
Approximating Max-min Linear Programs with Local Algorithms

Patrik Floréen Petteri Kaski Topi Musto Jukka Suomela

Helsinki Institute for Information Technology HIIT, Department of Computer Science,
University of Helsinki, P.O. Box 68, FI-00014 University of Helsinki, Finland

E-mail: {firstname.lastname}@cs.helsinki.fi

Abstract

A local algorithm is a distributed algorithm where each
node must operate solely based on the information that was
available at system startup within a constant-size neigh-
bourhood of the node. We study the applicability of local
algorithms to max-min LPs where the objective is to max-
imise mink ∑v ckvxv subject to ∑v aivxv ≤ 1 for each i and
xv ≥ 0 for each v. Here ckv ≥ 0, aiv ≥ 0, and the support sets
Vi = {v : aiv > 0}, Vk = {v : ckv > 0}, Iv = {i : aiv > 0} and
Kv = {k : ckv > 0} have bounded size. In the distributed set-
ting, each agent v is responsible for choosing the value of xv,
and the communication network is a hypergraph H where
the sets Vk and Vi constitute the hyperedges. We present
inapproximability results for a wide range of structural as-
sumptions; for example, even if |Vi| and |Vk| are bounded
by some constants larger than 2, there is no local approxi-
mation scheme. To contrast the negative results, we present
a local approximation algorithm which achieves good ap-
proximation ratios if we can bound the relative growth of
the vertex neighbourhoods in H.

1. Introduction

We study the limits of what can and what cannot be
achieved by local algorithms [13]. We focus on the ap-
proximability of a certain class of linear optimisation prob-
lems, which generalises beyond widely studied packing
LPs; the emphasis is on deterministic algorithms and worst-
case analysis.

1.1. Local algorithms

A local algorithm is a distributed algorithm where each
node must operate solely based on the information that was
available at system startup within a constant-size neighbour-
hood of the node. We focus on problems where the size of
the input per node is bounded by a constant; in such prob-
lems, local algorithms provide an extreme form of scala-

bility: the communication, space and time complexity of a
local algorithm is constant per node, and a local algorithm
scales to an arbitrarily large or even infinite network.

The study of local algorithms has several uses beyond
providing highly scalable distributed algorithms. The exis-
tence of a local algorithm shows that the function can be
computed by bounded-fan-in, constant-depth Boolean cir-
cuits; we can say that the function is in the class NC0. A
local algorithm is also an efficient centralised algorithm:
the time complexity of the centralised algorithm is linear
in the number of nodes; furthermore, due to spatial local-
ity in memory accesses, we may be able to achieve a low
I/O complexity in the external memory [18] model of com-
putation. In certain problems, a local approximation algo-
rithm can be used to construct a sublinear time algorithm
which approximates the size of the optimal solution, assum-
ing that we tolerate an additive error and some probability
of failure [16]. A local algorithm can be turned into an ef-
ficient self-stabilising algorithm [3]; the time to stabilise is
constant [1]. Finally, the existence and nonexistence of lo-
cal algorithms gives us insight into the algorithmic value of
information in distributed decision-making [14].

1.2. Max-min packing problem

In this section, we define the optimisation problem that
we study in this work. Let V , I and K be index sets with
I∩K = /0; we say that each v ∈V is an agent, each k ∈ K is
a beneficiary party, and each i ∈ I is a resource (constraint).
We assume that one unit of activity by v benefits the party k
by ckv ≥ 0 units and consumes aiv ≥ 0 units of the resource i;
the objective is to set the activities to provide a fair share of
benefit for each party. In notation, assuming that the activity
of agent v is xv units, the objective is to

maximise ω = min
k∈K

∑
v∈V

ckvxv

subject to ∑
v∈V

aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀v ∈V.

(1)

c© 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

Throughout this work we assume that the support sets
defined for all i ∈ I, k ∈ K, and v ∈V by

Vi = {v ∈V : aiv > 0},
Vk = {v ∈V : ckv > 0},
Iv = {i ∈ I : aiv > 0},

Kv = {k ∈ K : ckv > 0}

have bounded size. That is, we focus on instances of (1)
such that |Iv| ≤ ∆I

V , |Kv| ≤ ∆K
V , |Vi| ≤ ∆V

I and |Vk| ≤ ∆V
K for

some constants ∆I
V , ∆K

V , ∆V
I and ∆V

K . To avoid uninteresting
degenerate cases, we furthermore assume that Iv, Vi and Vk
are nonempty.

1.3. LP formulation

If the sets V , I and K are finite, the problem can be rep-
resented using matrix notation. Let A be the nonnegative
|I| × |V | matrix where the entry at row i, column v is aiv;
define C analogously. We write ai for the row i of A and ck
for the row k of C. Let x be a column vector of length |V |.
The goal is to

maximise ω = min
k∈K

ckx

subject to Ax ≤ 1,

x ≥ 0.

