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ABSTRACT

In a max-min LP, the objective is to maximise ω subject
to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for nonnegative matrices
A and C. We present a local algorithm (constant-time dis-
tributed algorithm) for approximating max-min LPs. The
approximation ratio of our algorithm is the best possible for
any local algorithm; there is a matching unconditional lower
bound.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; G.1.6 [Numerical Analysis]: Optimization
—linear programming

General Terms

Algorithms, Theory

1. INTRODUCTION
In a max-min linear program (max-min LP), the objective

is to

maximise min
k∈K

ckx

subject to Ax ≤ 1,

x ≥ 0

(1)

or, equivalently, to

maximise ω

subject to Ax ≤ 1,

Cx ≥ ω1,

x ≥ 0.

The matrices A and C are nonnegative and sparse: each row
ai of A has at most ∆I positive elements, and each row ck
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of C has at most ∆K positive elements for some constants
∆I and ∆K .

This work studies the task of (approximately) solving a
max-min LP that is distributed to a network of nodes, with
one node v ∈ V for each variable xv, one node i ∈ I for each
constraint aix ≤ 1, and one node k ∈ K for each objective
ckx. Nodes v ∈ V and i ∈ I are adjacent if aiv is positive,
and nodes v ∈ V and k ∈ K are adjacent if ckv is positive.
Each node v ∈ V is to choose the value xv by exchanging
messages with its adjacent nodes.

Immediate applications of this setup include various tasks
of fair resource allocation in contemporary networking, such
as fair bandwidth allocation in a communication network
and balanced data gathering in a wireless sensor network.
For example, a solution to a max-min LP may represent
feasible data flows x that maximise the minimum amount of
bandwidth ω that we provide to each customer k ∈ K. An
algorithm for approximating max-min LPs also enables one
to solve approximate mixed packing and covering LPs [20];
a particular special case is finding an (approximate) solution
to a nonnegative system of linear equations.

The main contribution of this paper is a distributed al-
gorithm that achieves the best possible approximation ra-
tio for max-min LPs in the context of local algorithms [13,
15, 18], that is, distributed algorithms that complete in con-
stant time (constant number of synchronous communication
rounds), independent of the size of the network. The corre-
sponding nonexistence result, which we repeat in our main
theorem below, appears in earlier work [7]. The cases ∆I = 1
or ∆K = 1 can be solved optimally with a local algorithm
[17]; we focus on non-trivial max-min LPs with ∆I ≥ 2 and
∆K ≥ 2.

Theorem 1. For any ∆I ≥ 2, ∆K ≥ 2, and ǫ > 0, there
is a local approximation algorithm for the max-min LP prob-
lem with the approximation ratio ∆I(1 − 1/∆K) + ǫ. More-
over, there is no local approximation algorithm for max-min
LPs with the approximation ratio ∆I(1 − 1/∆K).

To our knowledge, this is the first example of a“nontrivial”
approximation threshold in the context of local algorithms;
in particular, it is not obvious that a threshold should ex-
ist at precisely ∆I(1 − 1/∆K). Moreover, the threshold is
combinatorial in the sense that it is independent of the co-
efficients in the constraints and the objectives. In fact, the
inapproximability result holds for max-min LPs with {0, 1}
coefficients [7].



1.1 Definitions
We give a formal definition of a max-min LP in a dis-

tributed setting. Let G = (V ∪ I ∪ K, E) be a bipartite,
undirected communication graph. The nodes v ∈ V are
called agents, the nodes i ∈ I are called constraints, and the
nodes k ∈ K are called objectives; the sets V , I, and K are
pairwise disjoint. Each edge e ∈ E is of the form e = {v, i}
or e = {v, k} where v ∈ V , i ∈ I, and k ∈ K.

Let

Vi = {v ∈ V : {v, i} ∈ E},

Vk = {v ∈ V : {v, k} ∈ E},

Iv = {i ∈ I : {v, i} ∈ E},

Kv = {k ∈ K : {v, k} ∈ E}

for all i ∈ I, k ∈ K, and v ∈ V . We assume that |Vi| ≤ ∆I

and |Vk| ≤ ∆K for all i ∈ I and k ∈ K for some constants
∆I and ∆K .

A max-min linear program associated with G is defined
as follows. Associate a variable xv with each agent v ∈ V ,
associate a coefficient aiv > 0 with each edge {i, v} ∈ E,
i ∈ I, v ∈ V , and associate a coefficient ckv > 0 with each
edge {k, v} ∈ E, k ∈ K, v ∈ V . The task is to

maximise ω(x) = min
k∈K

X

v∈Vk

ckvxv

subject to
X

v∈Vi

aivxv ≤ 1, ∀ i ∈ I,

xv ≥ 0, ∀ v ∈ V.

(2)

The local input of an agent v ∈ V consists of the sets Iv

and Kv and the coefficients aiv, ckv for all i ∈ Iv, k ∈ Kv.
The local input of a constraint i ∈ I consists of Vi, and the
local input of an objective k ∈ K consists of Vk.

1.2 Model of distributed computation
Each node in the communication graph G is a compu-

tational entity. During each synchronous communication
round, each node in parallel (i) performs local computation,
(ii) sends a message to each neighbour, and (iii) receives a
message from each neighbour. Eventually, after D commu-
nication rounds, each agent v ∈ V in parallel produces the
output xv, and the algorithm stops.

In a local algorithm, we assume that D is a constant.
The value of D may depend on the parameters ∆I and ∆K

and the desired approximation ratio, but it is independent
of the number of nodes in the network. The constant D is
called the local horizon of the algorithm. For each agent
v ∈ V , the output xv is a function of the local inputs of the
nodes within distance D (in number of edges) from v in the
communication graph G.

