sensor network is the fact that
sensors measure information in their vicinity only. Further-
more, sensor devices are usually not packed in an arbitrarily
dense manner; scaling up the number of sensor nodes typi-
cally means that a larger network covers a larger geographic
area (that is, a constant N suffices for a family of arbitrarily
large problem instances).

Note that typical redundancy graphs are not necessarily disk
graphs. As a simple example, two sensors that are very close
to each other may be separated by a wall, making them
nonredundant.

4. FRACTIONAL DOMATIC PARTITION
IN LOCAL GRAPHS

To develop a PTAS for the fractional domatic partition, we
apply the approximation scheme by Garg and Könemann [4];
the same approach is used in the context of sleep scheduling
by Berman et al. [1]. In this approximation scheme, we need
to provide an oracle that finds a minimum-weight column of
the coefficient matrix of the covering LP for an arbitrary
weight vector. In our case, the columns correspond to dom-
inating sets.

In Section 4.1, we present a PTAS for the minimum-weight

dominating set in local graphs. Using this PTAS as an ap-
proximate oracle in the approximation scheme by Garg and
Könemann results in an approximation algorithm for frac-
tional domatic partition in local graphs.

4.1 Weighted Dominating Set
In the minimum-weight dominating set problem, each vertex
v has a weight w(v) ≥ 0, and the objective is to find a
dominating set D of the minimum total weight W (D) =
P

v∈D w(v).

Fix the parameters d and N . Choose any ǫ > 0. We show
how to approximate the minimum-weight dominating set
within an approximation ratio of 1+ ǫ if the graph is (d, N)-
local.

Before presenting the algorithm, we introduce some nota-
tion. For each d and ǫ, we choose an integer constant m >
2dd/ǫ. We use f and g to denote functions in the following
families:

f : {1, 2, . . . , d} → {0, 1, . . . , m − 1},

g : {1, 2, . . . , d} → Z.

We form a family of hypercubes Q(f, g, r) = {x ∈ R
d : −r ≤

xk − 2(mg(k) + f(k)) < 2(m − 1) + r ∀k}. Intuitively, f
selects one of md positions for a modular grid, g selects one
cube in the grid, and r is the width of a margin around
each cube. Finally, let V (f, g, r) = Q(f, g, r) ∩ V , that is,
V (f, g, r) consists of the vertices in the cube Q(f, g, r).

Now we are ready to present the algorithm. The input con-
sists of the graph G = (V, E) and the weights w(v) for each
v ∈ V .

1. Find the pairs (f, g) such that V (f, g, 2) is nonempty;
in the remainder of the algorithm, only these pairs
(f, g) need to be considered. The pairs can be found
in polynomial time: consider each vertex v in turn
and find the pairs (f, g) such that the cube Q(f, g, 2)
contains the v; the number of such pairs is bounded
by a constant for each v.

2. Use exhaustive search to find a set D(f, g) ⊆ V (f, g, 2)
of the smallest weight that dominates all vertices in
V (f, g, 1). Note that the size of V (f, g, 2) is bounded
by a constant; all exhaustive searches can be performed
in polynomial time.

3. Let D(f) =
S

g D(f, g). Choose a function f∗ that

minimises W (D(f∗)). Let D = D(f∗). Output the
set D.

Let us now prove the correctness of this algorithm. Let D∗

be a minimum-weight dominating set. First, observe that
for each (f, g), the set D∗ ∩ V (f, g, 2) dominates all vertices
of V (f, g, 1). Thus, the total weight of D(f, g) is bounded
by W (D∗ ∩ V (f, g, 2)).

Second, we show that the set D is a dominating set. Con-
sider any v ∈ V . For each f , there is a g such that v ∈
V (f, g, 1). Thus, v is dominated by some D(f∗, ·) and by
D = D(f∗).



Third, we show that the total weight of D is bounded by
(1 + ǫ)W (D∗). For each dimension k ∈ {1, 2, . . . , d} and for
each value i ∈ {0, 1, . . . , m − 1}, let Pk(i) = {x ∈ R

d : −2 ≤
xk − 2(mj + i) < 0, j ∈ Z}. Let Uk(i) = Pk(i) ∩ V and
U(f) =

S

k Uk(f(k)).

For each k, the sets Pk(·) partition the space into m parts.
Thus, there is a function f ′ such that W (D∗ ∩Uk(f ′(k))) ≤
W (D∗)/m for all k, implying W (D∗∩U(f ′)) ≤ dW (D∗)/m.

Let Z(f, g) = V (f, g, 2) \ V (f, g, 0) ⊆ U(f). For each (f, v),
there are at most 2d functions g such that v ∈ Z(f, g). We
obtain

W (D) ≤ W (D(f ′))

= W (
S

g
D(f ′, g))

≤
P

g
W (D(f ′, g))

≤
P

g W (D∗ ∩ V (f ′, g, 2))

=
P

g W (D∗ ∩ V (f ′, g, 0))

+
P

g W (D∗ ∩ Z(f ′, g))

≤ W (D∗) + 2dW (D∗ ∩ U(f ′))

≤ (1 + 2dd/m)W (D∗)

≤ (1 + ǫ)W (D∗),

completing the proof.

5. CONCLUSIONS AND FUTURE WORK
This work reported early research results on the problem
of sleep scheduling in mobile-device centric sensor networks.
The main focus was on the concept of local graphs; this fam-
ily of graphs admits a PTAS for fractional domatic partition,
which is equal to the problem of sleep scheduling in the case
of redundancy graphs and uniform sensors. Assumptions on
locality indeed help with sleep scheduling.

As sleep scheduling in local graphs is a new concept, it
opens up several possibilities for research. This work only
scratched the surface by considering some theoretical results
and centralised algorithms; some directions for future re-
search include developing practical distributed algorithms
and studying the limits of distributed algorithms in this set-
ting.
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