In the special case |K| = 1, this is the widely studied
fractional packing problem:

maximise cx

subject to Ax ≤ 1,

x ≥ 0.

This simple linear program (LP) has nonnegative coeffi-
cients in c and A. We refer to a problem of this form as
a packing LP; the dual is a covering LP. Naturally the case
of any finite K can also be written as a linear program, but
the constraint matrix is no longer nonnegative:

maximise ω

subject to Ax ≤ 1,

ω1−Cx ≤ 0,

ω, x ≥ 0.

1.4. Distributed setting

We construct the hypergraph H = (V,E) where the hy-
peredges are

E = {Vi : i ∈ I} ∪ {Vk : k ∈ K}.

This is the communication graph in our distributed optimi-
sation problem. The variable xv is controlled by the agent
v ∈ V , and two agents u,v ∈ V can communicate directly
with each other if they are adjacent in H. We write dH(u,v)
for the shortest-path distance between u and v in H. The
agents are cooperating, not selfish; the difficulty arises from
the fact that the agents have to make decisions based on in-
complete information.

Initially, each agent v∈V knows only the following local
information: the identity of its neighbours in the graph H;
the sets Iv and Kv; the values aiv for each i ∈ Iv; and the
values ckv for each k ∈ Kv. That is, v knows with whom
it is competing for which resources, and with whom it is
working together to benefit which parties.

When we compare the present work with previous work,
we often mention the special case |K| = 1, as this corre-
sponds to the widely studied packing LP. However, in this
case the size of Vk is not bounded by a constant ∆V

K : we
have Vk = V for the sole k ∈ K. Therefore we introduce a
restricted variant of the distributed setting, which we call
collaboration-oblivious. In this variant, the hyperedges are
E = {Vi : i ∈ I}. Whenever we study related work on the
packing LP, we focus on the collaboration-oblivious setting.

1.5. Local setting

We are interested in solving the problem (1) by using a
local algorithm. Let r = 1,2, . . . be the local horizon of the
algorithm; this is a constant which does not depend on the
particular problem instance at hand. Let

BH(v,r) = {u ∈V : dH(u,v)≤ r}

be the set of nodes which have distance at most r to the node
v in H. The agent v must choose the value xv based on the
information that is initially available in the agents BH(v,r).

We focus on the case where the size of the input is con-
stant per node. The elements aiv and ckv are represented
at some finite precision. Furthermore, we assume that the
nodes have constant-size locally unique identifiers; i.e., any
node can be identified uniquely within the local horizon.

1.6. Approximation

A local algorithm has the approximation ratio α for
some α > 1 if the decisions xv are a feasible solution and
the value ω is within a factor α of the global optimum. A
family of local algorithms is a local approximation scheme
if we can achieve any α > 1 by choosing a large enough
local horizon r.

1.7. Contributions

In Section 4 we show that while a simple algorithm
achieves the approximation ratio ∆V

I for (1), no local algo-

rithm can achieve an approximation ratio less than

∆V
I +1

2
− 1

2∆V
K −2

in the general case. In Section 5 we present a local approx-
imation algorithm which can achieve an improved approxi-
mation ratio if we can bound the relative growth of the ver-
tex neighbourhoods in H.

2. Applications

Consider a two-tier sensor network: battery-powered
sensor devices generate some data; the data is transmitted
to a battery-powered relay node, which forwards the data
to a sink node. The sensor network is used to monitor the
physical areas K. Let S be the set of sensors, and let T be
the set of relays; choose I = S∪T .

For each sensors device s ∈ S, there may be multiple re-
lays t ∈ T which are within the reach of the radio of s; we
say that there is a wireless link (s, t) from s to t. The set
V consists of all such wireless links, and the variable x(s,t)
indicates how much data is transmitted from s via t to the
sink. Transmitting one unit of data on the link v = (s, t) ∈V
and forwarding it to the sink consumes the fraction asv of
the energy resources of the sensor s and also the fraction atv
of the energy resources of the relay t.

Let ckv = 1 for each link v = (s, t) if the sensor s is able
to monitor the physical area k ∈K. Now (1) captures the fol-
lowing optimisation problem: choose the data flows in the
sensor network so that we maximise the minimum amount
of data that is received from any physical area. Equivalently,
we can interpret the objective as follows: choose data flows
such that the lifetime of the network (time until the first sen-
sor or relay runs out of the battery) is maximised, assum-
ing that we receive data at the same average rate from each
physical area.

Similar constructions have applications beyond the field
of sensor networks: consider, for example, the case where
each k ∈ K is a major customer of an Internet service
provider (ISP), each s ∈ S is a bounded-capacity last-mile
link between the customer and the ISP, and each t ∈ T is a
bounded-capacity access router in the ISP’s network.

