
Can we
automate
our own work

Jukka Suomela
Aalto University

— or show that it is hard?

Computer science: what
can be automated?

Computer science: what
can be automated?

Today: can we automate
our own work?

Focus: theory of
distributed computing

Consider a typical theory paper in
OPODIS, PODC, DISC…

How much of the work is
done with computers?

How much of it could be
done with computers?

Constant Space and Non-Constant Time in

Distributed Computing

Tuomo Lempiäinen1 and Jukka Suomela2

1 Department of Computer Science, Aalto University, Espoo, Finland
tuomo.lempiainen@aalto.fi

2 Department of Computer Science, Aalto University, Espoo, Finland
jukka.suomela@aalto.fi

Abstract

While the relationship of time and space is an established topic in traditional centralised com-
plexity theory, this is not the case in distributed computing. We aim to remedy this by studying
the time and space complexity of algorithms in a weak message-passing model of distributed com-
puting. While a constant number of communication rounds implies a constant number of states
visited during the execution, the other direction is not clear at all. We show that indeed, there
exist non-trivial graph problems that are solvable by constant-space algorithms but that require
a non-constant running time. Somewhat surprisingly, this holds even when restricted to the class
of only cycle and path graphs. Our work provides us with a new complexity class for distributed
computing and raises interesting questions about the existence of further combinations of time
and space complexity.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases distributed computing, space complexity, constant-space algorithms,
weak models, Thue–Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.30

1 Introduction

In the classical centralised theory of computing, the study of space-limited computation has
helped us with understanding computability and computational complexity in general:
1. Constant-space models (finite-state machines) provide a very well-understood solid found-

ation.
2. Space-limited complexity classes (e.g., PSPACE) can be successfully related with time-

limited complexity classes (e.g., NP ™ PSPACE ™ EXP).

In this work, we use similar ideas in the study of distributed computing, in particular, in
the context of distributed graph algorithms.

Networks of finite-state machines. The natural distributed analogue of a deterministic
finite-state machine is a network of deterministic finite-state machines. For brevity, we call
distributed algorithms that use only finitely many states per node constant-space algorithms.
See Section 2 for a proper definition of the model of computation.

Variants of this setting have been studied in many papers, but perhaps the most elementary
question related to distributed graph algorithms has not been answered yet:

© Tuomo Lempiäinen and Jukka Suomela;

licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).

Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Consider a typical theory paper in
OPODIS, PODC, DISC…

How much of the work is
done with computers?

How much of it could be
done with computers?

Constant Space and Non-Constant Time in

Distributed Computing

Tuomo Lempiäinen1 and Jukka Suomela2

1 Department of Computer Science, Aalto University, Espoo, Finland
tuomo.lempiainen@aalto.fi

2 Department of Computer Science, Aalto University, Espoo, Finland
jukka.suomela@aalto.fi

Abstract

While the relationship of time and space is an established topic in traditional centralised com-
plexity theory, this is not the case in distributed computing. We aim to remedy this by studying
the time and space complexity of algorithms in a weak message-passing model of distributed com-
puting. While a constant number of communication rounds implies a constant number of states
visited during the execution, the other direction is not clear at all. We show that indeed, there
exist non-trivial graph problems that are solvable by constant-space algorithms but that require
a non-constant running time. Somewhat surprisingly, this holds even when restricted to the class
of only cycle and path graphs. Our work provides us with a new complexity class for distributed
computing and raises interesting questions about the existence of further combinations of time
and space complexity.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases distributed computing, space complexity, constant-space algorithms,
weak models, Thue–Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.30

1 Introduction

In the classical centralised theory of computing, the study of space-limited computation has
helped us with understanding computability and computational complexity in general:
1. Constant-space models (finite-state machines) provide a very well-understood solid found-

ation.
2. Space-limited complexity classes (e.g., PSPACE) can be successfully related with time-

limited complexity classes (e.g., NP ™ PSPACE ™ EXP).

In this work, we use similar ideas in the study of distributed computing, in particular, in
the context of distributed graph algorithms.

Networks of finite-state machines. The natural distributed analogue of a deterministic
finite-state machine is a network of deterministic finite-state machines. For brevity, we call
distributed algorithms that use only finitely many states per node constant-space algorithms.
See Section 2 for a proper definition of the model of computation.

