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Abstract

This thesis studies optimisation problems related to modern large-scale
distributed systems, such as wireless sensor networks and wireless ad-hoc
networks. The concrete tasks that we use as motivating examples are the
following: (i) maximising the lifetime of a battery-powered wireless sensor
network, (ii) maximising the capacity of a wireless communication network,
and (iii) minimising the number of sensors in a surveillance application.

A sensor node consumes energy both when it is transmitting or forwarding
data, and when it is performing measurements. Hence task (i), lifetime
maximisation, can be approached from two different perspectives. First,
we can seek for optimal data flows that make the most out of the energy re-
sources available in the network; such optimisation problems are examples
of so-called max-min linear programs. Second, we can conserve energy by
putting redundant sensors into sleep mode; we arrive at the sleep schedul-
ing problem, in which the objective is to find an optimal schedule that
determines when each sensor node is asleep and when it is awake.

In a wireless network simultaneous radio transmissions may interfere with
each other. Task (ii), capacity maximisation, therefore gives rise to another
scheduling problem, the activity scheduling problem, in which the objective
is to find a minimum-length conflict-free schedule that satisfies the data
transmission requirements of all wireless communication links.
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Task (iii), minimising the number of sensors, is related to the classical
graph problem of finding a minimum dominating set. However, if we are
not only interested in detecting an intruder but also locating the intruder,
it is not sufficient to solve the dominating set problem; formulations such
as minimum-size identifying codes and locating–dominating codes are more
appropriate.

This thesis presents approximation algorithms for each of these optimisa-
tion problems, i.e., for max-min linear programs, sleep scheduling, activity
scheduling, identifying codes, and locating–dominating codes. Two comple-
mentary approaches are taken. The main focus is on local algorithms, which
are constant-time distributed algorithms. The contributions include local
approximation algorithms for max-min linear programs, sleep scheduling,
and activity scheduling. In the case of max-min linear programs, tight up-
per and lower bounds are proved for the best possible approximation ratio
that can be achieved by any local algorithm.

The second approach is the study of centralised polynomial-time algorithms
in local graphs – these are geometric graphs whose structure exhibits spatial
locality. Among other contributions, it is shown that while identifying codes
and locating–dominating codes are hard to approximate in general graphs,
they admit a polynomial-time approximation scheme in local graphs.
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I thank my supervisor, Patrik Floréen, for support and guidance. Petteri
Kaski and Valentin Polishchuk deserve special thanks for collaboration and
numerous discussions.

I thank my coauthors, including Michael A. Bender, Alon Efrat, Sándor
P. Fekete, Poornananda R. Gaddehosur, Marja Hassinen, Joel Kaasinen,
Jukka Kohonen, Evangelos Kranakis, Alexander Kröller, Joonas Kukko-
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Chapter 1

Introduction

This thesis studies computational problems motivated by distributed sys-
tems, in particular by wireless sensor networks [3, 38, 101, 177].

A wireless sensor network consists of a number of sensor nodes. As the
name suggests, each sensor node is equipped with one or more sensors that
produce measurements of the environment. Other components of a sensor
node include a small computer, an energy source such as a battery, and a
radio transmitter–receiver (transceiver).

In typical applications, the measurements need to be gathered in a
central location – a sink node – for further analysis and processing. To
help with data gathering, we may install separate relay nodes which are
responsible for relaying data between the sensor nodes and the base station.

Figure 1.1 shows a schematic example of a simple sensor network, with
a sink node, three relay nodes, and five sensor nodes. This is a two-tier
network: the first tier of the network consists of low-power short-range radio
transmissions between sensor nodes and nearby relay nodes, and the second
tier consists of high-power long-distance radio transmissions between the
relay nodes and the sink node.

Uses of sensor networks range from scientific applications such as vol-
cano monitoring [167] to industrial applications such as monitoring vibra-
tions in an oil tanker [2]. But regardless of the application, it is desirable
to minimise the cost of the system, as well as to make the most out of
the system that we have installed. These requirements give rise to various
optimisation problems. In this thesis, we focus on three examples of con-
crete tasks: (i) maximising the lifetime of a battery-powered wireless sensor
network, (ii) maximising the capacity of a wireless communication network,
and (iii) minimising the number of sensors in a surveillance application.

To give an example of task (i), lifetime maximisation, consider the net-
work in Figure 1.1. Several different choices of data flows are possible; for

1



2 1 Introduction

k1 k2 k3 k4

sink

i1 i3i2

sensors:

relays:

k5

Figure 1.1: A sensor network. The arrows illustrate possible paths for
transmitting data from the sensor nodes to the sink node

example, the sensors k1, k2, and k3 could forward all data via the relay i1,
the sensor k4 could forward all data via i2, and the sensor k5 could forward
all data via i3. However, in that case the relay i1 would need to forward
three times as much data as the relay i2 or i3, which also means that the
battery of the relay i1 would drain faster than the batteries of other relays.
In this simple network, it is easy to find data flows that use the relays
more evenly and therefore provide a longer lifetime for the network, but
in a larger network the problem becomes challenging. As we shall see, the
problem of finding optimal data flows that maximise the lifetime of the
network can be formulated as a linear program; in particular, such linear
programs are examples of max-min linear programs. We study algorithms
for solving max-min linear programs in Chapter 3.

Another example of a lifetime maximisation problem can be found in
Chapter 4, in which we study the sleep scheduling problem. For example, if
the sensors k1 and k2 in Figure 1.1 are physically very close to each other,
then the measurements from k1 and k2 are likely to be highly correlated,
and we only need to have measurements from one of them. Therefore we
can conserve energy by putting the sensor k1 into sleep mode whenever the
sensor k2 is awake and vice versa. In the sleep scheduling problem, the
objective is to find an optimal schedule that determines when each sensor
node is asleep and when it is awake.

An example of task (ii), capacity maximisation, is given in Chapters
4 and 5, in which we study the activity scheduling problem. In a wireless
network, simultaneous data transmissions may interfere with each other. In
the activity scheduling problem, the objective is to find a minimum-length



3

interference-free schedule that satisfies the data transmission requirements
of all wireless communication links. Finally, we will see an example of
task (iii), minimising the number of sensors, in Chapter 5 when we study
so-called identifying codes and locating–dominating codes.

While task (iii) is primarily related to the planning of a network de-
ployment, tasks (i) and (ii) are related to the operation of a network that
has already been installed. To control the operation of a network, we need
a distributed algorithm that we can run in the network: the nodes of the
network are computational entities, the network itself is the input for the
algorithm, and the nodes use the output of the algorithm to control their
own operation – for example, to decide which relay to use for forwarding
data towards the sink, or to decide when to enter sleep mode and when to
wake up.

In a small network, such as the one illustrated in Figure 1.1, a central
entity such as the sink node can gather full information on the network,
solve the optimisation problem by using a centralised algorithm, and send
the relevant part of the solution to each node. As the size of the network
increases, such an approach becomes infeasible. Therefore the main focus
of this thesis is on highly scalable distributed algorithms. In particular, we
study local algorithms, i.e., constant-time distributed algorithms.

We begin this thesis in Chapter 2 by giving an introduction to local
algorithms and their advantages and applications; we also survey the known
positive and negative results on local algorithms. Chapters 3 and 4 provide
new examples of local algorithms.

The algorithms that we study in Chapter 5 take a complementary per-
spective. These are traditional centralised polynomial-time algorithms (as
opposed to distributed constant-time algorithms) that we can use, for ex-
ample, when we are planning a network deployment. The problems that
we study are hard to solve exactly or approximately in general graphs;
however, typical sensor networks are hardly similar to the pathological
constructions familiar from inapproximability proofs. We focus on more
restrictive families of graphs that can be used to model realistic wireless
sensor networks. In particular, we study so-called local graphs and local
conflict graphs, which are geometric graphs whose structure exhibits spa-
tial locality. We present a polynomial-time constant-factor approximation
algorithm for activity scheduling in local conflict graphs, and a polynomial-
time approximation scheme for identifying codes and locating–dominating
codes in local graphs.