3. Related work

Papadimitriou and Yannakakis [15] present the safe algo-
rithm for the packing LP. The agent v chooses

xv = min
i∈Iv

1
aiv|Vi|

. (2)

This is a local ∆V
I -approximation algorithm with horizon

r = 1.

Kuhn et al. [9] give a distributed approximation scheme
for the packing LP and covering LP. The algorithm provides
a local approximation scheme for some families of pack-
ing and covering LPs. For example, let aiv ∈ {0,1} for all
i,v. Then for each ∆V

I , ∆I
V and α > 1, there is a local al-

gorithm with some constant horizon r which achieves an
α-approximation. Our work shows that such local approxi-
mation schemes do not exist for (1).

Another distributed approximation scheme by Kuhn et
al. [9] forms several decompositions of H into subgraphs,
solves the optimisation problem optimally for each sub-
graph, and combines the solutions. However, the algorithm
is not a local approximation algorithm in the strict sense that
we use here: to obtain any constant approximation ratio, the
local horizon must extend (logarithmically) as the number
of variables increases. Also Bartal et al. [2] present a dis-
tributed but not local approximation scheme for the pack-
ing LP.

Kuhn and Wattenhofer [10] present a family of local,
constant-factor approximation algorithms of the covering
LP that is obtained as an LP relaxation of the minimum
dominating set problem. Kuhn et al. [7] present a local,
constant-factor approximation of the packing and covering
LPs in unit-disk graphs.

There are few examples of local algorithms which ap-
proximate linear problems beyond packing and covering
LPs. Kuhn et al. [8] study an LP relaxation of the k-fold
dominating set problem and obtain a local constant-factor
approximation for bounded-degree graphs.

For combinatorial problems, there are both negative
[6, 11] and positive [4, 8, 10, 13, 17] results on the appli-
cability of local algorithms.

4. Inapproximability

Even though the safe algorithm [15] was presented for
the special case of |K| = 1, c = 1, and finite I and V , we
note that the safe solution x defined by (2) and an optimal
solution x∗ also satisfy

min
k∈K

∑
v∈Vk

ckvx∗v ≤ min
k∈K

∑
v∈Vk

ckv∆
V
I xv

= ∆
V
I min

k∈K
∑

v∈Vk

ckvxv.

Therefore we obtain a local approximation algorithm with
the approximation ratio ∆V

I for (1).
One could hope that widening the local horizon beyond

r = 1 would significantly improve the quality of approxima-
tion. In general, this is not the case: no matter what constant
local horizon r we use, we cannot improve the approxima-
tion ratio beyond ∆V

I /2. In this section, we prove the follow-
ing theorem.

Theorem 1. Let ∆V
I ≥ 2 and ∆V

K ≥ 2 be given. There is no lo-
cal approximation algorithm for (1) with the approximation
ratio less than ∆V

I /2+1/2−1/(2∆V
K −2). This holds even

if we make the following restrictions: aiv ∈ {0,1}, ∆I
V = 1

and ∆K
V = 1.

We emphasise that the local algorithm could even choose
any local horizon r depending on the bounds ∆V

I , ∆V
K , ∆I

V
and ∆K

V . Nevertheless, an arbitrarily low approximation ra-
tio cannot be achieved if ∆V

I ≥ 3 or ∆V
K ≥ 3. In the case

∆V
I = ∆V

K = 2 the existence of a local approximation scheme
remains an open question.

Analogous proof techniques, using constructions based
on regular bipartite high-girth graphs, have been applied in
previous work to prove the local inapproximability of pack-
ing and covering LPs [9] and combinatorial problems [6].

4.1. Proof outline

Choose any local approximation algorithm A for the
problem (1). Let r ≥ 1 be the local horizon of A and let α

be the approximation ratio of A. We derive a lower bound
for α by constructing two instances of (1), S and S′, such
that certain sets of nodes in the two instances have identical
radius-r neighbourhoods in both instances. Consequently,
the deterministic local algorithm A must make the same
choices for these nodes in both instances. The nodes with
identical views are selected based on the solution of S com-
puted by A, which enables us to obtain a lower bound on α

by showing that this solution is necessarily suboptimal as a
solution of S′.

4.2. Construction of S

We now proceed with the detailed construction of the in-
stance S. The constructions used in the proof are illustrated
in Figure 1.

Let ∆V
I ≥ 2 and ∆V

K ≥ 2; without loss of generality we
can assume that at least one of the inequalities is strict be-
cause setting ∆V

I = ∆V
K = 2 in the theorem statement yields

the trivial bound α ≥ 1. Let d = ∆V
I − 1 and D = ∆V

K − 1.
Observe that dD > 1. Let R > r; the precise value of R is
chosen later and will depend on d, D and α only.