Variants of this setting have been studied in many papers, but perhaps the most elementary
question related to distributed graph algorithms has not been answered yet:

© Tuomo Lempiäinen and Jukka Suomela;

licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).

Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Consider a typical theory paper in
OPODIS, PODC, DISC…

How much of the work is
done with computers?

How much of it could be
done with computers?

Constant Space and Non-Constant Time in

Distributed Computing

Tuomo Lempiäinen1 and Jukka Suomela2

1 Department of Computer Science, Aalto University, Espoo, Finland
tuomo.lempiainen@aalto.fi

2 Department of Computer Science, Aalto University, Espoo, Finland
jukka.suomela@aalto.fi

Abstract

While the relationship of time and space is an established topic in traditional centralised com-
plexity theory, this is not the case in distributed computing. We aim to remedy this by studying
the time and space complexity of algorithms in a weak message-passing model of distributed com-
puting. While a constant number of communication rounds implies a constant number of states
visited during the execution, the other direction is not clear at all. We show that indeed, there
exist non-trivial graph problems that are solvable by constant-space algorithms but that require
a non-constant running time. Somewhat surprisingly, this holds even when restricted to the class
of only cycle and path graphs. Our work provides us with a new complexity class for distributed
computing and raises interesting questions about the existence of further combinations of time
and space complexity.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases distributed computing, space complexity, constant-space algorithms,
weak models, Thue–Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.30

1 Introduction

In the classical centralised theory of computing, the study of space-limited computation has
helped us with understanding computability and computational complexity in general:
1. Constant-space models (finite-state machines) provide a very well-understood solid found-

ation.
2. Space-limited complexity classes (e.g., PSPACE) can be successfully related with time-

limited complexity classes (e.g., NP ™ PSPACE ™ EXP).

In this work, we use similar ideas in the study of distributed computing, in particular, in
the context of distributed graph algorithms.

Networks of finite-state machines. The natural distributed analogue of a deterministic
finite-state machine is a network of deterministic finite-state machines. For brevity, we call
distributed algorithms that use only finitely many states per node constant-space algorithms.
See Section 2 for a proper definition of the model of computation.

Variants of this setting have been studied in many papers, but perhaps the most elementary
question related to distributed graph algorithms has not been answered yet:

© Tuomo Lempiäinen and Jukka Suomela;

licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).

Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?
•Approach: find smart people, spend
lots of time in front of a whiteboard …

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?
•Approach: find smart people, spend
lots of time in front of a whiteboard …
•End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof …

Standard process
•Question: is there an efficient distributed
algorithm for solving task X in model M?
•Approach: find smart people, spend
lots of time in front of a whiteboard …
•End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof …

Lost sanity?

Toy example:
Locally checkable
problems in cycles

75

10 8
52

22

7

31

Setting
•Computer network: cycle of n computers
• globally consistent orientation
• each node has one “successor”
and one “predecessor”

75

10 8
52

22

7

31

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
• synchronous communication rounds
• time = number of rounds until
all nodes stop
• unbounded message size
• unlimited local computation
• unique identifiers

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints
• finite number of output labels
• relation that tells which
label sequences are valid

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

Example: maximal independent set

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

good

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

good

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

good

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

bad

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

good

Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define
with local constraints

01 00 101 0

good

Valid label sequences
•2-coloring: 12, 21
•3-coloring: 12, 21, 13, 31, 23, 32
• Independent set: 01, 10, 00
•Maximal independent set: 001, 010, 100, 101
•Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

Valid label sequences
•2-coloring: 12, 21
•3-coloring: 12, 21, 13, 31, 23, 32
• Independent set: 01, 10, 00
•Maximal independent set: 001, 010, 100, 101
•Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

All possible
output labelings

in a window
of size k

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

This algorithm
solves X in

time O(log* n)

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

Polynomial time
(in the size
of problem
description)

001

010

100

101
Example:

X = maximal
independent
set problem

001

010

100

101

010

001

010

100

101

001

010

Compatible
neighborhoods

for adjacent
nodes

001

010

100

101

001

010

101

Compatible
neighborhoods

for adjacent
nodes

001

010

100

101

001

010

101

001

010

100

101

001

010

100

101

001

010

101

001

010

100

101

001

010

100

101

001

010

100

101

This graph
is all that
we need!

