Jukka Suomela
Aalto University

Can we
automate
our own work

— or show that it is hard?

Computer science: what
can be automated?

sca = [|

Computer science: what
can be automated?

Today: can we automate
our own work?

Focus: theory of
distributed computing

Consider a typical theory paper in

OPO

DIS, PO

D(,

DISC...

—— Abstract

While the relationship of time and space is an estal
plexity theory, this is not the case in distributed com
the time and space complexity of algorithms in a wea
puting. While a constant number of communication
visited during the execution, the other direction is n
exist non-trivial graph problems that are solvable by
a non-constant running time. Somewhat surprisingly
of only cycle and path graphs. Our work provides us
computing and raises interesting questions about th
and space complexity.

1998 ACM Subject Classification F.1.1 Models of
and Classes

Keywords and phrases distributed computing, sp
weak models, Thue-Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2

1 Introduction

In the classical centralised theory of computing, tl

helped us with understanding computability and

1. Constant-space models (finite-state machines) t
ation.

2. Space-limited complexity classes (e.g., PSPAC
limited complexity classes (e.g., NP C PSPACE

onsider a typical theory paper in

PO

ow much of the work is
one with computers?

DIS, PO

D(,

DISC...

—— Abstract

While the relationship of time and space is an estal
plexity theory, this is not the case in distributed com
the time and space complexity of algorithms in a wea
puting. While a constant number of communication
visited during the execution, the other direction is n
exist non-trivial graph problems that are solvable by
a non-constant running time. Somewhat surprisingly
of only cycle and path graphs. Our work provides us
computing and raises interesting questions about th
and space complexity.

1998 ACM Subject Classification F.1.1 Models of
and Classes

Keywords and phrases distributed computing, sp
weak models, Thue-Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2

1 Introduction

In the classical centralised theory of computing, tl

helped us with understanding computability and

1. Constant-space models (finite-state machines) t
ation.

2. Space-limited complexity classes (e.g., PSPAC
limited complexity classes (e.g., NP C PSPACE

onsider a typical theory paper in

PODIS, PO

ow much of the work is
one with computers?

ow much of it could be
one with computers?

D(,

DISC...

—— Abstract

While the relationship of time and space is an estal
plexity theory, this is not the case in distributed com
the time and space complexity of algorithms in a wea
puting. While a constant number of communication
visited during the execution, the other direction is n
exist non-trivial graph problems that are solvable by
a non-constant running time. Somewhat surprisingly
of only cycle and path graphs. Our work provides us
computing and raises interesting questions about th

and space complexity.

1998 ACM Subject Classification F.1.1 Models of
and Classes

Keywords and phrases distributed computing, sp
weak models, Thue-Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2

1 Introduction

In the classical centralised theory of computing, tl

helped us with understanding computability and

1. Constant-space models (finite-state machines)
ation.

2. Space-limited complexity classes (e.g., PSPAC
limited complexity classes (e.g., NP C PSPACE

Standard process

* Question: is there an efficient distributed
algorithm for solving task X in model M?

Standard process

* Question: is there an efficient distributed
algorithm for solving task X in model M?

« Approach: find smart people, spend
lots of time in front of a whiteboard ...

Standard process

* Question: is there an efficient distributed
algorithm for solving task X in model M?

« Approach: find smart people, spend
lots of time in front of a whiteboard ...

« End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof ...

Standard process

* Question: is there an efficient distributed
algorithm for solving task X in model M?

* Approach: find s ~spend
e In front of a whiteboard

« End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof ...

Automatic Lower Bound

Automatic Upper Bound

|

Lost sanity?

