Approximating relay placement
in sensor networks
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Objective cop 20
* Maximise balanced data gathering 0o
Amin; g; + (1 — A) avg; g; G0

- g;: amount of data gathered
from sensor node i
- A € [0,1]: balance parameter =

¢ Energy-constrained nodes
® Model of wireless communication:
— Reception cost = p
— Transmission cost o d*
(d distance, « constant)

Input (circles are sensors,
the box is the sink)

Balanced data gathering problem
Find optimal data flows [1, 3]

Relay placement problem

Find optimal relay locations and data flows [5]

(relay locations 1.25-optimal)

Hard to approximate
Definitions
* Euclidean problem: relays placed anywhere in the plane

e Sensor-upgrade problem: larger batteries installed in some
sensor nodes

Previous work

* The Euclidean problem, the sensor-upgrade problem, and
many others are NP-hard [5]

® More complicated cases are NP-hard to approximate within
any constant factor [5]

New results

® The Euclidean problem and the sensor-upgrade problem are
NP-hard to approximate within small constant factors

e Even if the parameters of the communication cost model are
fixed to physically realistic values, inapproximability within
factors as high as 10 can be obtained:

a=20 a=30 a=40

Euclidean A=10 p>0 3.24 5.85 10.56
p=0 2.99 5.19 8.99

A=05 p>0 1.52 1.70 1.82

p=0 1.49 1.67 1.79

Sensor- A=10 p>0 3.99 7.99 15.99
upgrade p=0 1.14 1.14 1.14
A=05 p>0 1.59 1.77 1.88

p=0 1.06 1.06 1.06

Some examples of the inapproximability ratios

Proof outline

® Same basic idea as in a proof of the inapproximability of
k-centre clustering [2]

e Consider 3-planar vertex covering (vertex covering in planar
graphs with maximum degree 3). This problem is
NP-complete [4]

e Transform an instance of 3-planar vertex covering to an
equivalent embedded instance of 3-planar vertex covering

* Reduce the decision problem to the problem of approximating
relay placement
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But we can certainly try!

¢ Heuristic algorithm for finding both lower and upper bounds
for the Euclidean problem

¢ Tighten the upper bound by partitioning the plane into cells

* Make division denser in the areas where relays are placed:

Placing 2 relays (small diamonds are the centre points of the cells)
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Timings for the examples in Figures (i), (ii), (iii); in seconds
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