The inapproximability part of Theorem 1 holds even if we
assume that each node of the graph G has a unique identifier,
while our approximation algorithm does not need any node
identifiers. We merely assume port numbering [1, 3, 19]:
each node chooses an ordering on its incident edges.

1.3 Prior work
Local algorithms are scalable and fault-tolerant [14, 15]

and hence highly desirable from a practical networking per-
spective. A local algorithm completes in constant time in an
arbitrarily large network, and changes in the input at one

node only affects the output in its radius-D neighbourhood.
Indeed, in bounded-degree graphs, a local algorithm is also a
dynamic graph algorithm (with constant-time updates) and
a self-stabilising algorithm (with constant time to stabilise).
For more information on the model of local algorithms and
their advantages, we refer to the survey [18].

For any ǫ > 0, there exists a local (1+ǫ)-approximation al-
gorithm for packing and covering LPs, assuming a bounded-
degree graph and bounded coefficients [10, 11]. However,
as shown in Theorem 1, this is not the case with max-min
LPs [7].

Two special cases of max-min LPs have been considered
in prior work: bipartite max-min LPs and max-min LPs
with {0, 1} coefficients. (In a bipartite max-min LP, each
column of A and each column of C contains only one nonzero
element, that is, each agent v ∈ V is adjacent to exactly one
constraint i ∈ I and exactly one objective k ∈ K.)

The inapproximability part of Theorem 1 holds in the case
of bipartite max-min LPs with {0, 1} coefficients [7]. It is
known from prior work [6, 7] that a local algorithm can
achieve the approximation factor ∆I(1 − 1/∆K) + ǫ for any
ǫ > 0 in bipartite max-min LPs, and in max-min LPs with
{0, 1} coefficients and ∆K = 2. However, these techniques
apparently do not extend; for general max-min LPs, the best
local algorithm in prior work is the safe algorithm which
achieves the factor ∆I approximation [8, 16]. The present
work extends prior work by showing that the approximation
factor ∆I(1 − 1/∆K)+ ǫ can be achieved for arbitrary max-
min LPs.

Max-min LPs provide, to our knowledge, the first exam-
ple of a natural problem where there are matching, nontriv-
ial lower and upper bounds for the approximation factor of
a deterministic local algorithm. Recently, another pair of
matching lower and upper bounds for local algorithms has
been discovered: in bounded-degree graphs, there is a local
2-approximation algorithm for the vertex cover problem [2],
and there is no local algorithm with the approximation ratio
2 − ǫ for any ǫ > 0 [5, 12].

2. OVERVIEW OF THE ALGORITHM
We begin in §3 by reminding that, in the port numbering

model, we can without loss of generality focus on the case
where the graph G is a (countably infinite but locally finite)
tree [1, 7].

In §4, we present a series of local transformations that
simplify the structure of the problem. We show that with
the objective of establishing Theorem 1, it is sufficient to
focus on the special case where |Vi| = 2, |Vk| ≥ 2, |Kv| = 1,
|Iv| ≥ 1, and cku = 1 for all i ∈ I, k ∈ K, v ∈ V , u ∈ Vk.
Figure 1 shows an example of a communication graph G after
the local transformations.

In §5, we present a local algorithm for this special case.
In §6, we prove that the output of the algorithm is a factor
2(1 − 1/∆K) + ǫ′ approximation. Put together, we have a
local, factor ∆I(1 − 1/∆K) + ǫ approximation for general
max-min LPs, for any ǫ > 0.

The intuition behind the algorithm in §5 is best under-
stood if we study its analysis in §6. In the analysis, it is con-
venient to assume that we have assigned a one-dimensional
coordinate, layer, to each node of the tree G; see Figure 1 for
an example. When we assign the layers, we also partition
the agents into up-agents and down-agents. We have alter-
natingly layers of up-agents, constraints, down-agents, and
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Figure 1: The graph G (after the local transformations in §4) and the layers (see §6). We have chosen R = 3
and hence r = 1. Thick lines highlight the tree Au (see §5.1). There are several ways to choose the layers;
nevertheless, if u is an up-agent on layer −1 then the levels in Au necessarily coincide with the layers.

objectives. Each objective has exactly one adjacent up-agent
“above” it, and at least one adjacent down-agent “below” it;
hence the names “up” and “down”.

We now assign every Rth layer of objectives to be passive,
including the adjacent agents that set xv = 0. Each agent
v computes an upper bound tv of the optimum; see §5.2.
Then we construct a solution for the active layers in a greedy
manner, starting with a layer of passive up-agents and prop-
agating information upwards until we reach the next layer
of passive down-agents; see §5.3.

This is not yet an approximation for the original problem:
while most objectives perform at least as well as in the global
optimum, the passive objectives have utility 0. By applying
ideas from the shifting strategy [4, 9], we could consider R
possible choices for the locations of the passive layers. Then
we could take averages over these to obtain a solution y. In
§6.2 we show that y would indeed be a factor R/(R − 1)
approximation.

There is one difficulty, however. We cannot assign the
layers by a local algorithm in a globally consistent manner;
in particular, we do not know whether a given agent is a
down-agent or an up-agent. To overcome this, we consider
both possible roles for each agent, up and down. For both
roles, we compute a candidate solution by applying the shift-
ing strategy. Finally we take the average of both candidate
solutions. This is the essence of (18). In §6, we prove that
this local approach yields a globally feasible solution that is
within factor 2(1 − 1/∆K) + ǫ′ of the optimum. The con-
stant ǫ′ > 0 can be made arbitrarily small by choosing a
sufficiently large R.