Let Q be a dRDR−1-regular bipartite graph with no cy-
cles consisting of less than 4r +2 edges. (A random regular
bipartite graph with sufficiently many nodes has this prop-
erty with positive probability [12].) The graph Q provides
the template for constructing the hypergraph underlying the
instance S.

Before describing the construction, we first introduce
some terminology. A complete (d,D)-ary hypertree of
height h is defined inductively as follows. For h = 0, the hy-
pertree consists of exactly one node and no edges; the level

of the node is 0. For h > 0, start with a complete (d,D)-ary
hypertree of height h− 1. For each node v at level h− 1,
introduce a new hyperedge and new nodes as follows. If
h−1 is even, the new hyperedge consists of the node v and
d new nodes. If h− 1 is odd, the new hyperedge consists
of the node v and D new nodes. For future reference, we
call these hyperedges of types I and II, respectively. The
new nodes have level h in the constructed hypertree. The
constructed hypertree is a complete (d,D)-ary hypertree of
height h. The root of the hypertree is the node at level 0,
the leaves are the nodes at level h. Each level ` has either
(dD)`/2 or (dD)(`−1)/2d nodes depending on whether ` is
even or odd, respectively. See Figure 1 for an illustration.

We now construct the hypergraph underlying S. Denote
by Q the vertex set of Q. Form a hypergraph H by tak-
ing |Q| node-disjoint copies of a complete (d,D)-ary hy-
pertree of height 2R− 1. For q ∈ Q, denote the copy cor-
responding to q by Tq. Denote the node set of Tq by Tq.
For ` = 0,1, . . . ,2R− 1, denote the set of nodes at level
` in Tq by Tq(`). Denote the set of leaf nodes in Tq by
Lq = Tq(2R−1).

Observe that the number of leaf nodes in each Tq is equal
to the degree of every vertex in Q. For each vertex q∈Q and
each leaf node v ∈ Lq, associate with v a unique edge of Q

incident with the vertex q. Each edge of Q is now associ-
ated with exactly two leaf nodes; by construction, these leaf
nodes always occur in different hypertrees Tq. For a leaf
v∈∪qLq, let f (v) be the other leaf associated with the same
edge of Q. Observe that f (f (v)) = v holds for all v ∈ ∪qLq;
in particular, f is a permutation of ∪qLq. To complete the
construction of H, add the hyperedge {v, f (v)} to H for
each v ∈ ∪qLq. Call these hyperedges type III hyperedges.

Let us now define the instance S of (1) based on the hy-
pergraph H. Let the set of agents V be the node set of H.
For each hyperedge e of type I, there is a resource i ∈ I; let
aiv = 1 if v ∈ e, otherwise aiv = 0. For each hyperedge e of
type II, there is a beneficiary party k ∈ K; let ckv = 1/D if
v ∈ e, otherwise ckv = 0. For each hyperedge e of type III,
there is a beneficiary party k ∈ K; let ckv = 1 if v ∈ e, other-
wise ckv = 0. The locally unique identifiers of the agents can
be chosen in an arbitrary manner. (This proof applies also
if the identifiers are globally unique; for example, we can
equally well consider the standard definition where the iden-
tifiers are a permutation of 1,2, . . . , |V |.) This completes the
construction of S. Observe that S has H as its underlying
hypergraph.

4.3. Construction of S′

Next we construct another instance of (1), called S′, by
restricting to a part of S. To select the part, we apply the
algorithm A to the instance S. We do not care what is the
optimal solution of S; all that matters at this point is the fact

Hyperedges of type III

Hyperedges of type II

A leaf node,
level 5

Hyperedges of type I

The root node, level 0

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...

· · ·

· · ·

· · ·

· · ·

· · ·

(c)

· · ·

p

...

(b)

(a)

Figure 1. The construction of S, in the case d = 2, D = 3, r = 2, R = 3. (a) A small part of the bipar-
tite, 72-regular, high-girth graph Q. (b) A complete (2,3)-ary hypertree of height 5, with 72 leaves.
(c) The underlying hypergraph of S. Grey highlighting indicates the underlying hypergraph of S′;
black circles are the variables of S′ which we set to 1 in Section 4.5.

that each agent v ∈ V must choose some value xv ≥ 0. In
particular, we pay attention to the values xv at the leaf nodes
v ∈ ∪qLq.

For all q ∈ Q, let

δ (q) = ∑
v∈Lq

(
xv− x f (v)

)
. (3)

For all P⊆Q, let δ (P) = ∑q∈P δ (q). Because f is a permu-
tation of ∪qLq with f (f (v)) = v for all v ∈ ∪qLq, we have
δ (Q) = 0. Thus, there exists a p ∈ Q with δ (p)≥ 0.