Chapter 6 concludes this thesis with possible directions for future re-
search.



4 1 Introduction

1.1 Main results of the original publications

Papers I–IV focus on local algorithms, i.e., constant-time distributed al-
gorithms (see Chapter 2 for background). In particular, Papers I and II
study local algorithms for max-min linear programs (see Chapter 3). In a
max-min linear program, the goal is to maximise the minimum over sev-
eral non-negative linear objective functions, subject to non-negative linear
constraints. Paper I presents an approximation algorithm for a family of
bounded-growth graphs. Paper II provides a tight characterisation of the
local approximability of so-called bipartite max-min linear programs.

Papers III and IV study sleep scheduling and activity scheduling with
local algorithms (see Chapter 4). The sleep scheduling problem is a general-
isation of the fractional domatic partition problem, and the activity schedul-
ing problem is a generalisation of the fractional graph colouring problem.
The main contribution is the introduction of graphs with markers; a small
amount of symmetry-breaking information turns out to be sufficient to de-
sign local approximation algorithms for these scheduling problems for a
broad family of graphs.

Papers V and VI analyse local conflict graphs and local graphs (see
Section 5.1). Paper V studies activity scheduling in a centralised setting
(see Section 5.2). We show that there are polynomial-time constant-factor
approximation algorithms for the maximum-weight independent set prob-
lem and the activity scheduling problem in local conflict graphs. However,
there is no polynomial-time approximation scheme unless P = NP. Pa-
per VI studies the problems of finding minimum-size identifying codes and
locating–dominating codes (see Section 5.3). This work shows that it is pos-
sible to approximate both problems within a logarithmic factor, but sublog-
arithmic approximation ratios are intractable in general graphs. However,
the problem is considerably easier to approximate in local graphs: there is
a polynomial-time approximation scheme.

1.2 Contributions of the author

In Papers I–IV, the main results are due to the present author. Write-up,
illustrations, technical details, and motivating examples are joint work.

In Paper V, the concept of local conflict graphs and most results are
due to the present author. The results in Section 7 of Paper V are due
to P. Kaski. A. Penttinen was the domain expert, and the original idea of
studying these scheduling problems was due to him and his colleagues.

The writer of this thesis is the sole author of Paper VI.



Chapter 2

Local algorithms

This chapter is an introduction to local algorithms and a survey of prior
work in the field. A manuscript based on this chapter has been submitted
for publication [159].

This chapter also defines the terminology and notation related to graphs
and distributed algorithms that we use throughout this thesis. For easier
reference, commonly used symbols are also summarised in the index.

2.1 Introduction

A local algorithm is a distributed algorithm that runs in a constant number
of synchronous communication rounds. Put otherwise, the output of a node
in a local algorithm is a function of the input available within a constant-
radius neighbourhood of the node.

Research on local algorithms was pioneered by Angluin [6], Linial [121],
and Naor and Stockmeyer [138]. Angluin [6] studied the limitations of
anonymous networks without any unique identifiers. Linial [121] proved
seminal negative results for the case where each node has a unique identifier.
Naor and Stockmeyer [138] presented the first nontrivial positive results.

We focus on algorithms whose running time and performance guarantees
are independent of the number of nodes in the network – put simply, these
are algorithms that could be used to control infinitely large networks in
finite time. For a more general discussion on distributed algorithms, see,
for example, Peleg [145] and Elkin [48].

Many of the negative results cited in this survey were not originally
stated as negative results for local algorithms; they are more general results
which, as a corollary, imply that a particular problem cannot be solved by
any local algorithm. The emphasis is on the results that have nontrivial im-

5



6 2 Local algorithms

plications on local algorithms. For more impossibility results for distributed
algorithms, see the surveys by Lynch [129] and Fich and Ruppert [52].

We begin with some essential definitions in Section 2.2. We review the
advantages and applications of local algorithms in Section 2.3. Section 2.4
summarises the computational problems that we study. Section 2.5 dis-
cusses what information each node has available in a local algorithm. Sec-
tion 2.6 reviews negative results: what cannot be computed with a local
algorithm. Section 2.7 reviews positive results: what deterministic local
algorithms are known. In Section 2.8 we study the power of randomness,
in comparison with deterministic local algorithms. In Section 2.9 we study
local algorithms in a geometric setting, in which each node knows its coor-
dinates. Section 2.10 concludes this survey with some open problems.

For a quick summary of the negative results for deterministic local al-
gorithms, see Tables 2.1 and 2.2 on pages 25–26. The positive results for
deterministic local algorithms are summarised in Tables 2.3 and 2.4 on
pages 30–31. Many of the results summarised in the tables are corollaries
that have not been stated explicitly in the literature.

2.2 Definitions

In this work, all graphs are simple and undirected unless otherwise men-
tioned. For a graph G = (V,E), we use the following notation and terminol-
ogy. An undirected edge between the nodes u ∈ V and v ∈ V is represented
by an unordered pair {u, v} ∈ E. We write deg(v) for the degree (number
of neighbours) of the node v ∈ V . A node v ∈ V is isolated if deg(v) = 0.
The graph G is k-regular if deg(v) = k for each v ∈ V .

We use dG(u, v) to denote the shortest-path distance (number of edges,
hop count) between the nodes u and v in the graph G, and BG(v, r) =
{u ∈ V : dG(u, v) ≤ r} to denote the radius-r neighbourhood of the node
v in G. We write G(v, r) for the subgraph of G induced by BG(v, r). We
occasionally refer to the subgraph G[v, r] of G(v, r); the graph G[v, r] is
constructed from G(v, r) by removing the edges {s, t} with dG(v, s) =
dG(v, t) = r.

The graph G = (V,E) is bipartite if V = V1 ∪ V2 for disjoint sets V1

and V2 such that each edge e ∈ E is of the form e = {u, v} for u ∈ V1 and
v ∈ V2. The complete graph on n nodes is denoted by Kn. Terminology
related to directed graphs is introduced in Section 2.5.3. Geometric graphs
such as unit-disk graphs are defined in Section 2.9.1.
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Figure 2.1: A communication graph with a port numbering.

2.2.1 Communication graph

Throughout this work, the graph G = (V,E) is the communication graph
of a distributed system: each node v ∈ V is a computational entity and
an edge {u, v} ∈ E denotes that the nodes u and v can communicate with
each other.

Often we have to make assumptions on the structure of the communi-
cation graph. Among others, we study the family of bounded-degree graphs.
In this case we assume that there is a known constant ∆, and any node in
any communication graph G that we may encounter is guaranteed to have
at most ∆ neighbours.

2.2.2 Port numbering

We assume that there is a port numbering (local edge labelling) [6, 12, 174]
available for the communication graph G. This means that each node of G
imposes an ordering on its incident edges. Thus each edge {u, v} ∈ E has
two natural numbers associated with it: the port number in the node u,
denoted by p(u, v), and the port number in the node v, denoted by p(v, u).
If p(u, v) = i, we also say that the neighbour i of u is v.

See Figure 2.1 for an illustration. Figure 2.1a shows one possible way
to assign the port numbers in a 3-cycle. The port number in the node u
for the edge e = {u, v} ∈ E is p(u, v) = 2, and the port number in v for e
is p(v, u) = 1. The neighbour 2 of u is v. Figure 2.1b shows another way
to assign the port numbers in the same graph.

2.2.3 Model of distributed computing

We use Linial’s [121] model of computation; Peleg [145] calls it the local
model. Each node in the system executes the same algorithm A. Initially,
each node v ∈ V knows a task-specific local input iv. Each node v ∈ V has
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to produce a local output ov. We always assume that deg(v) is part of the lo-
cal input iv. The local input iv may also contain auxiliary information such
as unique node identifiers; this is discussed in more detail in Section 2.5.

The distributed system operates in a synchronous manner. Let r be
the number of synchronous communication rounds. In each round i =
1, 2, . . . , r, the following operations are performed, in this order:

1. Each node performs local computation.

2. Each node v sends one message to each port 1, 2, . . . , deg(v).

3. Each node v receives one message from each port 1, 2, . . . , deg(v).

Finally, after the round r, each node v ∈ V performs local computation
and announces its local output ov. The size of a message is unbounded and
local computation is free.