Yet another basic hurdle implicitly overcome in the proof
of Theorem 1 stems from underconstrained instances: if
there are several equally good solutions, one needs to choose
between them in a globally consistent manner. Our defini-
tion of the values g+ and g− in (12)–(14) addresses this
by focusing on a particular extreme point. Each layer of
down-agents chooses as large values g+ as possible, with-
out violating the constraints “below” them. Each layer of

up-agents chooses as small values g− as possible, as long
as the objectives “below” them meet the smoothed upper
bounds sv.

3. PORT NUMBERING AND UNFOLDING
Our algorithm does not need to use any node identifiers;

port numbering is sufficient. In the port numbering model,
a local algorithm cannot distinguish between a short cycle
and an infinitely long path. We can exploit this limitation
to simplify the description of our local algorithm: we can
assume that we have unfolded all cycles of the graph G [1, 7],
as follows.

A walk of length ℓ in a graph G is a nonempty tuple
(u0, e1, u1, e2, u2, . . . , eℓ, uℓ) of alternating nodes and edges
in G such that, for all j = 1, 2, . . . , ℓ, the edge ej joins the
nodes uj−1 and uj . The walk is said to start at u0 and end
at uℓ. A walk is non-backtracking if ej−1 6= ej holds for all
j = 1, 2, . . . , ℓ. A path is a walk with no repeated nodes.

Let G be a finite connected graph and let r be a node of
G. The unfolding of G rooted at r is the undirected simple
graph G′ obtained as follows. The node set of G′ is the set of
all non-backtracking walks in G that start at r. Two nodes
of G′ are joined by an edge iff one can be obtained from the
other by appending exactly one edge and one node of G.

We associate with each node of G′ a parent node of G,
namely the end-node of the walk. We also associate with
each edge of G′ a parent edge of G, namely the appended
edge.

Remarks.

1. The unfolding G′ is a tree.

2. The unfolding G′ is finite iff G is a tree; otherwise G′

is countably infinite.

3. Any two unfoldings of G rooted at different nodes are
isomorphic. In what follows we refer to“the”unfolding
of G without specifying a particular root node.



4. Assuming that the graph G has port numbers associ-
ated with the ends of its edges, the unfolding G′ inher-
its the port numbering from the parent edges.

5. Assuming that the graph G has a max-min LP asso-
ciated with it, the max-min LP associated with the
unfolding G′ is defined by inheritance from the parent
nodes and edges. In particular, the type of each node
(agent, constraint, objective) is the type of the parent
node, and the coefficients associated with the edges
(aiv, ckv) are inherited from the parent edges.

6. Any two nodes of G′ with the same parent are related
by an automorphism of G′. In particular, any deter-
ministic local algorithm in the port numbering model
must give the same output on any two nodes with the
same parent. Any locally computed feasible solution of
the max-min LP associated with G′ defines a feasible
solution of the max-min LP associated with G, with
the same utility.

7. Any feasible solution of the max-min LP associated
with G defines, by inheritance, a feasible solution of
the max-min LP associated with G′, with the same
utility.

8. A locally computed feasible solution of G′ with utility
at least 1/α times the utility of any feasible solution
of G′ yields an α-approximation of the optimum of G.

4. LOCAL TRANSFORMATIONS
Consider an arbitrary max-min LP associated with the

graph G. In this section we carry out a sequence of locally
computable transformations, with the goal of arriving at
a more structured max-min LP. The transformations are
applied in the order of presentation, from §4.2 to §4.6. We
describe each individual transformation in three parts:

1. A description of the transformation.

2. Mapping a solution of the transformed instance back
to the original instance.

3. Implications to approximability. We write ω(·) for the
utility of the original instance and ω′(·) for the utility
of the transformed instance.

Figure 2 illustrates the transformations that modify the com-
munication graph G.

To avoid degenerate cases, we assume that each constraint
and objective is adjacent to at least one agent, and every
agent is adjacent to at least one constraint and at least one
objective, that is, |Vi| ≥ 1, |Vk| ≥ 1, |Kv| ≥ 1, and |Iv| ≥ 1
for all i ∈ I, k ∈ K, v ∈ V . Indeed, isolated constraints can
be deleted, isolated objectives force the optimum of (2) to
zero, non-contributing agents can be set to zero, and uncon-
strained agents can be set to +∞. Furthermore, we assume
that G is connected, as we can handle each connected com-
ponent independently.

4.1 Implementation details
Even though a description of a local algorithm often in-

volves interleaved steps of communication and computation,
it should be noted that any local algorithm with local hori-
zon D can always be implemented as follows:

1. Each node gathers full information about its radius D
neighbourhood; this is the local view of the agent.

2. Each node simulates the algorithm in its local view to
determine its output.

As pointed out in §3, we can assume that the local view is a
tree. Furthermore, in our case it is sufficient that each agent
performs these steps – constraints and objectives do not need
to produce any output. Therefore we can implement each
transformation presented in this section as follows (with a
small increase of the local horizon):

1. Each agent gathers its local view, up to some constant
distance. This is a tree.

2. Each agent performs the transformation in its local
view. The result is a graph, possibly with cycles.

3. Each agent unfolds the graph to obtain a tree, discard-
ing parts that are beyond its local horizon.

4. Each agent simulates the rest of the local algorithm in
this tree, and applies the back-mapping to determine
its output.

In some of the transformations, new agent nodes are created.
In §4.2, the output of the new agents is not needed. In
§4.4 and §4.5, existing agents can simulate their copies and
compute the back-mapping.

The nontrivial part is to make sure that the transforma-
tions can be performed deterministically: if the local views
of agents u and v partially overlap, and both agents per-
form a transformation in the common part, the common
parts must be identical after the transformation. In partic-
ular, the port numbers must be identical. In the following,
we show how to achieve this for each transformation.