The instance S′ is now constructed based on p. The set
of agents in S′ is

V ′ = Tp ∪
⋃

u∈Lp

BH(u,2r),

the set of resources is

I′ = {i ∈ I : Vi ⊆V ′},

and the set of beneficiary parties is

K′ = {k ∈ K : Vk ⊆V ′}.

The coefficients aiv and ckv for i ∈ I′, k ∈ K′, and v ∈V ′ are
the same as in the instance S. The locally unique identifiers
of the agents v ∈V ′ are the same as in the instance S. (If we
prefer globally unique identifiers which are a permutation
of 1,2, . . . , |V ′|, we can add redundant variables to V ′.)

4.4. The structure of S′

Next we show that the structure of S′ is tree-like, that
is, there are no cycles in the hypergraph H′ defined by the
instance S′; by construction, H′ is a subgraph of H.

For each q ∈ Q, the subgraph induced by Tq in H is a
hypertree. Furthermore, the subsets Tq form a partition of
V . Therefore any cycle in H and, therefore, any cycle in H′

must involve hyperedges which cross between the subsets
Tq and, finally, return back to the same subset.

The only hyperedges which connect nodes in Tq and Tw
for distinct q,w ∈Q are the hyperedges of type III. There is
at most one such hyperedge for any fixed q 6= w; this hyper-
edge corresponds to the edge {q,w} in the graph Q. There-
fore a cycle in H′ implies a cycle in BQ(p,2r); this implies
a cycle of length at most 4r +1 in Q; by the choice of Q, no
such cycle exists.

4.5. A feasible solution of S′

Next we show that there is a feasible solution x̂ of S′

with ω = 1. Let u be the root node in Tp. By construction,
u ∈ Tp ⊆V ′. For each v ∈V ′, let x̂v = 1 if dH′(u,v) is even;
otherwise, let x̂v = 0. See Figure 1 for an illustration.

Because S′ is tree-like, there is a unique path connecting
u to v in H′ for each v ∈ V ′. In particular, this path is a
shortest path and has length dH′(u,v). Observe that hyper-
edges of resources and beneficiary parties alternate in paths
from u. By the structure of S and S′, it follows that the hy-
peredges of resources (type I) have a unique node with even
distance to u. Therefore, ∑v∈V ′ aivx̂v = 1 for each i ∈ I′; the
solution is feasible. Analogously, the hyperedges of benefi-
ciary parties (types II and III) have a unique node with odd
distance to u. Therefore, ∑v∈V ′ ckvx̂v = 1 for each k ∈ K′,
implying ω = 1.

4.6. The solution achieved by A in S′

Now we apply A to S′. The local radius-r view of the
nodes v ∈ Tp is identical in both S and S′. In particular,
the deterministic local algorithm A must make the same
choices xv for v ∈ Tp in both instances.

As there is a feasible solution with ω = 1, the approxi-
mation algorithm A must choose a solution x with

∑
v∈V ′

ckvxv ≥
1
α

for all k ∈ K′.

We proceed in levels ` = 0,1, . . . ,2R−1 of Tp. We study
the total value assigned to the variables at level `, defined by

S(`) = ∑
v∈Tp(`)

xv.

Recall that |Tp(`)| = (dD)l/2 for ` even, and |Tp(`)| =
(dD)(l−1)/2d for ` odd.

Let us start with level ` = 2R−1, that is, the leaf nodes
in Tp. For each v ∈ Lp, there is a k ∈ K′ such that V ′

k =
{v, f (v)} and ckv = ck f (v) = 1. Therefore, by (3) and the
fact that δ (p)≥ 0,

S(2R−1) = ∑
v∈Lp

xv

=
1
2

δ (p) +
1
2 ∑

v∈Lp

(
xv + x f (v)

)
≥ dRDR−1

2α
. (4)

Next, we study the remaining odd levels ` = 2 j− 1 for
j = 1,2, . . . ,R−1. Consider the set

Fp(2 j−1) = Tp(2 j−1) ∪ Tp(2 j).

Observe that the hyperedges of type II which occur in
Fp(2 j−1) form a partition of Fp(2 j−1). Each of the
d jD j−1 hyperedges in the partition has exactly one node in
Tp(2 j−1) and exactly D nodes in Tp(2 j). The coefficients

ckv of each beneficiary party k∈K′ associated with these hy-
peredges are 1/D for all v∈V ′

k . Thus, by the approximation
ratio, we obtain the bound

S(2 j−1)+S(2 j) = ∑
k∈K′: V ′

k⊆Fp(2 j−1)
D ∑

v∈V ′
k

ckvxv

≥ d jD j/α. (5)

Let us finally study the even levels ` = 2 j for j =
0,1,2, . . . ,R− 1. Observe that the hyperedges of type I oc-
curring in

