Approximating relay placement in sensor networks

Iukka Suomela

jukka.suomela@cs.helsinki.fi http://www.cs.helsinki.fi/jukka.suomela/

Helsinki Institute for Information Technology HIIT Department of Computer Science, University of Helsinki, Finland

Objective

- Maximise balanced data gathering
 - $\lambda \min_i q_i + (1 \lambda) \operatorname{avg}_i q_i$ $- q_i$: amount of data gathered
 - from sensor node *i*
 - $\lambda \in [0, 1]$: balance parameter
- Energy-constrained nodes
- Model of wireless communication:
 - Reception cost = ρ
 - Transmission cost $\propto d^{\alpha}$
 - (*d* distance, α constant)

Balanced data gathering problem

Find optimal data flows [1, 3]

Relay placement problem

Find optimal relay locations and data flows [5]

0

Definitions

Hard to approximate

- *Euclidean problem*: relays placed anywhere in the plane
- Sensor-upgrade problem: larger batteries installed in some sensor nodes

Previous work

- The Euclidean problem, the sensor-upgrade problem, and many others are NP-hard [5]
- More complicated cases are NP-hard to approximate within any constant factor [5]

New results

- The Euclidean problem and the sensor-upgrade problem are NP-hard to approximate within small constant factors
- Even if the parameters of the communication cost model are fixed to physically realistic values, inapproximability within factors as high as 10 can be obtained:

			$\alpha = 2.0$	$\alpha = 3.0$	$\alpha = 4.0$
Euclidean	$\lambda = 1.0$	$\begin{array}{l} \rho > 0 \\ \rho = 0 \end{array}$	3.24 2.99	5.85 5.19	10.56 8.99
	$\lambda = 0.5$	$\begin{array}{l} \rho > 0 \\ \rho = 0 \end{array}$	1.52 1.49	1.70 1.67	1.82 1.79
Sensor- upgrade	$\lambda = 1.0$	$\begin{array}{l} \rho > 0 \\ \rho = 0 \end{array}$	3.99 1.14	7.99 1.14	15.99 1.14
	$\lambda = 0.5$	$\begin{array}{l} \rho > 0 \\ \rho = 0 \end{array}$	1.59 1.06	1.77 1.06	1.88 1.06

Some examples of the inapproximability ratios

Proof outline

- · Same basic idea as in a proof of the inapproximability of *k*-centre clustering [2]
- Consider 3-planar vertex covering (vertex covering in planar graphs with maximum degree 3). This problem is NP-complete [4]
- Transform an instance of 3-planar vertex covering to an equivalent embedded instance of 3-planar vertex covering
- Reduce the decision problem to the problem of *approximating* relay placement

But we can certainly try!

- Heuristic algorithm for finding *both lower and upper bounds* for the Euclidean problem
- Tighten the upper bound by partitioning the plane into cells
- Make division denser in the areas where relays are placed:

Placing 2 relays (small diamonds are the centre points of the cells)

Timings for the examples in Figures (i), (ii), (iii); in seconds

References

- [1] E. Falck, P. Floréen, P. Kaski, J. Kohonen, and P. Orponen. Balanced data gathering in energy-constrained sensor networks. Proc. ALGOSENSORS 2004, LNCS 3121, pages 59-70, 2004. Springer
- [2] T. Feder and D. Greene. Optimal algorithms for approximate clustering. Proc. STOC 1988, pages 434-444, 1988. ACM Press
- [3] P. Floréen, P. Kaski, J. Kohonen, and P. Orponen. Exact and approximate balanced data gathering in energy-constrained sensor networks. Theoretical Computer Science, 344(1):30-46, 2005
- M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics, 32(4):826-834, 1977.
- J. Suomela. Computational complexity of relay placement in sensor networks. Proc. SOFSEM 2006, LNCS 3831, pages 521-529, 2006. Springer.

Acknowledgements. This work was supported in part by the Academy of Finland, Grant 202203, and by the IST Programme of the European Community, under the PASCAL Network of Excellence, IST-2002-506778.

Input (circles are sensors,

- the box is the sink)