4.2 Augmenting singleton constraints
After this transformation, |Vi| ≥ 2 for each i ∈ I. In

essence, we augment degree-1 constraints with a cycle that
does not affect the original instance.

The transformation. For each constraint i ∈ I with |Vi| =
1, introduce three new agents, s, t, and u, two new objec-
tives, h and ℓ, and one new constraint, j. Let v ∈ Vi be the
original agent adjacent to i, and let k ∈ Kv be an objective
adjacent to v. Set

ais = ajt = aju = 1,

chs = cℓs = 1,

cht = cℓu = 2
X

w∈Vk

ckw min
i∈Iw

1

aiw

.

Figure 2 shows the structure of the modified LP.
We can use an arbitrary, fixed port numbering within the

cycle induced by {s, h, t, j, u, ℓ}. The edge {i, s} that joins
the cycle and the original graph is the last edge both from
the perspective of i and s.

Mapping back. Let x′ be any feasible solution of the trans-
formed instance. We map this back by setting xv = x′

v for
all original agents v ∈ V .

Approximation ratio. Observe that we can always set x′
s =

0 and x′
t = x′

u = 1/2 without decreasing the objective value
ω′(x′). Thus the optima of the original and transformed
instances coincide, and any approximation ratio is preserved.
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Figure 2: Local transformations in §4.2–§4.5.

4.3 Reducing the degree of constraints
After this transformation, |Vi| = 2 for each i ∈ I. This

transformation is from prior work [6].
The transformation. Replace each constraint i ∈ I with

|Vi| > 2 by the
`

|Vi|
2

´

constraints

aiuxu + aivxv ≤ 1, ∀u, v ∈ Vi, u < v. (3)

See Figure 2 for an illustration in the case |Vi| = 3.
To see that the port numbers can be chosen deterministi-

cally, consider an agent v ∈ Vi. From the perspective of v,
the edge {v, i} in the original graph is replaced by |Vi| − 1
edges, and there is a one-to-one mapping between the new
edges and the agents Vi \ {v}. Since we can order the set Vi

by using the port numbering in i, we can also order the new
edges. Each new constraint can also use the ordering of Vi

to choose its port numbers.
Mapping back. Let x′ be an arbitrary feasible solution of

the transformed instance. We map this back to a feasible
solution x of the original instance by setting

xv =
2x′

v

maxi∈Iv
|Vi|

, ∀ v ∈ V. (4)

To verify that x is feasible, consider an arbitrary original
constraint i ∈ I. By the previous transformation, we have
|Vi| ≥ 2. Taking the sum over all the constraints (3) replac-
ing i, or, if |Vi| = 2, considering the original constraint, we
have

X

v∈Vi

`

|Vi| − 1
´

aivx′
v ≤

|Vi|
`

|Vi| − 1
´

2
.

By (4) we thus have

X

v∈Vi

aivxv ≤
X

v∈Vi

2aivx′
v

|Vi|
≤ 1.

Approximation ratio. Since the objectives are unchanged
in the transformation, we have

ω(x) ≥
2ω′(x′)

∆I

by linearity and (4). Furthermore, an optimal solution of
the original instance is a feasible solution of the transformed
instance. Therefore, if x′ is an α-approximate solution, then
x is an α∆I/2-approximate solution.

4.4 Associating a unique objective with each
agent

After this transformation, |Kv| = 1 for each v ∈ V .
The transformation. For each agent v ∈ V with |Kv| > 1,

replace v with |Kv| copies of v as follows. Associate each
copy of v with a unique objective in Kv. Replace each con-
straint adjacent to v with |Kv| copies of the constraint, with
v replaced by a unique copy in each constraint; see Figure 2.
The coefficients are unchanged.

To choose the port numbers, consider a node u 6= v adja-
cent to an i ∈ Iv. From the perspective of u, the edge {u, i}
is replaced by |Kv| edges, and there is a one-to-one mapping
between the new edges and the objectives in Kv; further-
more, the port numbering in v imposes an ordering on Kv.
All other cases are straightforward; for example, each copy
of a constraint simply inherits the port numbering from the
original graph.

Mapping back. Let x′ be a feasible solution of the trans-
formed instance. By symmetry we can assume that all copies
u of v have the same value x′

u without decreasing the objec-
tive value ω′(x′); indeed, if the values are different, just set
all copies to the maximum among these values. Mapping
back is done simply by identifying the copies back to the
original.

Approximation ratio. Preserved. The optima of the orig-
inal and the transformed instance coincide.

4.5 Augmenting singleton objectives
After this transformation, |Vk| ≥ 2 for each k ∈ K.
The transformation. For each objective k ∈ K with |Vk| =

1, let v be the unique agent adjacent to k. Replace v with
two copies, t and u, and replace each constraint adjacent to v
with two copies of the constraint, one containing t in place
of v, and the other containing u in place of v. Let ckt =
cku = ckv/2. The coefficients are otherwise unchanged.

To choose the port numbers, the new edges that point to
t and its adjacent constraints are ordered before the new
edges that point to u and its adjacent constraints.

Mapping back. Let x′ be a feasible solution of the trans-
formed instance. By symmetry we can assume that the
copies of v have the same value x′

t = x′
u without decreasing

the objective value ω′(x′); indeed, if the values are differ-
ent, just set all copies to the maximum among these values.
Mapping back is done simply by identifying the copies back
to the original.



Approximation ratio. Preserved. The optima of the orig-
inal and the transformed instance coincide.