Fp(2 j) = Tp(2 j) ∪ Tp(2 j +1)

partition Fp(2 j). Each of the d jD j hyperedges in the parti-
tion has exactly one node in Tp(2 j) and exactly d nodes in
Tp(2 j +1). The coefficients aiv of the resources i ∈ I′ asso-
ciated with these hyperedges are 1 for all v ∈ V ′

i . Thus, by
the feasibility of x, we obtain the bound

S(2 j)+S(2 j +1) = ∑
i∈I′: V ′

i ⊆Fp(2 j)
∑

v∈V ′
i

aivxv

≤ d jD j. (6)

Put together, we have, for j = 1,2, . . . ,R−1,

S(1) ≤ S(0)+S(1) ≤ 1, (7)

S(2 j−1)
(5)
≥ d jD j

α
−S(2 j)

(6)
≥ S(2 j +1)−

(
1− 1

α

)
d jD j (8)

which, together with the assumption dD > 1, implies

1
(7)
≥ S(1)

(8)
≥ S(2R−1)−

(
1− 1

α

)R−1

∑
j=1

d jD j

(4)
≥ dRDR−1

2α
−

(
1− 1

α

)
dRDR−dD

dD−1
.

Therefore

α ≥ d
2

+1− 1
2D

+
d +2−2dD−1/D

2dRDR−2
.

Should we have α < d/2+1−1/(2D), we would obtain a
contradiction by choosing a large enough R. This concludes
the proof of Theorem 1.

The same proof with D = 1 gives the following corollary
which shows inapproximability even if both aiv ∈ {0,1} and
ckv ∈ {0,1}.

Corollary 2. Let ∆V
I > 2 be given. There is no local ap-

proximation algorithm for (1) with the approximation ratio
less than ∆V

I /2. This holds even if we make the following
restrictions: aiv ∈ {0,1}, ckv ∈ {0,1}, ∆V

K = 2, ∆I
V = 1 and

∆K
V = 1.

5. Approximability

We have seen that the approximation ratio provided by
the safe algorithm is within factor 2 of the best possible in
general graphs; there is no local approximation scheme if
∆V

I > 2 or ∆V
K > 2.

However, the graph in our construction is very particu-
lar: it is tree-like, and the number of nodes in a radius-
r neighbourhood grows exponentially as the radius r in-
creases. Such properties are hardly realistic in practical
applications such as sensor networks; if nodes are embed-
ded in a low-dimensional physical space, the length of each
communication link is bounded by the limited range of the
radio, and the distribution of the nodes and the network
topology are not particularly pathological, we expect that
the number of nodes grows only polynomially as the radius
r increases. We shall see that better approximation ratios
may be achieved in such cases.

Formally, we define the relative growth of neighbour-
hoods by

γ(r) = max
v∈V

|BH(v,r +1)|
|BH(v,r)|

.

We prove the following theorem.

Theorem 3. For any R, there is a local approximation al-
gorithm for (1) with the approximation ratio γ(R− 1)γ(R)
and local horizon Θ(R).

To illustrate this result, consider the case where H is a
d-dimensional grid. In such a graph,

|BH(v,r)| = Θ(rd),

|BH(v,r +1)| = |BH(v,r)|+Θ(rd−1).

Therefore γ(r) = 1 + Θ(1/r) and our algorithm is a local
approximation scheme in this family of graphs.

We emphasise that the algorithm does not need to know
any bound for γ(r). We can use the same algorithm in any
graph. The algorithm achieves a good approximation ratio
if such bounds happen to exist, and it still produces a feasi-
ble solution if such bounds do not exist. Furthermore, due
to the local nature of the algorithm, if the graph fails to meet
such bounds in a particular area, this only affects the opti-
mality of the beneficiary parties that are close to this area.

5.1. Algorithm

The algorithm is based on the idea of averaging local
solutions of local LPs; similar ideas have been used in ear-
lier work to derive distributed and local approximation algo-
rithms for LPs [5, 7, 9].

Fix a radius R = 1,2, . . .; the local horizon of the algo-
rithm will be Θ(R). For each agent u ∈ V , define the set of

v

u

Sk

v

u

Vk

V v V v

Vi

V u
i

Ui

V u

V u

Figure 2. Definitions used in the algorithm.

the agents that are close to u:

V u = BH(u,R),

the set of the agents that are close to u and consume the
resource i:

V u
i = Vi∩V u,

the set of the parties whose benefit is determined by V u:

Ku = {k ∈ K : Vk ⊆V u},

and the set of the resources consumed by the agents in V u:

Iu = {i ∈ I : V u
i 6= /0}.

For each k ∈ K and i ∈ I, define the set of agents that are
close to all agents who benefit the party k:

Sk =
⋂

v∈Vk

V v,

and the set of the agents that are close to at least one agent
who consumes the resource i:

Ui =
⋃

v∈Vi

V v.