Toy example:
Locally checkable
problems in cycles

Setting

 Computer network: cycle of n computers

 globally consistent orientation
e 2ach node has one “successor”

and one "predecessor” ,'\Q

‘S

Setting

 Computer network: cycle of n computers

« Model of computing: LOCAL model
« synchronous communication rounds @\

. time = number of rounds until M Q

all nodes stop
« unbounded message size 4

« unlimited local computation
e Unigque identifiers

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints
« finite number of output labels

« relation that tells which
label sequences are valid

Setting

 Computer network: cycle of n computers
* Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

Example: maximal independent set

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

good
A

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

good
A

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

good
A

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

bad

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

good
A

Setting

 Computer network: cycle of n computers
« Model of computing: LOCAL model

* Problem: any discrete problem you can define
with local constraints

good
A

Valid label sequences

« 2-coloring: 12, 21

«3-coloring: 12, 21, 13, 31, 23, 32

« Independent set: 01, 10, 00

 Maximal independent set: 001, 010, 100, 101

« Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

Valid label sequences

- 2-coloring: 12, 21 All possible
output labelings
«3-coloring: 12, 21, 13, 31, 23, 32 in a window

of size k

« Independent set: 01, 10, 00
- Maximal independent set:| 001, 010, 100, 101 |

« Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

Fully automatic ELSSuEu

100, 101 }

« Write down the specification of
any locally checkable problem X

Fully automatic ESEMTI

100, 101 }

« Write down the specification of
any locally checkable problem X

« Then you can find efficiently gi
e distributed round ‘
complexity of X
« asymptotically optimal

distributed algorithm for X This algorithm

solves X in
time O(log™ n)

Fully automatic

« Write down the specification of
any locally checkable problem X

« Then you can find efficiently

e distributed round

complexity of X Polynomial time
« asymptotically optimal (in the size
distributed algorithm for X of problem
description)

Example:
X = maximal
independent
set problem

Compatible
neighborhoods
for adjacent
nodes

Compatible
neighborhoods
for adjacent
nodes

This graph
is all that
we need!

2-coloring

3-coloring 2-coloring

independent set

3-coloring 2-coloring

maximal
independent
set

3-coloring 2-coloring

maximal
independent
set

3-coloring 2-coloring distance-2 coloring

maximal
independent
set

3-coloring 2-coloring distance-2 coloring

self-loop

independent set

independent set

Algorithm:
Constant output
(e.g. here all-0)

self-loop

l

solvable
in O(1) rounds

self-loop

]

solvable
in O(1) rounds

independent set

Proof: No self-loop

— any solution breaks symmetry everywhere
— can be used to find 3-coloring

— not possible in o(log™® n) rounds

maximal
independent
set

3-coloring 2-coloring distance-2 coloring

A
0 0
W

independent set

et

3-coloring

!

2

2-coloring

maximal
independent
set

distance-2 coloring

maximal
independent
set

maximal
independent
set

maximal
independent
set

maximal
independent
set

maxima
independent
set

maximal
independent
set

maximal
independent
set

Self-returning

walk of length 5

maximal
independent
set

maximal
independent
set

maximal
independent
set

maximal
independent
set

maximal
independent
set

maximal
independent
set

maximal
independent
set

Self-returning

walk of length 6

maximal
independent
set

maximal
independent
set

maximal
independent
set

maxima
independent
set

maximal
independent
set

maxima
independent
set

maximal
independent
set

maximal
independent
set

Self-returning

walk of length 7

maximal
independent
set

Self-returning
walk of length k

"Flexible":
forall k = k,
there is a self-

returning walk
of length k

maximal
independent
set

"Flexible":
forall k = k,
there is a self-

returning walk
of length k

maximal
independent
set

Decidable in

polynomial time

“Flexible":
for all k = k,

maximal

there is a self- independent
returning walk set
of length k
l Algorithm:
« splitin blocks of length = kg
solvable in use the flexible configuration

N at each block boundary
O(Iog n) rounds fill in between boundaries by
following a self-returning walk

“Flexible":
for all k = k,

maximal

there is a self- independent
returning walk set
of length k
l I Proof: Not flexible - must use
the same non-flexible configuration

: at least twice far from each other;
SOIVaEIe In not compatible tor all distances
O(Iog n) rounds — global coordination needed

— not possible in o(n) rounds

maximal
independent
set

3-coloring 2-coloring distance-2 coloring

maximal
independent
set

3-coloring 2-coloring distance-2 coloring

maximal
independent
set

3-coloring 2-coloring distance-2 coloring

O(1)

O 1T Opuummna 1 0 1

maximal
independent
set

0 e

0
independent set

<

3-coloring 2-coloring distance-2 coloring

Fully automatic ESEMTI

100, 101 }

« Write down the specification of
any locally checkable problem X

« Then you can find efficiently gi
e distributed round ‘
complexity of X
« asymptotically optimal

distributed algorithm for X This algorithm

solves X in
time O(log™ n)

"Oh but doing it
for this case is of
course trivial...”