4.6 Normalising coefficients
After this transformation, ckv = 1 for each {k, v} ∈ E

with k ∈ K and v ∈ V .
The transformation. For each v ∈ V , let k(v) be the

unique objective in Kv. For each v ∈ V , i ∈ I, and k ∈ K,
divide aiv and ckv by ck(v)v. The graph is not changed, and
port numbering is preserved.

Mapping back. For each v ∈ V , multiply xv by ck(v)v.
Approximation ratio. Preserved.

5. LOCAL ALGORITHM
Throughout this section we consider a max-min LP asso-

ciated with a bipartite graph G = (V ∪ I ∪K, E) with these
properties that follow from §3 and §4:

– the graph G is an unfolding of a finite graph,

– |Kv| = 1 and |Iv| ≥ 1 for each agent v ∈ V ,

– |Vi| = 2 for each constraint i ∈ I,

– |Vk| ≥ 2 for each objective k ∈ K,

– ckv = 1 for each pair of adjacent k ∈ K and v ∈ V .

It follows that G is countably infinite.
Recall that k(v) is the unique objective adjacent to v ∈ V .

Let N(v) = Vk(v) \{v} be the set of other agents adjacent to
this objective. For a constraint i ∈ I and an agent v ∈ Vi,
denote by n(v, i) the unique agent other than v in Vi. See
Figure 1 for an illustration.

Let R = 2, 3, . . . be a fixed parameter that will determine
the local horizon and the approximation ratio. Let r = R−2.

5.1 An upper bound via alternating trees
A walk W = (u0, e1, u1, . . . , eℓ, uℓ) in G is alternating if

(i) for all 1 ≤ j < j′ ≤ ℓ with uj ∈ K and uj′ ∈ K,
there exists a j < j′′ < j′ with uj′′ ∈ I; and (ii) for all
1 ≤ j < j′ ≤ ℓ with uj ∈ I and uj′ ∈ I, there exists a
j < j′′ < j′ with uj′′ ∈ K.

Let u ∈ V be an arbitrary agent, and consider the sub-
graph Au of G induced by the nodes reachable via alternat-
ing paths starting at u that (i) traverse the constraint k(u)
and have length at most 4r+3; or (ii) have length at most 1.
The level of a node of Au is its distance to k(u), with the
exception of u, which we define to have level −1, and the
constraints adjacent to u, which we define to have level −2.
See Figure 1 for an illustration.

Associate with Au a max-min LP by restriction from the
max-min LP associated with G.

Lemma 1. The graph Au is a finite tree. Moreover, every
objective in Au is at level 0 (mod 4), every agent in Au is at
level either 1 (mod 4) or 3 (mod 4), and every constraint in
Au is at level 2 (mod 4). The leaves of Au are constraints
at levels −2 and 4r + 2. For any objective k in Au and any
agent v adjacent to k in G, the agent v occurs in Au and is
adjacent to k in Au.

Proof. By induction on R using the assumptions on the
structure of G.

Lemma 2. The optimum value of the max-min LP asso-
ciated with Au is an upper bound on the value of any feasible
solution of the max-min LP associated with G.

Proof. Because Au is finite, the optimum is well de-
fined. It suffices to show that any feasible solution of G is
(by restriction) a feasible solution of Au. This follows from
Lemma 1: the objectives in Au are identical to those in G,
and the constraints on variables in Au are either identical or
relaxed from G (at leaves or non-alternating constraints).

5.2 The optimum of Au

The tree structure of Au enables a recursive characteri-
sation of the optimum that proceeds level-wise towards u.
Denote by L(u, ℓ) the set of all nodes at level ℓ in Au.

Define

f+
u,v,0(ω) = min

i∈Iv

1

aiv

(5)

for each v ∈ L(u, 4r + 1),

f−
u,v,d(ω) = max

n

0, ω −
X

w∈N(v)

f+
u,w,d(ω)

o

(6)

for each d = 0, 1, . . . , r and v ∈ L(u, 4(r − d) − 1), and

f+
u,v,d(ω) = min

i∈Iv

1 − a
i,n(v,i)f

−
u,n(v,i),d−1(ω)

aiv

(7)

for each d = 0, 1, . . . , r and v ∈ L(u, 4(r − d) + 1).

Example 1. Figure 1 illustrates the computation of (5)–
(7) in the case r = 1, for a given ω. The agents at level 5
in the tree Au choose the largest values f+

u,·,0(ω) that do
not violate any of the constraints at level 6. The agents
at level 3 choose the smallest values f−

u,·,0(ω) so that the
objectives at level 4 meet the requirement ω. The agents at
level 1 choose the largest values f+

u,·,1(ω) that do not violate
any of the constraints at level 2, and the agents at level −1
choose the smallest values f−

u,·,1(ω) so that the objectives
at level 0 meet the requirement ω. If we interpret fu as a
candidate solution to the max-min LP associated with Au,
we notice that the utility of the solution would be at least
ω, but the solution is not necessarily feasible. In particular,
the values f+

u might be negative and the constraints at level
−2 might be violated.

Now let tu be the maximum value ω ≥ 0 such that

f+
u,v,d(ω) ≥ 0 (8)

for all 0 ≤ d ≤ r and v ∈ L(u, 4(r − d) + 1), and

f−
u,u,r(ω) ≤ min

i∈Iu

1

aiu

. (9)

Note that the maximum exists because (6) and (7) can be
expressed using linear inequalities (by introducing additional
variables), and ω = 0 is a feasible value. Indeed, as the
following lemma shows, the values f±

u,v,d(tu) are simply a
specific optimum solution of the LP associated with the tree
Au; in essence, we focus on a particular extreme point among
all optimal solutions of the LP.