Example 2.1. Consider the graph in Figure 2.1a. If the node u sends a
message m to the port 2 in the round i, the same message m is received
by the node v from the port 1 in the same round i. Note that the node
u can include the outgoing port number 2 in the message m; then the
receiver v learns that the edge number 1 in v equals the edge number 2 in
its neighbour u.

2.2.4 Local algorithm and local horizon

We say that A is a local algorithm if the number of communication rounds r
is a constant. The constant r may depend on the parameters of the problem
family; for example, if we study bounded-degree graphs, the value of r may
depend on the parameter ∆. However, the value of r cannot depend on the
problem instance; in particular, it does not depend on the number of nodes
in the graph G.

The constant r is called the local horizon of the local algorithm. In
r synchronous communication rounds, information can be propagated for
exactly r hops in the network. The output ov of the node v ∈ V may depend
on the local inputs iu for all u ∈ BG(v, r); however, it cannot depend on
the local inputs iu for any u /∈ BG(v, r). A decision must be made based
on information available within the local horizon.

Throughout this work, the original definition of a local algorithm by
Naor and Stockmeyer [138] is used: r must be a constant. In many papers,
the term “local algorithm” is used in a less strict manner, and terminology
such as “strictly local algorithm” or “O(1)-local algorithm” is used to refer
to the case of a constant r.
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2.2.5 Local approximation

An α-approximation algorithm is an algorithm that produces a feasible
output, and the utility of the output is guaranteed to be within factor α of
the utility of an optimal solution. We use the convention that α ≥ 1 for both
minimisation and maximisation problems [13]. Hence, for a minimisation
problem, an α-approximation algorithm produces a feasible solution with a
cost at most α·OPT where OPT is the cost of an optimal solution, and for a
maximisation problem, an α-approximation algorithm produces a feasible
solution with the utility at least OPT/α where OPT is the utility of an
optimal solution.

A local α-approximation algorithm is an α-approximation algorithm and
a local algorithm. A local approximation scheme is a family of local algo-
rithms such that for each ε > 0 there is a local (1 + ε)-approximation
algorithm.

2.2.6 Distributed constant-size problem

We say that a problem has distributed constant size if G is a bounded-degree
graph and the size of the local input iv is bounded by a constant. If we have
a local algorithm for a distributed constant-size problem, then each node
needs to transmit and process only a constant number of bits; therefore also
local computations can be done in constant time, and the size of the local
output ov is bounded by a constant as well. Informally, a local algorithm
for a distributed constant-size problem runs in constant time, regardless of
the details of the model of distributed computing; we do not need to exploit
unbounded size of messages and unlimited local computation.

2.3 Advantages and applications

2.3.1 Fault tolerance and robustness

A local algorithm is not only highly scalable but also fault-tolerant. A local
algorithm recovers efficiently from failures, changes in the network topology,
and changes in the input [138]. If the input of a node v ∈ V changes, this
only affects the output within BG(v, r); Mayer et al. [130] formalise this
notion of robustness.

We can say that a local algorithm is a dynamic graph algorithm [49],
that is, it can be used to maintain a feasible solution in a dynamic graph
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in which edges and nodes are added and deleted. In the case of distributed
constant-size problems, a local algorithm supports arbitrary updates in the
graph in constant time per operation.

Naor and Stockmeyer [138] point out the connection between local al-
gorithms and self-stabilising algorithms [44, 45, 155]. A self-stabilising
algorithm arrives at a legitimate state – “stabilises” – in finite time regard-
less of the initial states of the nodes. Work on self-stabilising algorithms
[15, 16] provides, as a simple special case, a mechanical way to transform
a constant-time deterministic distributed algorithm into a self-stabilising
algorithm that stabilises in constant time. Therefore local algorithms for
distributed constant-size problems are not only self-stabilising but also self-
organising [46].

2.3.2 Value of information

In the model of local algorithms, we assume that local computation is free.
Hence our focus is primarily on the amount of information needed in distrib-
uted decision making: what can we do with the information that is available
in the constant-radius neighbourhood of a node. Positive and negative re-
sults for local algorithms can be interpreted as information-theoretic upper
and lower bounds; they give insight into the value of information [141, 143].

2.3.3 Other models of computing

Local algorithms are closely connected to circuit complexity and the com-
plexity class NC0 [1]: if a distributed constant-size problem can be solved
with a local algorithm, then for any bounded-degree graph G there is a
bounded-fan-in Boolean circuit that maps the local inputs to the local out-
puts, and the depth of the circuit is independent of the size of G. As pointed
out by Wattenhofer and Wattenhofer [164], a local algorithm provides an
efficient algorithm in the PRAM model, but a PRAM algorithm is not
necessarily local.

Sterling [158] shows that lower bounds for local algorithms can be ap-
plied to derive lower bounds in the tile-assembly model. Gibbons [62] points
out that the envisioned shape-shifting networks will require not only ad-
vances in hardware, but also novel local algorithms.

2.3.4 Sublinear-time centralised algorithms

A local algorithm for a distributed constant-size problem provides a linear-
time centralised algorithm: simply simulate the local algorithm for each
node. Parnas and Ron [144] show that in some cases it is possible to
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use a local algorithm to design a sublinear-time (or even constant-time)
centralised approximation algorithm; see also Nguyen and Onak [139] and
Floréen et al. [55].

For example, consider a local approximation algorithm A for the vertex
cover problem (see Section 2.4.1 below for the definition). For a given input
graph G, the algorithm A produces a feasible and approximately optimal
vertex cover C. From the point of view of a centralised algorithm, the local
algorithm A can be interpreted as an oracle with which we can access the
cover C: for any given node v, we can efficiently determine whether v ∈ C
or not by simulating the local algorithm A at the node v. Therefore we can
estimate the size of C by sampling nodes uniformly at random; for each
node we determine whether it is in C or not. Furthermore, as we know that
C is approximately optimal, estimating the size of C allows us to estimate
the size of the minimum vertex cover of the graph G as well.

These kinds of algorithms can be used to obtain information about
the global properties of very large graphs. Lovász [124] gives examples of
such graphs: the Internet, the social network of all living people, the human
brain, and crystal structures. Many of these are not explicitly given and not
completely known; however, it may be possible to obtain information about
these graphs by sampling nodes and their local neighbourhoods. From this
perspective, the sublinear-time algorithm by Parnas and Ron [144] puts
together neighbourhood sampling and a local approximation algorithm to
estimate the global properties of huge graphs.

2.4 Problems

Now we proceed to give the definitions of the computational problems that
we discuss in this survey. Most of these problems are classical combinatorial
problems; for details and background, see textbooks on graph theory [43],
combinatorial optimisation [98, 140], NP-completeness [60], and approxi-
mation algorithms [13, 162].

When we study local algorithms, we assume that the problem instance
is given in a distributed manner: each node in the communication graph G
knows part of the input. For graph problems, the connection between the
communication graph G and the structure of the problem instance is usually
straightforward: we simply assume that the communication graph G is our
input graph. For more general packing and covering problems (such as the
set cover problem or packing LPs) there is more freedom. However, it is
fairly natural to represent such problems in terms of bipartite graphs, and
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this has been commonly used in literature [19, 108, 143]. We follow this
convention.

The exact definitions of the local input iv and output ov are usually
fairly straightforward. For unweighted graph problems, we do not need any
task-specific information in the local input iv; the structure of the com-
munication graph G is enough. For weighted graph problems, the local
input iv contains the weight of the node v and the weights of the incident
edges. Hence all unweighted graph problems in bounded-degree graphs
are distributed constant-size problems; weighted problems are distributed
constant-size problems if the weights are represented with a bounded num-
ber of bits.

If the output is a subset X ⊆ V of nodes, then the local output ov is
simply one bit of information: whether v ∈ X or not. If the output is a
subset X ⊆ E of edges, then the local output ov contains one bit for each
incident edge e. The algorithm must produce a correct output no matter
how we choose the port numbers in the communication graph G.

