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Can we
automate
our own work

— or show that it is hard?
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Computer science: what
can be automated?

Today: can we automate
our own work?



Focus: theory of
distributed computing
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Standard process

* Question: is there an efficient distributed
algorithm for solving task X in model M?

* Approach: find s ~spend
e In front of a whiteboard

« End result: algorithm, algorithm analysis,
proof of correctness, lower bound proof ...




Automatic Lower Bound

Automatic Upper Bound

|



Lost sanity?



Toy example:
Locally checkable
problems in cycles



Setting

 Computer network: cycle of n computers

 globally consistent orientation
e 2ach node has one “successor”

and one "predecessor” ,'\Q

‘S




Setting

 Computer network: cycle of n computers

« Model of computing: LOCAL model
« synchronous communication rounds @\

. time = number of rounds until M Q

all nodes stop
« unbounded message size 4

« unlimited local computation
e Unigque identifiers
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« relation that tells which
label sequences are valid
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«3-coloring: 12, 21, 13, 31, 23, 32

« Independent set: 01, 10, 00

 Maximal independent set: 001, 010, 100, 101

« Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321



Valid label sequences

- 2-coloring: 12, 21 All possible
output labelings
«3-coloring: 12, 21, 13, 31, 23, 32 in a window

of size k

« Independent set: 01, 10, 00
- Maximal independent set:| 001, 010, 100, 101 |

« Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321
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Fully automatic

« Write down the specification of
any locally checkable problem X

« Then you can find efficiently

e distributed round

complexity of X Polynomial time
« asymptotically optimal (in the size
distributed algorithm for X of problem
description)




Example:
X = maximal
independent
set problem
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for adjacent
nodes










This graph
is all that
we need!
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independent set



independent set

Algorithm:
Constant output
(e.g. here all-0)

self-loop

l

solvable
in O(1) rounds



self-loop

]

solvable
in O(1) rounds

independent set

Proof: No self-loop

— any solution breaks symmetry everywhere
— can be used to find 3-coloring

— not possible in o(log™® n) rounds
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3-coloring 2-coloring distance-2 coloring
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Self-returning

walk of length 7




maximal
independent
set

Self-returning
walk of length k




"Flexible":
forall k = k,
there is a self-

returning walk
of length k

maximal
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"Flexible":
forall k = k,
there is a self-

returning walk
of length k

maximal
independent
set

Decidable in

polynomial time




“Flexible":
for all k = k,

maximal

there is a self- independent
returning walk set
of length k
l Algorithm:
« splitin blocks of length = kg
solvable in  use the flexible configuration

N at each block boundary
O(Iog n) rounds  fill in between boundaries by
following a self-returning walk



“Flexible":
for all k = k,

maximal

there is a self- independent
returning walk set
of length k
l I Proof: Not flexible - must use
the same non-flexible configuration

: at least twice far from each other;
SOIVaEIe In not compatible tor all distances
O(Iog n) rounds — global coordination needed

— not possible in o(n) rounds
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maximal
independent
set

3-coloring 2-coloring distance-2 coloring



O(1)

O 1T Opuummna 1 0 1

maximal
independent
set

0 e

0
independent set

<

3-coloring 2-coloring distance-2 coloring



Fully automatic ESEMTI

100, 101 }

« Write down the specification of
any locally checkable problem X

« Then you can find efficiently gi
e distributed round ‘
complexity of X
« asymptotically optimal

distributed algorithm for X This algorithm

solves X in
time O(log™ n)




"Oh but doing it
for this case is of
course trivial...”



But what are

other cases in which
algorithm design &
lower-pbound proofts
can be automated?
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Cycles, paths Grids

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Many questions Many questions

(Zf;%ean&lg) undecidable




Undecidable

+
hopeless
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Normal forms

Any algorithm A that solves a locally checkable
problem X tast can be writtenas A = B o C,
 C, = distance-k coloring

- B = finite function that maps colored
neighborhoods to local outputs

Proof idea: Coloring = locally unique identifiers.
It A fails with such fake identifiers, it also fails
iIn some small graph with some real identifiers.
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Normal forms

Any algorithm A that solves a locally checkable
probleg asA=Bo(C,

Finite computation for
B I given candidate B:

B no worries about

the halting problem

Olored

« check all p@¥Sible candidate functions B
it any of them is good — fast algorithm found!