Lemma 3. Let x be any feasible solution that achieves the
objective value ω in the max-min LP associated with Au.
Then

0 ≤ xv ≤ f+
u,v,d(ω) (10)

for all d = 0, 1, . . . , r and v ∈ L(u, 4(r − d) + 1), and

f−
u,v,d(ω) ≤ xv ≤ min

i∈Iv

1

aiv

(11)

for all d = 0, 1, . . . , r and v ∈ L(u, 4(r − d)− 1). In particu-
lar, tu is the optimum utility of the max-min LP associated
with Au.

Proof. By induction on d and in order of evaluation of
the recursive steps (6) and (7).

To set up the base case at d = 0, observe that by the
feasibility of x and (5) we have

xv ≤ min
i∈Iv

1

aiv

= f+
u,v,0(ω), ∀ v ∈ L(u, 4r + 1).

Next consider any 0 ≤ d ≤ r and assume inductively that

xw ≤ f+
u,w,d(ω), ∀w ∈ L

`

u, 4(r − d) + 1
´

.

Consider an arbitrary v ∈ L(u, 4(r − d) − 1). Observe
that for all w ∈ Vk(v) it holds that either v = w or w ∈
L(u, 4(r − d) + 1). If we have

0 ≥ ω −
X

w∈N(v)

f+
u,w,d(ω),

then (6) implies f−
u,v,d(ω) = 0 ≤ xv; otherwise (6) implies

f−
u,v,d(ω) = ω −

X

w∈N(v)

f+
u,w,d(ω) ≤ ω −

X

w∈N(v)

xw ≤ xv.

Here the first inequality follows by the induction hypothe-
sis, and the second inequality follows by assumption that x
achieves the objective value ω; in particular,

X

w∈Vk(v)

xw = xv +
X

w∈N(v)

xw ≥ ω.

To complete the induction, consider any 1 ≤ d ≤ r and
assume inductively that

f−
u,w,d−1(ω) ≤ xw, ∀w ∈ L

`

u, 4(r − (d − 1)) − 1
´

.

Consider an arbitrary v ∈ L(u, 4(r − d) + 1). Observe that
n(v, i) ∈ L(u, 4(r − (d − 1)) − 1). Because x is feasible, we
have

aivxv + ai,n(v,i)xn(v,i) ≤ 1

for all i ∈ Iv. Thus, the inductive hypothesis and (7) imply

xv ≤ min
i∈Iv

1 − ai,n(v,i)xn(v,i)

aiv

≤ min
i∈Iv

1 − a
i,n(v,i)f

−
u,n(v,i),d−1(ω)

aiv

= f+
u,v,d(ω).

To conclude that tu is the optimum utility of the max-min
LP associated with Au, consider an optimal solution x with
the objective value ω∗. Observe that (10) and (11) imply (8)
and (9). Therefore tu ≥ ω∗. Furthermore, tu > ω∗ would
contradict the assumption that x is optimal.

In what follows we use the shorthand notation

f+
u,v,d = f+

u,v,d(tu),

f−
u,v,d = f−

u,v,d(tu).

The values f±
u,v,d are used in the analysis; the local algorithm

needs to know only the optimums tu. To keep our analysis
simpler, we assume here that the node u uses an LP solver to
find the optimum of the LP associated with Au, and hence
the exact value of tu. In a practical implementation of our
algorithm, we do not need to invoke an LP solver; a simple
binary search for an approximation of tu is sufficient.

5.3 Smoothing
For each agent v ∈ V in G, let sv be the minimum of the

values tu over all agents u ∈ V at distance at most 4r + 2
from v in G. For all v ∈ V in G and all d = 0, 1, . . . , r, define

g+
v,0 = min

i∈Iv

1

aiv

, (12)

g−
v,d = max

n

0, sv −
X

w∈N(v)

g+
w,d

o

, (13)

g+
v,d = min

i∈Iv

1 − a
i,n(v,i)g

−
n(v,i),d−1

aiv

, d ≥ 1. (14)

Example 2. We can interpret (12)–(14) in terms of the
functions f± defined in (5)–(7). For example, consider the
agent b in Figure 1. Let us determine the value g−

b,0. Choose
any agent u (for example, the one shown in the figure) such
that b is a level-3 node in the tree Au, that is, the function
f−

u,b,0(ω) is defined. Then we have g−
b,0 = f−

u,b,0(sb), indepen-
dent of the choice of the agent u.

Lemma 4. For all u ∈ V and all d = 0, 1, . . . , r it holds
that

g−
v,d ≤ f−

u,v,d, ∀ v ∈ L
`

u, 4(r − d) − 1
´

, (15)

f+
u,v,d ≤ g+

v,d, ∀ v ∈ L
`

u, 4(r − d) + 1
´

. (16)

Proof. Consider an arbitrary u ∈ V . For all w ∈ V at
distance at most 4r + 2 from u we have, by the definition
of sw,

0 ≤ sw ≤ tu. (17)

We proceed by induction on d. To establish the base case
at d = 0, observe by (5) and (12) that f+

u,v,0 = g+
v,0 for all

v ∈ L(u, 4r + 1).
Next consider any 0 ≤ d ≤ r and assume inductively that

f+
u,w,d ≤ g+

w,d, ∀w ∈ L
`

u, 4(r − d) + 1
´

.

Consider an arbitrary v ∈ L(u, 4(r−d)−1). Observe that for
all w ∈ Vk(v) either w = v or w ∈ L(u, 4(r − d) + 1). Apply
(13), (17), the inductive hypothesis, and (6) to obtain

g−
v,d = max

n

0, sv −
X

w∈N(v)

g+
w,d

o

≤ max
n

0, tu −
X

w∈N(v)

f+
u,w,d

o

= f−
u,v,d.