2.4.1 Graph problems

A set of nodes I ⊆ V is an independent set if no two nodes in I are
adjacent, that is, there is no edge {u, v} ∈ E with u ∈ I and v ∈ I. An
independent set I is maximal if it cannot be extended, that is, I ∪ {v} is
not an independent set for any v ∈ V \ I.

A set of edges M ⊆ E is a matching if the edges in M do not share a
node, that is, if {t, u} ∈ M and {t, v} ∈ M then u = v. Again, a matching
is maximal if it cannot be extended. A set of edges M ⊆ E is a simple
2-matching if for each node u, the number of edges e ∈ M with u ∈ e is at
most 2.

Let M ⊆ E be a matching in a bipartite graph. An edge {u, v} ∈ E \M
is unstable if {u, s} ∈ M implies p(u, s) > p(u, v) and {v, t} ∈ M implies
p(v, t) > p(v, u). That is, if we interpret port numbers as a ranking of
possible partners, both u and v would prefer each other to their current
partners (if any). The matching M is ε-stable [55] if the number of unstable
edges is at most ε|M |, and the matching is stable [59, 68] if there is no
unstable edge.

A set of edges C ⊆ E is an edge cover if for each node v ∈ V there
is an edge e ∈ C with v ∈ e. An edge cover exists if and only if there
is no isolated node. A set of nodes C ⊆ V is a vertex cover if V \ C is
an independent set. In other words, C is a vertex cover if for each edge
{u, v} ∈ E either u ∈ C or v ∈ C or both.
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A set of nodes D ⊆ V is a dominating set if every node v ∈ V has
v ∈ D or there is a neighbour u of v with u ∈ D. A maximal independent
set is a dominating set. A dominating set D is connected if the subgraph
of G induced by D is connected. A domatic partition [32, 51] is a partition
of V into disjoint dominating sets.

A set of edges D ⊆ E is an edge dominating set [29, 57, 175] if for each
edge {u, v} ∈ E there is an edge e ∈ D incident to u or v or both. A
maximal matching is an edge dominating set.

A cut is a partition of V into two sets, V = X ∪ Y . The size of the cut
is the number of edges {u, v} ∈ E with u ∈ X and v ∈ Y .

A vertex k-colouring of G assigns a colour from the set {1, 2, . . . , k} to
each node of G such that adjacent nodes have different colours. An edge
colouring is analogous: one assigns a colour to each edge, such that adjacent
edges have different colours.

Naor and Stockmeyer [138] define the problem of weak colouring . A
weak k-colouring of G assigns labels {1, 2, . . . , k} to the nodes of G such that
each non-isolated node must have at least one neighbour with a different
label. A graph admits a vertex 2-colouring if and only if it is bipartite;
however, any graph admits a weak 2-colouring.

The maximum matching problem refers to the optimisation problem of
finding a matching M that maximises |M |. The maximum independent set
problem, the (minimum) vertex cover problem, the (minimum) dominating
set problem, the maximum cut problem, the minimum cut problem, etc.,
are analogous.

2.4.2 Covering problems

Let G = (V ∪ K, E) be a bipartite graph. Each edge {v, k} ∈ E joins
an agent v ∈ V and a customer k ∈ K; each node knows its role. The
maximum degree of an agent v ∈ V is ∆V , and the maximum degree of a
customer k ∈ K is ∆K . A subset X ⊆ V is a set cover if each customer is
covered by at least one agent in X, that is, for each customer k ∈ K there
is an adjacent agent v ∈ X with {k, v} ∈ E. See Figure 2.2a.

The vertex cover problem is a special case of the set cover problem with
∆K = 2: each customer (edge) can be covered by 2 agents (nodes). The
edge cover problem is a special case of the set cover problem with ∆V = 2:
each agent (edge) covers 2 customers (nodes). The dominating set problem
in a graph with maximum degree ∆ is a special case of the set cover problem
with ∆V = ∆K = ∆ + 1.
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Figure 2.2: (a) A set cover instance with ∆V = 3 and ∆K = 2; a minimum-
size solution is X = {v1, v3}. (b) A set packing instance with ∆V = 2 and
∆I = 3; a maximum-size solution is X = {v2, v4}.

The problem of finding a minimum-size set cover can be written as an
integer program

minimise
∑
v∈V

xv

subject to
∑
v∈V

ckvxv ≥ 1 ∀ k ∈ K,

xv ∈ {0, 1} ∀ v ∈ V,

(2.1)

where ckv = 0 if {k, v} /∈ E and ckv = 1 if {k, v} ∈ E. The LP relaxation
of (2.1) is a 0/1 covering LP

minimise
∑
v∈V

xv

subject to
∑
v∈V

ckvxv ≥ 1 ∀ k ∈ K,

xv ≥ 0 ∀ v ∈ V.

(2.2)

In a general covering LP we can have an arbitrary ckv ≥ 0 for each edge
{k, v} ∈ E.

2.4.3 Packing problems

Let G = (V ∪I, E) be a bipartite graph. Each edge {v, i} ∈ E joins an agent
v ∈ V and a constraint i ∈ I; each node knows its role. The maximum
degree of an agent v ∈ V is ∆V , and the maximum degree of a constraint
i ∈ I is ∆I . A subset X ⊆ V is a set packing if each constraint is covered
by at most one agent in X, that is, for each constraint i ∈ I there is at
most one adjacent agent v ∈ X with {v, i} ∈ E. See Figure 2.2b.
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The independent set problem is a special case of the set packing problem
with ∆I = 2. The maximum matching problem is a special case of the set
packing problem with ∆V = 2.

The problem of finding a maximum-size set packing can be written as
an integer program

maximise
∑
v∈V

xv

subject to
∑
v∈V

aivxv ≤ 1 ∀ i ∈ I,

xv ∈ {0, 1} ∀ v ∈ V,

(2.3)

where aiv = 0 if {i, v} /∈ E and aiv = 1 if {i, v} ∈ E. The LP relaxation of
(2.3) is a 0/1 packing LP

maximise
∑
v∈V

xv

subject to
∑
v∈V

aivxv ≤ 1 ∀ i ∈ I,

xv ≥ 0 ∀ v ∈ V.

(2.4)

In a general packing LP we can have an arbitrary aiv ≥ 0 for each {i, v} ∈ E.
A packing LP is a dual of a covering LP and vice versa.

2.4.4 Mixed packing and covering

Finally, we can study linear programs with both packing constraints (con-
straints of the form Ax ≤ 1 for a non-negative matrix A) and covering
constraints (constraints of the form Cx ≥ 1 for a non-negative matrix C).
In general, it may be that there is no feasible solution that satisfies both
packing and covering constraints; however, we can formulate a linear pro-
gram where the objective is to violate the covering constraints as little as
possible (the case of violating the packing constraints as little as possible is
analogous). We arrive at a max-min LP where the objective is to maximise
ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0.

In a distributed setting, we have a bipartite graph G = (V ∪ I ∪K, E).
Each edge e ∈ E is of the form e = {v, i} or e = {v, k} where v ∈ V is
an agent , i ∈ I is a constraint , and k ∈ K is a customer (or an objective);
each node knows its role. The maximum degree of an agent v ∈ V is ∆V ,
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the maximum degree of a constraint i ∈ I is ∆I , and the maximum degree
of a customer k ∈ K is ∆K . The objective is to

maximise ω

subject to
∑
v∈V

aivxv ≤ 1 ∀ i ∈ I,∑
v∈V

ckvxv ≥ ω ∀ k ∈ K,

xv ≥ 0 ∀ v ∈ V.

(2.5)

Again, aiv = 0 if {i, v} /∈ E, aiv ≥ 0 if {i, v} ∈ E, ckv = 0 if {k, v} /∈ E,
and ckv ≥ 0 if {k, v} ∈ E. In a 0/1 max-min LP we have aiv, ckv ∈ {0, 1}
for all i ∈ I, k ∈ K, and v ∈ V .