Normal forms

Undecidability: es a locally checkable

don’t know when to stop if [M{SUENEIEN XN 8"

fast algorithms don't exist
ge'maps colored
orhoods to local outputs

Foreachk=1,2, 3, ...
 check all possible candidate functions B
it any of them is good — fast algorithm found!



Normal forms

Any algorithm A that solves a locally checkable
problem X fast can be writtenas A = B o C,

« C, = distance-
R i-Riihle Computational complexity:

glltelalolelfplelolek typically doubly-exponential in k
Foreachk=1,2,3,..

» check all possible candidate functions B
it any of them is good — fast algorithm found!
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Sometimes doable!

« Natural problems often solvable with a small k

« We can make it more feasible in practice:

* more “compact” normal forms,
e.qg. distance-k coloring — ruling set

« represent “candidate B is good for this value of k"
as a Boolean formula and use modern SAT solvers
to find such a B



Sometimes doable!

« Example: 4-coloring in grids

« Computers were much faster than human
beings in figuring out that this is solvable in
O(log™ n) rounds

[Brandt et al., PODC 2017]



Cycles, paths Grids

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Many questions Many questions

(efficiently) undecidable
decidable (but there is hope!)




Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

Bad news apply to

any graph family that
contains large grids




Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

What is here
between paths
and grids?
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a finite automaton a Turing machine

" Trees
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Cycles, paths Grids + beyond

solution = solution =
execution history of execution history of
a finite automaton a Turing machine

some positive results

already known
(ask me, happy to tell more!)

{ Trees
Bounded treewidth
High girth



Big picture: towards
meta-computational
research questions




Meta questions

 Traditional questions: what is the best
distributed algorithm for solving problem X 7

 Meta-computational questions: can we
design an (efficient) meta-algorithm that
finds the best distributed algorithm for
any problem X in some problem family F ?
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 Classification: "Any problem in this
family belongs to one of these classes”

« |ocally checkable problems in cycles

nave complexity O(1) or ©(log™ n) or O(n)

* locally checkable problems in

general graphs belong to one of
four broad classes
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Classification

« Computers can help with classification, too!

 Classity a finite sub-family of problems,
automate as much work as possible

« .. bounded alphabet size, bounded degree

e |dentify interesting nontrivial problems
*e.g. where computers fail

« Detect patterns, generalize



Classification

« Computers can help with classification, too!

 Classity a finite sub-family of problems,
automate as much work as possible

* .. bourged alphabet size, bounded degree

e |[dentity inte
*e.g. whegs
How? Are there general techniques

o nontrivial problems

* Detect p

we can apply without much thinking?
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« Example: round elimination technique

« github.com/olidennis/round-eliminator
« applicable to any locally checkable problem

[Brandt, PODC 2019]
[Olivetti, PODC 2020]
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Automatic Lower Bound

G e n e ra I Automatic Upper Bound
techniques w

« Example: round elimination technique

« github.com/olidennis/round-eliminator
« applicable to any locally checkable problem

« Does not always work — but when it works,
you get algorithms and/or

lower bound proofs for free!
[Brandt, PODC 2019]

[Olivetti, PODC 2020]



Success stories

« Lower bound for maximal matching
and maximal independent set

» Six people and one computer program

« enabled rapid hypothesis testing and
exploration of possible proof strategies

[Brandt et al., FOCS 2019]
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Take-home messages

«Can we automate our own work?

- yes — some gquestions on theory of distributed
computing can be solved automatically!

« known obstacles, tons of open questions

* Opportunities for human-computer
collaboration!

« theory researchers who can write programs
are going to have a competitive edge!