But what are

other cases in which
algorithm design &
lower-pbound proofts
can be automated?

Cycles, paths

Cycles, paths Grids

Cycles, paths Grids

solution =
execution history of
a finite automaton

Cycles, paths Grids

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Cycles, paths

solution =
execution history of
a finite automaton

Many questions

(efficiently)
decidable

Grids

solution =
execution history of
a Turing machine

Cycles, paths Grids

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Many questions Many questions

(Zf;%ean&lg) undecidable

Undecidable

+
hopeless

Normal forms

Any algorithm A that solves a locally checkable
problem X tast can be writtenas A = B o C,
 C, = distance-k coloring

- B = finite function that maps colored
neighborhoods to local outputs

Normal forms

Any algorithm A that solves a locally checkable
problem X tast can be writtenas A = B o C,
 C, = distance-k coloring

- B = finite function that maps colored
neighborhoods to local outputs

"Fast” = e.g. O(log™ n)

Normal forms

Any algorithm A that solves a locally checkable
problem X tast can be writtenas A = B o C,
 C, = distance-k coloring

- B = finite function that maps colored
neighborhoods to local outputs

Proof idea: Coloring = locally unique identifiers.
It A fails with such fake identifiers, it also fails
iIn some small graph with some real identifiers.

Normal forms

Any algorithm A that solves a locally checkable
problem X tast can be writtenas A = B o C,
 C, = distance-k coloring

- B = finite function that maps colored
neighborhoods to local outputs

Foreachk=1,2,3,...:
 check all possible candidate functions B
it any of them is good — fast algorithm found!

Normal forms

Any algorithm A that solves a locally checkable
problem X tast can be writtenas A = B o C,
 C, = distance-k coloring

- B = finite function that maps colored
neighborhoods to local outputs

Foreachk=1,2,3,...:
 check all possible candidate functions B
it any of them is good — fast algorithm found!

Normal forms

Any algorithm A that solves a locally checkable
probleg asA=Bo(C,

Finite computation for
B I given candidate B:

B no worries about

the halting problem

Olored

« check all p@¥Sible candidate functions B
it any of them is good — fast algorithm found!

Normal forms

Undecidability: es a locally checkable

don’t know when to stop if [M{SUENEIEN XN 8"

fast algorithms don't exist
ge'maps colored
orhoods to local outputs

Foreachk=1,2, 3, ...
 check all possible candidate functions B
it any of them is good — fast algorithm found!

Normal forms

Any algorithm A that solves a locally checkable
problem X fast can be writtenas A = B o C,

« C, = distance-
R i-Riihle Computational complexity:

glltelalolelfplelolek typically doubly-exponential in k
Foreachk=1,2,3,..

» check all possible candidate functions B
it any of them is good — fast algorithm found!

Sometimes doable!

« Natural problems often solvable with a small k

Sometimes doable!

« Natural problems often solvable with a small k

« We can make it more feasible in practice:

* more “compact” normal forms,
e.qg. distance-k coloring — ruling set

Sometimes doable!

« Natural problems often solvable with a small k

« We can make it more feasible in practice:

* more “compact” normal forms,
e.qg. distance-k coloring — ruling set

« represent “candidate B is good for this value of k"
as a Boolean formula and use modern SAT solvers
to find such a B

Sometimes doable!

« Example: 4-coloring in grids

« Computers were much faster than human
beings in figuring out that this is solvable in
O(log™ n) rounds

[Brandt et al., PODC 2017]

Cycles, paths Grids

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Many questions Many questions

(efficiently) undecidable
decidable (but there is hope!)

Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Bad news apply to

any graph family that
contains large grids

Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

What is here
between paths
and grids?

Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Trees
Bounded treewidth
High girth

Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

" Trees

lots 0;2 open quJ)eitiolnSi { Bounded treewidth
no known obstacles! High girth

Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

some positive results

already known
(ask me, happy to tell more!)

{ Trees
Bounded treewidth
High girth

Big picture: towards
meta-computational
research questions

Meta questions

 Traditional questions: what is the best
distributed algorithm for solving problem X 7

 Meta-computational questions: can we
design an (efficient) meta-algorithm that
finds the best distributed algorithm for
any problem X in some problem family F ?

Classification

 Classification: "Any problem in this
family belongs to one of these classes”

Classification

 Classification: "Any problem in this
family belongs to one of these classes”

« |ocally checkable problems in cycles
have complexity O(1) or ©(log™ n) or ©(n)

Classification

 Classification: "Any problem in this
family belongs to one of these classes”

« |ocally checkable problems in cycles

nave complexity O(1) or ©(log™ n) or O(n)

* locally checkable problems in

general graphs belong to one of
four broad classes

Classification

 Classification: "Any problem in this
family belongs to one of these classes”

« |ocally checkable problems in cycles
have complexity O(1) or ©(log™ n) or ©(n)

 Meta-algorithms: “Here is an efficient
algorithm for determining the class
of any given problem”

Classification

 Classification: "Any problem in this
family belongs to one of these classes”

« |ocally checkable problems in cycles
have complexity O(1) or ©(log™ n) or ©(n)

 Meta-algorithms: “Here is an efficient
algorithm for determining the class
of any given problem”

Classification

« Computers can help with classification, too!

Classification

« Computers can help with classification, too!

 Classity a finite sub-family of problems,
automate as much work as possible

« e.g. bounded alphabet size, bounded degree

Classification

« Computers can help with classification, too!

 Classity a finite sub-family of problems,
automate as much work as possible

« .. bounded alphabet size, bounded degree

e |dentify interesting nontrivial problems
*e.g. where computers fail

Classification

« Computers can help with classification, too!

 Classity a finite sub-family of problems,
automate as much work as possible

« .. bounded alphabet size, bounded degree

e |dentify interesting nontrivial problems
*e.g. where computers fail

« Detect patterns, generalize

Classification

« Computers can help with classification, too!

 Classity a finite sub-family of problems,
automate as much work as possible

* .. bourged alphabet size, bounded degree

e |[dentity inte
*e.g. whegs
How? Are there general techniques

o nontrivial problems

* Detect p

we can apply without much thinking?

§ TNl WA Wi § ¥ am

G e n e r a I Automatic Lower Bound

Automatic Upper Bound

techniques |

« Example: round elimination technique

« github.com/olidennis/round-eliminator
« applicable to any locally checkable problem

[Brandt, PODC 2019]
[Olivetti, PODC 2020]

§ TN W Wi § ¥ am

Automatic Lower Bound

G e n e ra I Automatic Upper Bound
techniques w

« Example: round elimination technique

« github.com/olidennis/round-eliminator
« applicable to any locally checkable problem

« Does not always work — but when it works,
you get algorithms and/or

lower bound proofs for free!
[Brandt, PODC 2019]

[Olivetti, PODC 2020]

Success stories

« Lower bound for maximal matching
and maximal independent set

» Six people and one computer program

« enabled rapid hypothesis testing and
exploration of possible proof strategies

[Brandt et al., FOCS 2019]

Conclusions

Take-home messages

«Can we automate our own work?

Take-home messages

«Can we automate our own work?

- yes — some questions on theory of distributed
computing can be solved automatically!

Take-home messages

«Can we automate our own work?

- yes — some questions on theory of distributed
computing can be solved automatically!

« known obstacles, tons of open questions

Take-home messages

«Can we automate our own work?

- yes — some questions on theory of distributed
computing can be solved automatically!

« known obstacles, tons of open questions

* Opportunities for human-computer
collaboration!

Take-home messages

«Can we automate our own work?

- yes — some gquestions on theory of distributed
computing can be solved automatically!

« known obstacles, tons of open questions

* Opportunities for human-computer
collaboration!

« theory researchers who can write programs
are going to have a competitive edge!