2.5 Auxiliary information and local views

So far we have not assumed that the local algorithm has access to any
information beyond the port numbering and the task-specific local input iv.
If we do not have any auxiliary information such as unique node identifiers
in iv, we call the network anonymous.

In an anonymous network, a port numbering does not provide enough
information to break the symmetry [6, 88, 174]. Consider a deterministic lo-
cal algorithm and the network in Figure 2.1a on page 7. The port-numbered
graph is symmetric. It is easy to see that we cannot break the symmetry
with the local algorithm if the local inputs are identical. Whatever mes-
sage the node u sends to its port x ∈ {1, 2} on the first communication
round, the node v sends the same message to its port x if both run the
same deterministic algorithm. Whatever message the node u receives from
its port x on the first communication round, the node v receives the same
message from its port x. The local state of the node u after r communica-
tion rounds is equal to the local state of the node v after r communication
rounds. Eventually, the local output ou is identical to the local output ov.

More generally, we can choose the port numbers in an n-cycle so that
for each node the port number 1 leads in a counterclockwise direction and
the port number 2 leads in a clockwise direction. If the local inputs are
identical, the local outputs are identical as well, regardless of the local
horizon r. From the point of view of most combinatorial problems, this is
discouraging: an empty set is the only matching or independent set that
can be constructed by any local algorithm in this case; the set of all nodes
is the only dominating set or vertex cover that can be constructed; and
vertex colouring or edge colouring is not possible.
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Figure 2.3: Covering graphs.

However, there are some positive examples of local algorithms that do
not require any auxiliary information besides a port numbering. To better
understand the possibilities and limitations of this model, we first introduce
the concepts of covering graphs and unfoldings.

2.5.1 Covering graphs and unfoldings

We say that a port-numbered graph H = (VH, EH) is a covering graph of
G = (V,E) if there is a surjective mapping f : VH → V with the following
property: for each v ∈ VH and for each integer x, the neighbour x of v in H
is u if and only if the neighbour x of f(v) in G is f(u). The surjection f is a
covering map. See Figure 2.3 for an illustration: the graph H is a covering
graph of G; we can choose a covering map f with f(v1) = f(v2) = v.

The unfolding or the universal covering graph [6] of a connected graph
G is an acyclic, connected covering graph T . The unfolding always exists,
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it is unique (up to isomorphism), and it is finite if and only if G is a tree.
See Figure 2.3 for an illustration: the infinite tree T is the unfolding of
G; we can choose a covering map f with f(v′) = v. The tree T is also
the unfolding of H; we can choose, for example, a covering map f with
f(v′) = v1. This is no coincidence; because H and G have a common
covering graph – in this case H – they also have the same unfolding.

Informally, we can construct the unfolding T of a graph G as follows.
Choose an arbitrary node of G as a starting point. Traverse the graph G in
a breadth-first manner; if we revisit a node because of a cycle, treat it as a
new node.

This simple intuitive explanation of the unfolding is sufficient for our
purposes. See, e.g., Godsil and Royle [63, §6.8] for more information on
covering graphs in a pure graph-theoretic setting; note that the term “lift”
has also been used to refer to a covering graph [4, 79]. For more information
on universal covering graphs, see, e.g., Angluin [6]. An analogous concept
in topology is a universal covering space, see, e.g., Hocking and Young [76,
§4.8] or Munkres [137, §80].

2.5.2 Local view

Let v be a node in an anonymous, port-numbered network G. Let T be the
unfolding of G, and let v′ be a preimage of v in the covering map f , as in
the example of Figure 2.3.

The radius-r local view of the node v is the subgraph T (v′, r) of T
induced by BT (v′, r). Put otherwise, the radius-r local view of v is the
radius-r neighbourhood of its preimage v′ in the unfolding. See Figure 2.3
for an illustration in the case r = 3. The local view does not depend on
the choice of v′ ∈ f−1({v}).

Now we are ready to characterise exactly what we can do in the port
numbering model. We begin with the good news. In a deterministic local
algorithm with local horizon r, each node v can construct its radius-r local
view [21, 174]. There is a simple local algorithm that gathers this infor-
mation in r communication rounds: Initially, each node knows its radius-0
local view. On the communication round i, each node floods its radius-(i−1)
local view to each neighbour, and includes the outgoing port number in the
message. After the communication round i, each node pieces together the
local views received from its neighbour; this results in the radius-i local
view. We can also gather the local input for each node in the local view.
Hence, in a local algorithm each node v can choose its output ov based on
all information that is available in its radius-r local view. If the local views
of nodes u and v differ, then the local outputs of the nodes u and v can
differ as well.
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Figure 2.4: A communication graph with a port numbering and an orien-
tation; cf. Figure 2.1.

The bad news is that choosing the local output based on the local view
is, in a sense, the only thing that one can do in a local algorithm [6, 21,
174]. This is easily understood if we consider the covering map f from
the unfolding T to the communication graph G, and apply the same local
algorithm A in both T and G. Initially, for each node v′ in T , the local
state of v′ in T and v = f(v′) in G is the same. Furthermore, on each
communication round, v′ and v perform the same local computation, send
the same messages, and receive the same messages – here we use the fact
that f is a local isomorphism that preserves the port numbering. Hence,
after r communication rounds, both v′ and v must produce the same output.
Therefore the output of v in a local algorithm with local horizon r only
depends on its local view BT (v′, r).

Among others, this shows that a local algorithm cannot distinguish
between G and H in Figure 2.3 because they have the same unfolding T .
The node v in G, the nodes v1 and v2 in H, and the node v′ in T all produce
the same output. We can see that a local algorithm in an anonymous
network cannot even detect if there are triangles (3-cycles) in the network.

2.5.3 Graphs with orientation

So far we have assumed that we have a port numbering in the communica-
tion graph G. We proceed to study a slightly stronger assumption [130]: in
addition to the port numbering, we are given an orientation of the graph G.
That is, for each edge {u, v} ∈ E, we have chosen exactly one direction, ei-
ther (u, v) or (v, u). See Figure 2.4 for an illustration. In a port numbering,
each node chooses an ordering on incident edges. In an orientation, each
edge chooses an ordering on incident nodes.

We use the standard terminology for directed graphs: If the edge {u, v}
has the orientation (u, v), then u is a predecessor of v and v is a successor
of u. The in-degree of a node is the number of predecessors, i.e., the number
of edges entering the node. Similarly, the out-degree of a node is the number
of successors, i.e., the number of edges leaving the node.
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Figure 2.5: A 4-regular graph with a port numbering and an orientation.

At first sight, having an arbitrary orientation in addition to an arbi-
trary port numbering does not seem to help much. In an n-cycle, we can
have all edges directed consistently in a clockwise direction, as shown in
Figure 2.4. Hence we obtain the same negative results as in the case of an
n-cycle with only a port numbering. More generally, we can construct a
d-regular graph for any even constant d such that the local view of each
node is identical [138], in spite of a port numbering and an orientation; see
Figure 2.5 for an example. Furthermore, as shown in Figure 2.6, having an
orientation does not help one to tell a graph from its cover.

Surprisingly, it turns out that in graphs where every node has an odd
degree, an orientation together with a port numbering is enough to break
the symmetry in the following sense: the output of a non-isolated node v
is different from the output of at least one neighbour u of v.

Example 2.2. Consider a 3-regular graph with a port numbering and an
orientation. Let v be an arbitrary node; we show that the local view of v
is different from the local view of at least one neighbour of v. Figure 2.7
illustrates the three possible cases. In Figure 2.7a, the node v and its
neighbour u have different out-degrees; hence the local view of v differs
from the local view of u. Otherwise the out-degree of v and each neighbour
of v is the same. The common out-degree of v and its neighbours is either 1
or 2. Figure 2.7b illustrates the case where the common out-degree is 2. In
this case the local view of s is necessarily different from the local view of t:
both have exactly one predecessor, and the port numbers assigned to these
unique incoming edges are different because p(v, s) 6= p(v, t). Therefore the
local view of v is different from the local view of s or t (or both). Figure 2.7c
illustrates the case where the common out-degree is 1; this is analogous to
the case of the out-degree 2.