See Figure 2 for an illustration.

Finally, let

mk = |Sk|,
Ni = |Ui|,

Mk = max{|V v| : v ∈Vk},
ni = min{|V v| : v ∈Vi}.

For each u ∈ V , let xu be an optimal solution of the fol-
lowing problem:

maximise ω
u = min

k∈Ku ∑
v∈Vk

ckvxu
v

subject to ∑
v∈V u

i

aivxu
v ≤ 1 ∀ i ∈ Iu,

xu
v ≥ 0 ∀v ∈V u.

(9)

The solution xu can be computed by the agent u; or it can be
computed separately by each agent v ∈ V u which needs xu,
by using the same deterministic algorithm.

The agent v ∈ V makes the following choice, which de-
pends only on its radius 2R+1 neighbourhood:

βv = min
i∈Iv

ni

Ni
,

x̃v =
βv

|V v| ∑
u∈V v

xu
v . (10)

5.2. Constraints

Consider a resource i ∈ I. We note that

v ∈Vi and u ∈V v

⇐⇒ u ∈Ui and v ∈Vi and u ∈V v

⇐⇒ u ∈Ui and v ∈Vi and v ∈V u

⇐⇒ u ∈Ui and v ∈V u
i (11)

and

u ∈Ui ⇐⇒ ∃v ∈Vi : u ∈V v

⇐⇒ ∃v ∈Vi : v ∈V u

⇐⇒ V u
i 6= /0

⇐⇒ i ∈ Iu

(9)
=⇒ ∑

v∈V u
i

aivxu
v ≤ 1. (12)

By definition, βv ≤ ni/Ni for all i ∈ Iv, that is, for all v ∈Vi.
Combining these observations, we obtain

∑
v∈Vi

aivx̃v
(10)
= ∑

v∈Vi

aiv
βv

|V v| ∑
u∈V v

xu
v

≤ 1
ni

ni

Ni
∑

v∈Vi

∑
u∈V v

aivxu
v

(11)
=

1
Ni

∑
u∈Ui

∑
v∈V u

i

aivxu
v

(12)
≤ 1

Ni
∑

u∈Ui

1

= 1.

Therefore x̃ is a feasible solution of (1).

5.3. Benefit

Let x∗ be an optimal solution of (1), with ω = ω∗. Then
x∗ is a feasible solution of (9), with ωu ≥ω∗. Therefore the
optimal solution xu of (9) satisfies

∑
v∈Vk

ckvxu
v ≥ ω

∗ (13)

for all k ∈ Ku. Let

β = min
v∈V

βv = min
i∈I

ni

Ni
.

Consider a beneficiary party k ∈ K. We note that

u ∈ Sk and v ∈Vk =⇒ v ∈Vk and u ∈V v (14)

and

u ∈ Sk ⇐⇒ u ∈V v for all v ∈Vk

⇐⇒ v ∈V u for all v ∈Vk

⇐⇒ Vk ⊆V u

⇐⇒ k ∈ Ku

(13)
=⇒ ∑

v∈Vk

ckvxu
v ≥ ω

∗. (15)

Combining these observations, we obtain

∑
v∈Vk

ckvx̃v
(10)
= ∑

v∈Vk

ckv
βv

|V v| ∑
u∈V v

xu
v

≥ β

Mk
∑

v∈Vk

∑
u∈V v

ckvxu
v

(14)
≥ β

Mk
∑

u∈Sk

∑
v∈Vk

ckvxu
v

(15)
≥ β

Mk
∑

u∈Sk

ω
∗

= β
mk

Mk
ω
∗.

In summary, the solution x̃ approximates (1) within the
approximation ratio

max
k∈K

Mk

mk
·max

i∈I

Ni

ni
.

We proceed to derive an upper bound for this ratio. Fix
a k ∈ K. Let v ∈ Vk. Now dH(u,v) ≤ 1 for any u ∈ Vk
and therefore BH(v,R−1)⊆ BH(u,R) for any u ∈Vk. This
implies BH(v,R−1) ⊆ Sk. Therefore mk ≥ |BH(v,R−1)|
for each v ∈Vk. It follows that

Mk

mk
= max

v∈Vk

|BH(v,R)|
mk

≤ max
v∈Vk

|BH(v,R)|
|BH(v,R−1)|

and

max
k∈K

Mk

mk
≤ max

v∈V

|BH(v,R)|
|BH(v,R−1)|

= γ(R−1).

