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But we can certainly try!
• Heuristic algorithm for finding both lower and upper bounds

for the Euclidean problem
• Tighten the upper bound by partitioning the plane into cells
• Make division denser in the areas where relays are placed:

. . .
Placing 2 relays (small diamonds are the centre points of the cells)
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Timings for the examples in Figures (i), (ii), (iii); in seconds

Proof outline

• Same basic idea as in a proof of the inapproximability of
k-centre clustering [2]

• Consider 3-planar vertex covering (vertex covering in planar
graphs with maximum degree 3). This problem is
NP-complete [4]

• Transform an instance of 3-planar vertex covering to an
equivalent embedded instance of 3-planar vertex covering

• Reduce the decision problem to the problem of approximating
relay placement

Hard to approximate

Definitions

• Euclidean problem: relays placed anywhere in the plane
• Sensor-upgrade problem: larger batteries installed in some

sensor nodes

Previous work

• The Euclidean problem, the sensor-upgrade problem, and
many others are NP-hard [5]

• More complicated cases are NP-hard to approximate within
any constant factor [5]

New results

• The Euclidean problem and the sensor-upgrade problem are
NP-hard to approximate within small constant factors

• Even if the parameters of the communication cost model are
fixed to physically realistic values, inapproximability within
factors as high as 10 can be obtained:

α = 2.0 α = 3.0 α = 4.0

Euclidean λ = 1.0 ρ > 0 3.24 5.85 10.56
ρ = 0 2.99 5.19 8.99

λ = 0.5 ρ > 0 1.52 1.70 1.82
ρ = 0 1.49 1.67 1.79

Sensor- λ = 1.0 ρ > 0 3.99 7.99 15.99
upgrade ρ = 0 1.14 1.14 1.14

λ = 0.5 ρ > 0 1.59 1.77 1.88
ρ = 0 1.06 1.06 1.06

Some examples of the inapproximability ratios

Relay placement problem

Find optimal relay locations and data flows [5]

(i)
λ = 0.0

(ii)
λ = 0.5

(iii)
λ = 1.0 (relay locations 1.25-optimal)

Balanced data gathering problem

Find optimal data flows [1, 3]

λ = 0.0 λ = 0.5 λ = 1.0

Input (circles are sensors,

the box is the sink)

Objective
• Maximise balanced data gathering

λ mini qi + (1 − λ) avgi qi

– qi : amount of data gathered
from sensor node i

– λ ∈ [0, 1]: balance parameter
• Energy-constrained nodes
• Model of wireless communication:

– Reception cost = ρ
– Transmission cost ∝ dα

(d distance, α constant)
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