2.5 Auxiliary information and local views 21

12 13

1

12 13
2

1

2

T :G:

H:

3 2 1 1

1

2

1

2

1

2

1

2

1

2

1

2

1

3 2 1 1

1123

1

2 2
1

2
1

2

1

2

1

2

2

1

2

1

Figure 2.6: Covering graphs with a port numbering and an orientation; cf.
Figure 2.3.
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Figure 2.7: A 3-regular graph with a port numbering and an orientation.
(a) Different out-degrees. (b) Out-degree is 2. (c) Out-degree is 1.
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This argument can be generalised to any graph, as long as the degree of
each node is odd. We present the details in Section 2.7.3 when we review
a local algorithm for weak colouring [130, 138].

2.5.4 Graphs with unique identifiers

We can make an even stronger assumption: each node v has a globally
unique identifier as part of its local input iv. Usually the identifiers are
assumed to be a permutation of {1, 2, . . . , |V |}; see, for example, Linial [121].
Naturally we require that the local algorithm solves the problem for any
permutation, not just for some subset of permutations.

Globally unique identifiers are a standard assumption in the field of
local algorithms. This is a strictly stronger assumption than having only
port numbers and an orientation available; all negative results for the case
of globally unique identifiers imply negative results in anonymous networks
and anonymous oriented networks.

Unfortunately, the assumption on globally unique identifiers means that
the problem is not of distributed constant size: the number of bits required
to encode the identifiers increases as the size of the network increases. In
practice, for many algorithms that are designed under the assumption of
globally unique identifiers, it is sufficient to have locally unique identifiers.
That is, we assume that a local algorithm with local horizon r has access
to identifiers that are unique within every radius-r neighbourhood in the
communication graph G. In a bounded-degree graph, it is then possible to
choose identifiers that are locally unique but have constant size.

With globally or locally unique identifiers, a node v in the graph G can
tell for each pair of nodes s, t in its radius-r local view whether f(s) = f(t),
that is, whether they represent the same node in the original graph G.
This implies that each node v can reconstruct the subgraph G[v, r] of G.
See Figure 2.8 for an illustration. Hence, when we study local algorithms
in networks with unique identifiers, it is sufficient to present a function that
maps the subgraph G[v, r] to the local output ov [138].

We note that the difference between G(v, r) and G[v, r] is usually im-
material. After all, G[v, r + 1] contains G(v, r) as a subgraph, and G(v, r)
contains G[v, r] as a subgraph. We are typically not interested in additive
constants in the local horizon r. Hence we can use either G(v, r) or G[v, r]
to derive both positive and negative results, whichever is more convenient.
If the local output cannot be determined based on G(v, r) for any constant
r, then there is no local algorithm for the task; if it can be determined
based on G(v, r) for some constant r, then there is a local algorithm. We
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Figure 2.8: The local view of the node v in a graph G with unique node
identifiers.

can even go as far as to use this as the definition of a local algorithm, if we
study networks with unique identifiers.

2.6 Negative results

In this section we review negative results for local algorithms. There are
two simple arguments that can be used to show that a problem cannot
have a local algorithm: inherently non-local problems and the impossibility
of symmetry-breaking.

A problem is inherently non-local if the output at a node u may depend
on the input at a node v with dG(u, v) = Ω(|V |). By definition, a local
algorithm cannot solve a problem that is inherently non-local. Constructing
a spanning tree is a classical example of a simple problem that is inherently
non-local; see Figure 2.9 for an illustration. Finding a stable matching is
another example of a non-local problem [55].

A problem such as finding a maximal matching is, in a sense, much
more local. For example, if we already have a solution M for a graph G, a
local change in G requires only local changes in the solution M . However,
as we discussed in Section 2.5, it is not possible to break the symmetry
with a local algorithm in an n-cycle if the nodes are anonymous; a port
numbering and an orientation of G do not help. Therefore it is not pos-
sible to find a maximal matching in an anonymous n-cycle, oriented or
not. The same negative results apply to the problems of finding a maximal
independent set, a vertex colouring, an edge colouring, a weak colouring,
an O(1)-approximation of a maximum matching, an O(1)-approximation
of a maximum independent set, a (3 − ε)-approximation of a minimum
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Figure 2.9: (a) An n-cycle G; the double lines show a spanning tree. (b) A
local change in the graph G near the nodes v1 and v2 requires a non-local
change in the spanning tree near the nodes u1 and u2. (c) A local algorithm
cannot even verify whether a given set of edges is a spanning tree or not [96].
In every local neighbourhood, this non-tree looks similar to a spanning tree
in part (a) or (b).

dominating set, and a (2− ε)-approximation of a minimum vertex cover in
anonymous n-cycles. As a straightforward generalisation, there is no local
o(∆)-approximation algorithm for the minimum dominating set problem in
anonymous bounded-degree graphs.

In this section, we focus on negative results that hold even if globally
unique identifiers are available. The negative results are summarised in
Tables 2.1 and 2.2.

2.6.1 Comparable identifiers

Let us first focus on order-invariant algorithms: we assume that unique
node identifiers are available, but the algorithm is only allowed to compare
the identifiers and not access their numerical value.

It turns out that being able to compare identifiers does not help much
in symmetry breaking. For example, in an n-cycle, we can assign the node
identifiers 1, 2, . . . , n in an increasing order. If we pick any two nodes u, v ∈
U = {r + 1, r + 2, . . . , n − r}, then the radius-r neighbourhood of u looks
identical to the radius-r neighbourhood of v, assuming that a node can only
exploit the ordering of the identifiers. Therefore every node in U must make
the same decision; see, e.g., Kuhn [102, §2.7.2]. We immediately obtain the
same negative results that we had for anonymous networks in an n-cycle:
for example, there is no local algorithm for finding a maximal matching, a
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Problem Graph family References

Maximal independent set cycle [121]
Maximal matching cycle [121] cor.
Vertex 3-colouring cycle [121]
Vertex ∆-colouring (∆ + 1)-coloured tree [102]
Edge colouring cycle [121] cor.
Weak colouring 2k-regular [138]

cor. = corollary, see text

Table 2.1: Problems that cannot be solved with a deterministic local algo-
rithm, even if there are unique node identifiers. The problems are defined
in Section 2.4.

maximal independent set, a vertex colouring, an edge colouring, or a weak
colouring.

2.6.2 Numerical identifiers

A natural approach would be to exploit the numerical values of the iden-
tifiers; after all, this is exactly what the classical (distributed but not
constant-time) algorithm for vertex colouring by Cole and Vishkin [35]
does.

Unfortunately, a general result by Naor and Stockmeyer [138] shows that
local algorithms for so-called locally checkable labellings – these include
vertex colourings and maximal independent sets in bounded-degree graphs
– do not benefit from the numerical values of the identifiers: if there is a
local algorithm that uses the numerical values, there is an order-invariant
local algorithm as well.

More specifically, Linial [121] shows that a synchronous distributed al-
gorithm for vertex 3-colouring in an n-cycle with unique identifiers requires
Ω(log∗ n) communication rounds. Here log∗ n denotes the iterated (base-2)
logarithm of n, that is, the smallest integer k ≥ 0 such that k iterated
applications of the function x 7→ log2 x to the initial value n results in a
value at most 1.

Linial’s result holds even under the assumption that there is a consistent
clockwise orientation in the n-cycle. As a direct implication, an algorithm
for finding an edge 3-colouring, a maximal independent set, or a maximal
matching in an n-cycle requires Ω(log∗ n) communication rounds as well.
The barrier of Ω(log∗ n) is hard to break even if we are allowed to provide
arbitrary instance-specific advice to some nodes in the network [56].
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Problem Approx. Graph family References
factor

Independent set O(1) cycle [39, 119]
Matching O(1) general [102, 108, 134]

O(1) cycle [39]
Edge cover 2− ε cycle [39, 119] cor.
Vertex cover O(1) general [102, 105, 134]

2− ε cycle [39, 119] cor.
Dominating set O(1) general [102, 105, 134]

O(1) unit-disk [119]
2k + 1− ε 2k-regular [39] cor.
k + 1− ε (2k+1)-regular, 2-c [10]
5− ε 4-regular, planar [39]
3− ε cycle [39, 119]

Domatic partition 3− ε cycle [39, 119] cor.
Edge dominating set 3− ε cycle [39, 119] cor.
Maximum cut O(1) cycle [39, 119] cor.