Finally, consider any 1 ≤ d ≤ r and assume inductively
that

g−
w,d−1 ≤ f−

u,w,d−1, ∀w ∈ L
`

u, 4(r − (d − 1)) − 1
´

.



Consider an arbitrary v ∈ L(u, 4(r − d) + 1). Observe that
for all i ∈ Iv it holds that n(v, i) ∈ L(u, 4(r − (d − 1)) − 1).
Apply (7), the inductive hypothesis, and (14), to obtain

f+
u,v,d = min

i∈Iv

1 − a
i,n(v,i)f

−
u,n(v,i),d−1

aiv

≤ min
i∈Iv

1 − a
i,n(v,i)g

−
n(v,i),d−1

aiv

= g+
v,d.

The induction is now complete.

Lemma 5. For all v ∈ V it holds that

g+
v,r ≥ 0,

g−
v,r ≤ min

i∈Iv

1

aiv

.

Proof. Let v ∈ V be arbitrary and choose u ∈ N(v);
such a u exists because every objective is adjacent to at
least two agents. We have

g+
v,r ≥ f+

u,v,r ≥ 0

by (16) and (8). Similarly, let u = v to obtain

g−
v,r ≤ f−

v,v,r ≤ min
i∈Iv

1

aiv

by (15) and (9).

Lemma 6. For all v ∈ V and d = 1, 2, . . . , r it holds that
g−

v,d−1 ≤ g−
v,d and g+

v,d ≤ g+
v,d−1.

Proof. By induction on d. To set up the base case at
d = 1, observe first that g−

v,0 ≥ 0 by (13). By (14) and (12)
thus

g+
v,1 = min

i∈Iv

1 − a
i,n(v,i)g

−
n(v,i),0

aiv

≤ min
i∈Iv

1

aiv

= g+
v,0.

Next consider any 1 ≤ d ≤ r and assume inductively that
g+

v,d ≤ g+
v,d−1. Apply (13) and the inductive hypothesis to

obtain

g−
v,d = max

n

0, sv −
X

w∈N(v)

g+
w,d

o

≥ max
n

0, sv −
X

w∈N(v)

g+
w,d−1

o

= g−
v,d−1.

Finally, consider any 2 ≤ d ≤ r and assume inductively that
g−

v,d−2 ≤ g−
v,d−1. Apply (14) and the inductive hypothesis

to obtain

g+
v,d = min

i∈Iv

1 − a
i,n(v,i)g

−
n(v,i),d−1

aiv

≤ min
i∈Iv

1 − a
i,n(v,i)g

−
n(v,i),d−2

aiv

= g+
v,d−1.

This completes the induction.

Lemma 7. For all v ∈ V and d = 0, 1, . . . , r it holds that
g+

v,d ≥ 0.

Proof. By Lemmata 5 and 6.

Finally, each agent v outputs the value

xv =
1

2R

r
X

d=0

`

g+
v,d + g−

v,d

´

. (18)

This completes the description of the algorithm. The al-
gorithm is local, with the local horizon Θ(R). We proceed
to show that the vector x is a feasible solution, and within
factor 2(1 − 1/∆K) + ǫ′ of the optimum.

6. ANALYSIS
We start by partitioning the set of agents V into up-agents

and down-agents such that (i) every constraint is adjacent
to exactly one up-agent and exactly one down-agent; and
(ii) every objective is adjacent to exactly one up-agent. Fig-
ure 1 shows an example of such a partition; note that if the
node u is designated as an up-agent, then there is only one
way to choose the types of the other agents in the tree Au.

Associate an integer layer to each node of G as follows.
First, fix an arbitrary objective k ∈ K to be at layer 0. Then,
determine the layer of every other node u by considering
the unique directed path connecting k to u. The layer of
u is determined by taking the sum of the weights of the
directed edges in the path, where the weights are displayed
in Figure 3. See Figure 1 for an example.

K

I

up-agent

down-agent

−1

−1

−1

−1

+1

+1

+1

+1

Figure 3: The weights used to assign the layers.

Lemma 8. The layers of the nodes of G satisfy the fol-
lowing four properties: every objective has layer 0 (mod 4),
every down-agent has layer 1 (mod 4), every constraint has
layer 2 (mod 4), and every up-agent has layer 3 (mod 4).

Proof. Immediate from Figure 3.

6.1 Shifting strategy
Let j = 0, 1, . . . , R−1 be a shift parameter. For each agent

v ∈ V , represent the layer of v uniquely as 4(Rc+j)+4d+e
for integers c, d, e with 0 ≤ d ≤ R − 1 and e ∈ {−1, 1}.
Recall that r = R − 2. Associate with v the value

yv(j) =

8

>

<

>

:

0 if d = R − 1,

g−
v,r−d if d ≤ R − 2 and e = −1,

g+
v,r−d if d ≤ R − 2 and e = 1.

(19)

Observe that a down-agent has e = 1 and an up-agent has
e = −1, regardless of j.

For an objective k and a vector z indexed by the agents,
let

ωk(z) =
X

v∈Vk

zv.



Lemma 9. The vector y(j) is a feasible solution of the
max-min LP associated with G. For every objective k ∈ K,
it holds that

ωk

`

y(j)
´

= 0 if k is at layer 4j − 4 (mod 4R),

ωk

`

y(j)
´

≥ min
v∈Vk

sv otherwise.