21

12
2-coloring

21

1 3

3 22 3

12

13

21

12
3-coloring 2-coloring

independent set

21

1 3

3 22 3

12

13

21

1 0

0 0

0 1

12
3-coloring 2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13

21

1 0

0 0

0 1

12
3-coloring 2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set
1 0

0 0

0 1

self-loop

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Algorithm:
Constant output
(e.g. here all-0)

independent set
1 0

0 0

0 1

self-loop

solvable
in O(1) rounds

Proof: No self-loop
→ any solution breaks symmetry everywhere
→ can be used to find 3-coloring
→ not possible in o(log* n) rounds

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

maximal
independent
set001

010

100

101

maximal
independent
set001

010

100

101

0

maximal
independent
set001

010

100

101

1

maximal
independent
set001

010

100

101

2

maximal
independent
set001

010

100

101

3

maximal
independent
set001

010

100

101

4

maximal
independent
set001

010

100

101

5
Self-returning

walk of length 5

maximal
independent
set001

010

100

101

0

maximal
independent
set001

010

100

101

1

maximal
independent
set001

010

100

101

2

maximal
independent
set001

010

100

101

3

maximal
independent
set001

010

100

101

4

maximal
independent
set001

010

100

101

5

maximal
independent
set001

010

100

101

6
Self-returning

walk of length 6

maximal
independent
set001

010

100

101

0

maximal
independent
set001

010

100

101

1

maximal
independent
set001

010

100

101

2

maximal
independent
set001

010

100

101

3

maximal
independent
set001

010

100

101

4

maximal
independent
set001

010

100

101

5

maximal
independent
set001

010

100

101

6

maximal
independent
set001

010

100

101

7
Self-returning

walk of length 7

maximal
independent
set001

010

100

101

k = 5, 6, 7, 8, …

Self-returning
walk of length k

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

Decidable in
polynomial time

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

Algorithm:
• split in blocks of length ≥ k0
• use the flexible configuration

at each block boundary
• fill in between boundaries by

following a self-returning walk

solvable in
O(log* n) rounds

maximal
independent
set001

010

100

101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

solvable in
O(log* n) rounds

Proof: Not flexible → must use
the same non-flexible configuration
at least twice far from each other;
not compatible for all distances
→ global coordination needed
→ not possible in o(n) rounds

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12
3-coloring distance-2 coloring2-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12

O(1)

distance-2 coloring2-coloring3-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12

O(1)

distance-2 coloring2-coloring

O(log* n)

3-coloring

independent set

maximal
independent
set001

010

100

101

21

1 3

3 22 3

12

13 321

231

123

132

312213

21

1 0

0 0

0 1

12

O(1)

distance-2 coloring2-coloring

O(log* n)

3-coloring

O(n)

Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

This algorithm
solves X in

time O(log* n)

“Oh but doing it
for this case is of
course trivial…”

But what are
other cases in which
algorithm design &
lower-bound proofs
can be automated?

1 201 1

Cycles, paths

1 201

1 1X

X 10

0 X0

0 00

1 1

1 1

1 X

X 2

1

Cycles, paths Grids

1 201

1 1X

X 10

0 X0

0 00

1 1

1 1

1 X

X 2

1

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

1 201

1 1X

X 10

0 X0

0 00

1 1

1 1

1 X

X 2

1

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions
(efficiently)
decidable

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions
(efficiently)
decidable

Many questions
undecidable

Undecidable
≠

hopeless

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

“Fast” = e.g. O(log* n)

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

Proof idea: Coloring ≈ locally unique identifiers.
If A fails with such fake identifiers, it also fails
in some small graph with some real identifiers.

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Finite computation for
a given candidate B:
no worries about
the halting problem

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Undecidability:
don’t know when to stop if
fast algorithms don’t exist

Normal forms
Any algorithm A that solves a locally checkable
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Computational complexity:
typically doubly-exponential in k

Sometimes doable!
•Natural problems often solvable with a small k

Sometimes doable!
•Natural problems often solvable with a small k
•We can make it more feasible in practice:
•more “compact” normal forms,
e.g. distance-k coloring → ruling set

Sometimes doable!
•Natural problems often solvable with a small k
•We can make it more feasible in practice:
•more “compact” normal forms,
e.g. distance-k coloring → ruling set
• represent “candidate B is good for this value of k”
as a Boolean formula and use modern SAT solvers
to find such a B

Sometimes doable!
•Example: 4-coloring in grids
•Computers were much faster than human
beings in figuring out that this is solvable in
O(log* n) rounds

[Brandt et al., PODC 2017]

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids

solution ≈
execution history of
a Turing machine

Many questions
(efficiently)
decidable

Many questions
undecidable

(but there is hope!)