0/1 packing LP O(1) general [102, 108, 134]
0/1 covering LP O(1) general [102, 105, 134]
0/1 max-min LP α bounded-degree Chapter 3

ε > 0, α = ∆I(1− 1/∆K)
2-c = bicoloured graphs, i.e., a 2-colouring is given
cor. = corollary, see text

Table 2.2: Approximation factors that cannot be achieved with a determin-
istic local algorithm, even if there are unique node identifiers.

2.6.3 Approximations for combinatorial problems

So far we have seen that there are no local algorithms for problems such
as vertex colouring, edge colouring, maximal independent set, or maximal
matching. However, it is possible to find a feasible independent set or a
matching with a local algorithm (the empty set), and similarly there is a
trivial local algorithm for finding a vertex cover or a dominating set (the set
of all nodes). This raises the question of whether there is a local approxima-
tion algorithm for any of these problems, with a nontrivial approximation
guarantee.

Unfortunately, this does not seem to be the case. Czygrinow et al. [39]
and Lenzen and Wattenhofer [119] show that it is not possible to find a
constant-factor approximation of a maximum independent set or a max-
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imum matching in an n-cycle with a deterministic local algorithm. Czy-
grinow et al.’s elegant proof uses Ramsey’s theorem [65, 148]; Lenzen and
Wattenhofer build on Linial’s [121] work.

These results imply that there is no local constant-factor approximation
algorithm for the maximum cut problem in an n-cycle. If we can find a cut
{X, Y } of size k in an n-cycle, then it is possible to find a matching with
at least k/3 edges as well. The edges that cross the cut form a bipartite
graph H, the cut {X, Y } is a 2-colouring of the bipartite graph H, and the
algorithm that we will describe in Section 2.7.1 finds a maximal matching
in the 2-coloured graph H.

As another corollary, there is no local (2− ε)-approximation algorithm
for the edge cover problem in a cycle. To see this, consider a 2n-cycle
G = (V,E). A minimum edge cover has n edges, and a maximum matching
has n edges as well. Hence a (2− ε)-approximate edge cover C ⊆ E has at
most (2− ε)n edges, and its complement M = E \C has at least εn edges.
Furthermore, each v ∈ V is covered by at least one edge in C; therefore
each v ∈ V is covered by at most one edge in M . Hence M is a matching,
and within factor 1/ε of the optimum.

An analogous argument shows that there is no local (2− ε)-approxima-
tion algorithm for the vertex cover problem in an n-cycle. Furthermore,
there is no local (3 − ε)-approximation algorithm for the dominating set
problem. Note that the complement X = V \D of a dominating set D in
an n-cycle can be turned into an independent set [39]: a node v ∈ X is
adjacent to at most one other node u ∈ X \ {v}. Exchanging the roles of
edges and nodes, the same argument shows that there is no local (3 − ε)-
approximation algorithm for the edge dominating set problem in a cycle.
Moreover, we cannot find more than one disjoint dominating set in a cycle;
because a 3n-cycle has 3 disjoint dominating sets, this shows that no local
algorithm can find a (3−ε)-approximation of a maximum domatic partition.

More generally, Czygrinow et al. [39] and Lenzen and Wattenhofer [119]
show that for any constant ε > 0, a local algorithm cannot produce a factor
2k+1−ε approximation of a minimum dominating set in 2k-regular graphs.
The basic argument is as follows. Figure 2.10a shows a (2k + 1)n-cycle
G = (V,E). Using a local algorithm, we can construct a 2k-regular graph
H = (V,E′), as illustrated in Figure 2.10b. A minimum dominating set
of H has n nodes (Figure 2.10c); therefore a hypothetical (2k + 1− ε)-
approximation algorithm has to return a dominating set D with at most
(2k + 1− ε)n nodes (Figure 2.10d). Therefore its complement X = V \
D has at least εn nodes. Furthermore, because D is a dominating set,
there is no path with more than 2k nodes in the subgraph of G induced by
X (Figure 2.10e). Hence we can construct an independent set I with at
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least εn/(2k) nodes (Figure 2.10f), which is a contradiction with the local
inapproximability of the independent set problem in cycles.

Czygrinow et al. [39] consider the case k = 2 to show that a local algo-
rithm cannot find a factor 5 − ε approximation of a minimum dominating
set in planar graphs. Lenzen and Wattenhofer [119] consider a general k
to show that a local algorithm cannot find a constant-factor approximation
of a minimum dominating set in unit-disk graphs (see Section 2.9.1 for the
definition).

In the above proof, we have focused on regular graphs with an even
degree. As we saw in Section 2.5.3, some amount of symmetry-breaking is
possible in graphs where each node has an odd degree. Nevertheless, we can
derive a slightly weaker result for regular graphs with an odd degree: a local
algorithm cannot produce a factor k + 1− ε approximation of a minimum
dominating set in (2k + 1)-regular graphs [10]. To see this, consider a
(k + 1)n-cycle G = (V,E); see Figure 2.11a. We can use a local algorithm
to construct a (2k + 1)-regular graph H as illustrated in Figure 2.11b; each
original node v ∈ V simulates a pair of nodes, v′ and v′′, in H. A minimum
dominating set of H has n nodes (Figure 2.11c). A hypothetical (k + 1− ε)-
approximation algorithm has to return a dominating set D with at most
(k + 1− ε)n nodes (Figure 2.11d). Let X ⊆ V consist of the nodes v ∈ V
such that both v′ /∈ D and v′′ /∈ D (Figure 2.11e). We know that the size
of X is at least εn; furthermore, X does not induce paths with more than
2k nodes in G. Hence we can construct an independent set I with at least
εn/(2k) nodes (Figure 2.11f), a contradiction.

This negative result holds even in bipartite graphs where a 2-colouring is
given as part of the local input. Incidentally, the construction in Figure 2.11
is the so-called bicoloured double cover of the construction in Figure 2.10;
we will revisit bicoloured double covers in more detail when we present
positive results in Section 2.7.1.

2.6.4 Approximations for LPs

The negative results in the previous section build on the impossibility of
symmetry breaking in combinatorial problems. However, there are also
negative results for linear programs.

Bartal et al. [19] observe that a (1 + ε)-approximation algorithm for
packing and covering LPs requires Ω(1/ε) communication rounds.

Kuhn, Moscibroda, and Wattenhofer [102, 103, 105, 108, 134] show that
it is not possible to find a constant-factor approximation of a minimum
vertex cover, minimum dominating set, or maximum matching in general
graphs with a local algorithm, if there is no degree bound. The results
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Figure 2.10: There is no local (2k + 1− ε)-approximation algorithm for the
dominating set problem in 2k-regular graphs (the case k = 2).
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Figure 2.11: There is no local (k + 1− ε)-approximation algorithm for the
dominating set problem in (2k + 1)-regular graphs (the case k = 2).
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Problem Graph family Model References

Maximal matching bicoloured, b-d p [70]
ε-stable matching bicoloured, b-d p [55]
Vertex (∆+1)-colouring k-coloured, b-d p [35, 64, 102, 111, 121]
Weak colouring odd degree, b-d p+o [130, 138]

b-d = bounded-degree graph
p = algorithm uses only a port numbering
p+o = algorithm uses only a port numbering and an orientation

Table 2.3: Deterministic local algorithms. The problems are defined in
Section 2.4.

extend to the LP relaxations of these problems as well, and hence to 0/1
packing LPs and 0/1 covering LPs.

Our work in Papers I and II presents tight lower bounds for the local
approximability of max-min LPs; see Chapter 3 for details.