Then fix an i∈ I. Let v∈Vi. Now dH(u,v)≤ 1 for any u∈Vi
and therefore BH(u,R)⊆ BH(v,R+1) for any u ∈Vi. This
implies Ui ⊆ BH(v,R+1). Therefore Ni ≤ |BH(v,R+1)|
for each v ∈Vi. It follows that

Ni

ni
= max

v∈Vi

Ni

|BH(v,R)|
≤ max

v∈Vi

|BH(v,R+1)|
|BH(v,R)|

and

max
i∈I

Ni

ni
≤ max

v∈V

|BH(v,R+1)|
|BH(v,R)|

= γ(R).

This completes the proof of Theorem 3.

Acknowledgments

We thank Marja Hassinen for discussions and comments.
This research was supported in part by the Academy of Fin-
land, Grants 116547 and 117499, and by Helsinki Graduate
School in Computer Science and Engineering (Hecse).

References

[1] B. Awerbuch and G. Varghese. Distributed program check-
ing: a paradigm for building self-stabilizing distributed pro-
tocols. In Proc. 32nd Annual Symposium on Foundations of
Computer Science (FOCS, San Juan, Puerto Rico, October
1991), pages 258–267, Piscataway, NJ, USA, 1991. IEEE.

[2] Y. Bartal, J. W. Byers, and D. Raz. Global optimization us-
ing local information with applications to flow control. In
Proc. 38th Annual Symposium on Foundations of Computer
Science (FOCS, Miami Beach, FL, USA, October 1997),
pages 303–312, Los Alamitos, CA, USA, 1997. IEEE Com-
puter Society Press.

[3] S. Dolev. Self-Stabilization. The MIT Press, Cambridge,
MA, USA, 2000.

[4] P. Floréen, P. Kaski, T. Musto, and J. Suomela. Local ap-
proximation algorithms for scheduling problems in sensor
networks. In Proc. 3rd International Workshop on Algo-
rithmic Aspects of Wireless Sensor Networks (Algosensors,
Wrocław, Poland, July 2007), volume 4837 of Lecture Notes
in Computer Science, pages 99–113, Berlin, Germany, 2008.
Springer-Verlag. To appear.

[5] F. Kuhn and T. Moscibroda. Distributed approximation of
capacitated dominating sets. In Proc. 19th Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA,
San Diego, CA, USA, June 2007), pages 161–170, New York,
NY, USA, 2007. ACM Press.

[6] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What can-
not be computed locally! In Proc. 23rd Annual ACM Sym-
posium on Principles of Distributed Computing (PODC, St.
John’s, Newfoundland, Canada, July 2004), pages 300–309,
New York, NY, USA, 2004. ACM Press.

[7] F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the locality
of bounded growth. In Proc. 24th Annual ACM Symposium

on Principles of Distributed Computing (PODC, Las Vegas,
NV, USA, July 2005), pages 60–68, New York, NY, USA,
2005. ACM Press.

[8] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Fault-tolerant
clustering in ad hoc and sensor networks. In Proc. 26th IEEE
International Conference on Distributed Computing Systems
(ICDCS, Lisboa, Portugal, July 2006), Los Alamitos, CA,
USA, 2006. IEEE Computer Society Press.

[9] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price
of being near-sighted. In Proc. 17th Annual ACM-SIAM
Symposium on Discrete Algorithm (SODA, Miami, FL, USA,
January 2006), pages 980–989, New York, NY, USA, 2006.
ACM Press.

[10] F. Kuhn and R. Wattenhofer. Constant-time distributed
dominating set approximation. Distributed Computing,
17(4):303–310, 2005.

[11] N. Linial. Locality in distributed graph algorithms. SIAM
Journal on Computing, 21(1):193–201, 1992.

[12] B. D. McKay, N. C. Wormald, and B. Wysocka. Short cy-
cles in random regular graphs. Electronic Journal of Combi-
natorics, 11(1):#R66, 2004.

[13] M. Naor and L. Stockmeyer. What can be computed locally?
SIAM Journal on Computing, 24(6):1259–1277, 1995.

[14] C. H. Papadimitriou and M. Yannakakis. On the value of
information in distributed decision-making. In Proc. 10th
Annual ACM Symposium on Principles of Distributed Com-
puting (PODC, Montreal, Quebec, Canada, August 1991),
pages 61–64, New York, NY, USA, 1991. ACM Press.

[15] C. H. Papadimitriou and M. Yannakakis. Linear program-
ming without the matrix. In Proc. 25th Annual ACM Sympo-
sium on Theory of Computing (STOC, San Diego, CA, USA,
May 1993), pages 121–129, New York, NY, USA, 1993.
ACM Press.

[16] M. Parnas and D. Ron. Approximating the minimum vertex
cover in sublinear time and a connection to distributed algo-
rithms. Theoretical Computer Science, 381(1–3):183–196,
2007.

[17] J. Urrutia. Local solutions for global problems in wireless
networks. Journal of Discrete Algorithms, 5(3):395–407,
2007.

[18] J. S. Vitter. External memory algorithms and data struc-
tures: dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001.