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Bad news apply to
any graph family that
contains large grids

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

What is here
between paths

and grids?

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Trees
Bounded treewidth
High girth

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Trees
Bounded treewidth
High girth

lots of open questions,
no known obstacles!

Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Trees
Bounded treewidth
High girth

some positive results
already known

(ask me, happy to tell more!)

Big picture: towards
meta-computational
research questions

Meta questions
•Traditional questions: what is the best
distributed algorithm for solving problem X ?
•Meta-computational questions: can we
design an (efficient) meta-algorithm that
finds the best distributed algorithm for
any problem X in some problem family F ?

Classification
•Classification: “Any problem in this

family belongs to one of these classes”

Classification
•Classification: “Any problem in this

family belongs to one of these classes”
• locally checkable problems in cycles
have complexity O(1) or O(log* n) or O(n)

Classification
•Classification: “Any problem in this

family belongs to one of these classes”
• locally checkable problems in cycles
have complexity O(1) or O(log* n) or O(n)
• locally checkable problems in
general graphs belong to one of
four broad classes

n

n

log n

log n

log log n

log log n

log⇤ n

log⇤ n

log log⇤ n

log log⇤ n

1

1

Classification
•Classification: “Any problem in this

family belongs to one of these classes”
• locally checkable problems in cycles
have complexity O(1) or O(log* n) or O(n)

•Meta-algorithms: “Here is an efficient
algorithm for determining the class
of any given problem”

Classification
•Classification: “Any problem in this

family belongs to one of these classes”
• locally checkable problems in cycles
have complexity O(1) or O(log* n) or O(n)

•Meta-algorithms: “Here is an efficient
algorithm for determining the class
of any given problem”

Classification
•Computers can help with classification, too!

Classification
•Computers can help with classification, too!
•Classify a finite sub-family of problems,
automate as much work as possible
• e.g. bounded alphabet size, bounded degree

Classification
•Computers can help with classification, too!
•Classify a finite sub-family of problems,
automate as much work as possible
• e.g. bounded alphabet size, bounded degree

• Identify interesting nontrivial problems
• e.g. where computers fail

Classification
•Computers can help with classification, too!
•Classify a finite sub-family of problems,
automate as much work as possible
• e.g. bounded alphabet size, bounded degree

• Identify interesting nontrivial problems
• e.g. where computers fail

•Detect patterns, generalize

Classification
•Computers can help with classification, too!
•Classify a finite sub-family of problems,
automate as much work as possible
• e.g. bounded alphabet size, bounded degree

• Identify interesting nontrivial problems
• e.g. where computers fail

•Detect patterns, generalizeHow? Are there general techniques
we can apply without much thinking?

General
techniques
•Example: round elimination technique
• github.com/olidennis/round-eliminator
• applicable to any locally checkable problem

[Brandt, PODC 2019]
[Olivetti, PODC 2020]

General
techniques
•Example: round elimination technique
• github.com/olidennis/round-eliminator
• applicable to any locally checkable problem

•Does not always work — but when it works,
you get algorithms and/or
lower bound proofs for free!

[Brandt, PODC 2019]
[Olivetti, PODC 2020]

Success stories
•Lower bound for maximal matching
and maximal independent set
•Six people and one computer program
• enabled rapid hypothesis testing and
exploration of possible proof strategies

[Brandt et al., FOCS 2019]

Conclusions

Take-home messages
•Can we automate our own work?

Take-home messages
•Can we automate our own work?
• yes — some questions on theory of distributed
computing can be solved automatically!

Take-home messages
•Can we automate our own work?
• yes — some questions on theory of distributed
computing can be solved automatically!
• known obstacles, tons of open questions

Take-home messages
•Can we automate our own work?
• yes — some questions on theory of distributed
computing can be solved automatically!
• known obstacles, tons of open questions

•Opportunities for human–computer
collaboration!

Take-home messages
•Can we automate our own work?
• yes — some questions on theory of distributed
computing can be solved automatically!
• known obstacles, tons of open questions

•Opportunities for human–computer
collaboration!
• theory researchers who can write programs
are going to have a competitive edge!

