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Abstract

While the relationship of time and space is an established topic in traditional centralised com-
plexity theory, this is not the case in distributed computing. We aim to remedy this by studying
the time and space complexity of algorithms in a weak message-passing model of distributed com-
puting. While a constant number of communication rounds implies a constant number of states
visited during the execution, the other direction is not clear at all. We show that indeed, there
exist non-trivial graph problems that are solvable by constant-space algorithms but that require
a non-constant running time. Somewhat surprisingly, this holds even when restricted to the class
of only cycle and path graphs. Our work provides us with a new complexity class for distributed
computing and raises interesting questions about the existence of further combinations of time
and space complexity.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes

Keywords and phrases distributed computing, space complexity, constant-space algorithms,
weak models, Thue–Morse sequence

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.30

1 Introduction

In the classical centralised theory of computing, the study of space-limited computation has
helped us with understanding computability and computational complexity in general:
1. Constant-space models (finite-state machines) provide a very well-understood solid found-

ation.
2. Space-limited complexity classes (e.g., PSPACE) can be successfully related with time-

limited complexity classes (e.g., NP ™ PSPACE ™ EXP).

In this work, we use similar ideas in the study of distributed computing, in particular, in
the context of distributed graph algorithms.

Networks of finite-state machines. The natural distributed analogue of a deterministic
finite-state machine is a network of deterministic finite-state machines. For brevity, we call
distributed algorithms that use only finitely many states per node constant-space algorithms.
See Section 2 for a proper definition of the model of computation.

Variants of this setting have been studied in many papers, but perhaps the most elementary
question related to distributed graph algorithms has not been answered yet:
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Lost sanity?



Toy example:
Locally checkable 
problems in cycles
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Setting
•Computer network: cycle of n computers
• globally consistent orientation
• each node has one “successor”
and one “predecessor”
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Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
• synchronous communication rounds
• time = number of rounds until
all nodes stop
• unbounded message size
• unlimited local computation
• unique identifiers



Setting
•Computer network: cycle of n computers
•Model of computing: LOCAL model
•Problem: any discrete problem you can define 
with local constraints
• finite number of output labels
• relation that tells which
label sequences are valid
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Valid label sequences
•2-coloring: 12, 21
•3-coloring: 12, 21, 13, 31, 23, 32
• Independent set: 01, 10, 00
•Maximal independent set:  001, 010, 100, 101
•Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321



Valid label sequences
•2-coloring: 12, 21
•3-coloring: 12, 21, 13, 31, 23, 32
• Independent set: 01, 10, 00
•Maximal independent set:  001, 010, 100, 101
•Distance-2 coloring with 3 colors:
123, 132, 213, 231, 312, 321

All possible
output labelings

in a window
of size k



Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }
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Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

Polynomial time
(in the size
of problem
description)
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This graph
is all that
we need!
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self-loop

solvable
in O(1) rounds

Algorithm:
Constant output
(e.g. here all-0)
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Proof: No self-loop
→ any solution breaks symmetry everywhere
→ can be used to find 3-coloring
→ not possible in o(log* n) rounds
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Algorithm:
• split in blocks of length ≥ k0
• use the flexible configuration
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• fill in between boundaries by 

following a self-returning walk

solvable in
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101“Flexible”:
for all k ≥ k0
there is a self-
returning walk
of length k

solvable in
O(log* n) rounds

Proof: Not flexible → must use
the same non-flexible configuration
at least twice far from each other;
not compatible for all distances
→ global coordination needed
→ not possible in o(n) rounds
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Fully automatic
•Write down the specification of

any locally checkable problem X
•Then you can find efficiently
• distributed round
complexity of X
• asymptotically optimal
distributed algorithm for X

X = { 001, 010,
X = { 100, 101 }

This algorithm
solves X in

time O(log* n)



“Oh but doing it
for this case is of
course trivial…”



But what are
other cases in which
algorithm design & 
lower-bound proofs
can be automated?
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Undecidable
≠

hopeless



Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs



Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs

“Fast” = e.g. O(log* n)



Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
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neighborhoods to local outputs

Proof idea: Coloring ≈ locally unique identifiers.
If A fails with such fake identifiers, it also fails
in some small graph with some real identifiers.
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no worries about
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Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Undecidability:
don’t know when to stop if
fast algorithms don’t exist



Normal forms
Any algorithm A that solves a locally checkable 
problem X fast can be written as A = B ∘ Ck
• Ck = distance-k coloring
• B = finite function that maps colored 
neighborhoods to local outputs

For each k = 1, 2, 3, …:
• check all possible candidate functions B
• if any of them is good → fast algorithm found!

Computational complexity:
typically doubly-exponential in k
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Sometimes doable!
•Natural problems often solvable with a small k
•We can make it more feasible in practice:
•more “compact” normal forms,
e.g. distance-k coloring → ruling set
• represent “candidate B is good for this value of k”
as a Boolean formula and use modern SAT solvers
to find such a B



Sometimes doable!
•Example: 4-coloring in grids
•Computers were much faster than human 
beings in figuring out that this is solvable in 
O(log* n) rounds

[Brandt et al., PODC 2017]
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Many questions 
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(but there is hope!)
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Bad news apply to
any graph family that
contains large grids
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lots of open questions,
no known obstacles!



Cycles, paths

solution ≈
execution history of
a finite automaton

Grids + beyond

solution ≈
execution history of
a Turing machine

Trees
Bounded treewidth
High girth

some positive results
already known

(ask me, happy to tell more!)



Big picture: towards
meta-computational
research questions



Meta questions
•Traditional questions: what is the best 
distributed algorithm for solving problem X ?
•Meta-computational questions: can we 
design an (efficient) meta-algorithm that 
finds the best distributed algorithm for
any problem X in some problem family F ?
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Classification
•Classification: “Any problem in this

family belongs to one of these classes”
• locally checkable problems in cycles
have complexity O(1) or O(log* n) or O(n)
• locally checkable problems in
general graphs belong to one of
four broad classes

n
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log n

log n

log log n

log log n
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Classification
•Computers can help with classification, too!
•Classify a finite sub-family of problems,
automate as much work as possible
• e.g. bounded alphabet size, bounded degree

• Identify interesting nontrivial problems
• e.g. where computers fail

•Detect patterns, generalizeHow? Are there general techniques
we can apply without much thinking?



General
techniques
•Example: round elimination technique
• github.com/olidennis/round-eliminator
• applicable to any locally checkable problem

[Brandt, PODC 2019]
[Olivetti, PODC 2020]



General
techniques
•Example: round elimination technique
• github.com/olidennis/round-eliminator
• applicable to any locally checkable problem

•Does not always work — but when it works,
you get algorithms and/or
lower bound proofs for free!

[Brandt, PODC 2019]
[Olivetti, PODC 2020]



Success stories
•Lower bound for maximal matching
and maximal independent set
•Six people and one computer program
• enabled rapid hypothesis testing and
exploration of possible proof strategies

[Brandt et al., FOCS 2019]
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Take-home messages
•Can we automate our own work?
• yes — some questions on theory of distributed 
computing can be solved automatically!
• known obstacles, tons of open questions

•Opportunities for human–computer 
collaboration!
• theory researchers who can write programs
are going to have a competitive edge!