Proof. Feasibility. The vector is nonnegative by (13)
and Lemma 7. Consider an arbitrary constraint i ∈ I. By
Lemma 8 we can represent the layer of i uniquely as

4(Rc + j) + 4d + 2

for integers c, d with 0 ≤ d ≤ R − 1. Let Vi = {v, w} with
v at layer 4(Rc + j) + 4d + 1 and w at layer 4(Rc + j) +
4(d + 1) − 1.

First consider the case d = R − 1. Note that the layer of
w is actually 4(R(c + 1) + j) − 1, that is, d = 0 and e = −1
for w. By (19) and Lemma 5, we have

aivyv(j) + aiwyw(j) = aiwg−
w,r ≤ 1.

Next consider the case d = R−2. By (19) and (12), we have

aivyv(j) + aiwyw(j) = aivg+
v,0 ≤ 1.

Finally consider the case d < R − 2. By (19) and (14), we
have

aivyv(j) + aiwyw(j)

= aivg+
v,r−d + aiwg−

w,r−d−1

≤ aiv

1 − aiwg−
w,r−d−1

aiv

+ aiwg−
w,r−d−1 = 1.

The claim follows since i was arbitrary.
Objectives. Consider an arbitrary objective k in G. By

Lemma 8 we can represent the layer of k uniquely as

4(Rc + j) + 4d

for integers c, d with 0 ≤ d ≤ R − 1. There is a unique up-
agent in Vk at layer 4(Rc + j) + 4d − 1. Denote this agent
by v. The other agents w ∈ N(v) are down-agents at layer
4(Rc + j) + 4d + 1.

First consider the case d = R − 1. By (19) we have

ωk

`

y(j)
´

= yv(j) +
X

w∈N(v)

yw(j) = 0.

Then consider the case d ≤ R − 2. By (19) and (13), we
have

ωk

`

y(j)
´

= yv(j) +
X

w∈N(v)

yw(j)

= g−
v,r−d +

X

w∈N(v)

g+
w,r−d

≥ sv −
X

w∈N(v)

g+
w,r−d +

X

w∈N(v)

g+
w,r−d

= sv ≥ min
u∈Vk

su.

The claim follows because k was arbitrary.

Let us now average over all values of the shift parameter
j = 0, 1, . . . , R − 1 to obtain

yv =
1

R

R−1
X

j=0

yv(j)

=

8

>

>

>

>

<

>

>

>

>

:

1

R

r
X

d=0

g−
v,d if v is an up-agent,

1

R

r
X

d=0

g+
v,d if v is a down-agent.

(20)

Lemma 10. The vector y is a feasible solution of the max-
min LP associated with G. For every objective k ∈ K, it
holds that

ωk(y) ≥

„

1 −
1

R

«

min
v∈Vk

sv.

Proof. Follows from Lemma 9.

6.2 Averaging
Associate with each agent v ∈ V a solution y↑v defined as

follows. Choose the layers so that v is an up-agent; this is
always possible. Let y↑v be the value of (20).

Lemma 11. The vector x is a feasible solution of the max-
min LP associated with G.

Proof. Consider an arbitrary constraint i ∈ I; let Vi =
{v, w}. Note that whenever v is an up-agent w is a down-
agent and vice versa. Let

z =
y↑v + y↑w

2
.

By (20) and (18) we have

zv =
y↑v

v + y↑w
v

2
=

1

2

„

1

R

r
X

d=0

g−
v,d +

1

R

r
X

d=0

g+
v,d

«

= xv

and zw = xw. By Lemma 10, the solutions y↑v and y↑w do
not violate the constraint i. Therefore

avxv + awxw = avzv + awzw

=
(avy↑v

v + awy↑v
w ) + (avy↑w

v + awy↑w
w )

2

≤
1 + 1

2
= 1.

We conclude that the solution x does not violate the con-
straint i.

Lemma 12. For every objective k ∈ K,

ωk(x) ≥
1

2

„

1 −
1

R

«

|Vk|

|Vk| − 1
min
v∈Vk

sv. (21)

Proof. Consider an arbitrary objective k in G. Note
that whenever v ∈ Vk is an up-agent, each w ∈ N(v) is a
down-agent. Let

z =
1

|Vk|

X

v∈Vk

y↑v.



By (20) and (18) we have

|Vk|

2(|Vk| − 1)
zu =

1

2(|Vk| − 1)

X

v∈Vk

y↑v
u

=
1

|Vk| − 1

„

1

2R

r
X

d=0

g−
u,d +

|Vk| − 1

2R

r
X

d=0

g+
u,d

«

≤ xu

for all u ∈ Vk. By Lemma 10,

ωk(x) =
X

u∈Vk

xu ≥
X

u∈Vk

|Vk|

2(|Vk| − 1)
zu

≥
|Vk|

2(|Vk| − 1)

„

1 −
1

R

«

min
v∈Vk

sv.

The claim follows.

6.3 Completing the analysis
Lemmata 2 and 3 show that for any v ∈ V , the value tv

is an upper bound for the utility of any feasible solution of
the max-min LP instance associated with G, and so is sv.
Lemma 12 therefore shows that our local algorithm achieves
the approximation ratio of 2(1 − 1/∆K)(1 + 1/(R − 1)), for
the special case studied in §5.

Together with the local transformations of §4, taking into
account the increase of the approximation in §4.3, we con-
clude that the max-min LP problem admits a local algorithm
with the approximation ratio of

∆I

„

1 −
1

∆K

« „

1 +
1

R − 1

«

;

the local horizon is Θ(R). Theorem 1 follows by choosing a
sufficiently large R.

The constants ∆I and ∆K are used solely in the analysis.
The algorithm is oblivious to these constants; only the value
of R needs to be fixed in advance to run the algorithm.
Naturally if one is given a specific ǫ, then the choice of the
correct R requires information on ∆I and ∆K .
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