2.7 Positive results

In spite of all negative results that we saw in Section 2.6, a few local al-
gorithms are known. In this section, we review known deterministic lo-
cal algorithms; prominent positive results are also summarised in Tables
2.3 and 2.4.

We begin with two different techniques, both of which yield a local ap-
proximation algorithm for the vertex cover problem: Section 2.7.1 presents
a technique based on bicoloured covering graphs; Section 2.7.2 presents a
linear programming approach.

2.7.1 Bicoloured matching and vertex cover

In a centralised setting, there is a simple 2-approximation algorithm for
the vertex cover problem: find any maximal matching and take the end-
points.1 We cannot find a maximal matching with a local algorithm in
general graphs; nevertheless, we can apply the same basic idea indirectly
to design a local approximation algorithm for the vertex cover problem.

We say that the communication graph G is bicoloured if a vertex 2-
colouring of G is given as part of the local input – each node knows whether

1Papadimitriou and Steiglitz [140] attribute this algorithm to Fanica Gavril and Mi-
halis Yannakakis.
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Problem Approx. Graph Model References
factor family

Matching 1 + ε ∗ 2-c, b-d p [10, 70]
(∆ + 1)/2 ∗ w-c, b-d p [10]

Weighted matching 2 + ε 2-c, b-d p [55]
Simple 2-matching 2 + ε b-d p [10, 147] cor.
Edge cover 2 ∗ general p
Vertex cover 2 ∗ regular p

6 unit-disk p [102, 169]
4 + ε b-d [134]
3 b-d p [147]
2 + ε b-d [102, 108]
2 b-d p [9]

Dominating set ∆ + 1 b-d p
2b∆/2c+ 1 ∗ b-d p+o [10]
(∆ + 1)/2 ∗ w-c, b-d p [10]
O(1) planar [39]
74 planar [118]

Domatic partition (δ + 1)/2 w-c, b-d p
Edge domin. set 4 b-d p [8]
Maximum cut ∆ w-c, b-d p

Set cover ∆V b-d p
∆K + ε b-d [102, 108]

Packing LP ∆I b-d p [143]
0/1 packing LP 1 + ε ∗ b-d [102, 108]
0/1 covering LP 1 + ε ∗ b-d [102, 108]
Max-min LP ∆I b-d p [143] cor.

α + ε ∗ b-d p Chapter 3

ε > 0, α = ∆I(1− 1/∆K), δ = minimum degree of G
∗ = tight approximation ratio (matching negative result)
b-d = bounded-degree graph
2-c = bicoloured graphs, i.e., a 2-colouring is given
w-c = a weak 2-colouring is given or can be found locally [130, 138]
p = algorithm uses only a port numbering
p+o = algorithm uses only a port numbering and an orientation
cor. = corollary, see text

Table 2.4: Deterministic local approximation algorithms. The algorithms
without references are trivial; see text.
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it is black or white. Clearly the graph G has to be bipartite; otherwise there
is no 2-colouring.

Hańćkowiak et al. [70] present a simple local algorithm for the problem
of finding a maximal matching in a bicoloured bounded-degree graph. A
port numbering is enough; unique node identifiers are not needed. The
algorithm performs the following two steps repeatedly:

1. Each unmatched black node sends a proposal to one of its white
neighbours. The neighbours are chosen in the order of port numbers.

2. Each white node accepts the first proposal that it receives. If several
proposals are received in the same round, ties are broken with port
numbers.

After 2∆ steps, this results in a maximal matching M . To see that M
is maximal, consider an edge e = {u, v} ∈ E \ M such that u is a black
node and v is a white node. One of the following holds: (i) u never sent a
proposal to v, or (ii) v rejected the proposal from u. In the case (i), the
node u is matched, and in the case (ii), the node v is matched. Hence
M ∪ {e} is not a matching.

Now we know how to find a maximal matching in a bicoloured graph.
It turns out that with the help of this simple algorithm, it is possible to
find a 3-approximation of a minimum vertex cover in an arbitrary bounded-
degree graph [147]. The key observation is the following: for any graph G,
we can construct the bicoloured graph H that is the bipartite double cover
[6, 23, 83] of G; see Figure 2.12 for an illustration.

The bipartite double cover of G, also known as the Kronecker double
cover, is the Kronecker product [166] of the graphs G and K2. In essence,
for each original node v in the graph G, we create two copies: a black copy
and a white copy. If u and v are adjacent in the original graph G, then
the black copy of u is adjacent to the white copy of v in the graph H and
vice versa. Port numbers can be inherited from G. It follows that H is a
covering graph of G (see Section 2.5.1). Furthermore, it is a double cover:
the covering map f maps exactly 2 nodes of H onto each node of G.

Now let A be the local algorithm for maximal matchings in bicoloured
graphs. A local algorithm that runs in a general graph G can simulate the
behaviour of A in the bicoloured double cover H; a node v in G is responsible
for simulating the behaviour of both its black copy and its white copy. Once
the simulation completes, each node can inspect the output produced by
its two copies.

Hence we can find a maximal matching M in the bicoloured double
cover H and map it back to the original graph G. This gives us a subset of
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Figure 2.12: The bicoloured graph H is the bipartite double cover of the
graph G. Note that the graphs are isomorphic to those in Figure 2.3.

edges X ⊆ E in G = (V,E) with the following properties: (i) for each node
v ∈ V , there are at most 2 edges incident to v in X; and (ii) for each edge
{u, v} ∈ E, at least one of u, v is incident to an edge x ∈ X. Put otherwise,
X is a simple 2-matching and its endpoints are a vertex cover C ⊆ V .

A minimum-size vertex cover C∗ must cover all edges, including the
edges in the simple 2-matching X. A node v ∈ C∗ can cover at most 2 edges
in X, and an edge in X is covered by at most 2 nodes in C. Hence |C| ≤
2|X| ≤ 4|C∗|. We have a simple algorithm that finds a 4-approximation of
a minimum vertex cover; the algorithm is local and it does not need unique
node identifiers.

A more careful analysis shows that |C| ≤ 3|C∗|, so this is actually a
local 3-approximation algorithm for the vertex cover problem [147]; the
bottleneck is a path of length 2 in the set X. A repeated application
of bicoloured double covers can be used to find a 2-approximation of a
minimum vertex cover [9]. See Hańćkowiak et al. [71] for an example of a
non-local distributed algorithm that exploits bicoloured double covers.

2.7.2 Linear programs and vertex cover

In a centralised setting, another 2-approximation algorithm for the vertex
cover problem can be obtained by deterministic LP rounding [74]: (i) solve
the LP relaxation of the vertex cover problem; and (ii) output the set of
nodes v ∈ V with xv ≥ 1/2. Unlike the algorithm based on a maximal
matching, this directly generalises to the problem of finding a minimum-
weight vertex cover as well.



34 2 Local algorithms

To obtain the LP relaxation of a vertex cover instance, we first write
the vertex cover instance as a set cover instance. The set cover instance
determines an integer program of the form (2.1). The LP relaxation of the
vertex cover instance is the corresponding 0/1 covering LP (2.2).

A local algorithm cannot find an exact solution of a linear program;
the problem is inherently non-local. However, local approximation algo-
rithms for packing and covering LPs are known. The first such algorithm
was presented by Papadimitriou and Yannakakis [143]. In this simple al-
gorithm, the “capacity” of each constraint in a packing LP is distributed
evenly among the adjacent agents; the approximation factor is ∆I (see Sec-
tion 3.4.1 for details). Kuhn and Wattenhofer [110] present improved local
approximation algorithm for special cases of packing and covering LPs. Fi-
nally, Kuhn et al. [102, 103, 108] present local approximation algorithms
for general packing LPs and covering LPs. Among others, they show that
0/1 packing LPs and 0/1 covering LPs admit local approximation schemes
in bounded-degree graphs.

Hence we can find a factor 1 + ε approximation of the LP relaxation of
the minimum vertex cover problem in bounded-degree graphs. Therefore
deterministic LP rounding yields a factor 2+ε approximation of a minimum
vertex cover in bounded-degree graphs, for any ε > 0. Note that the vertex
cover problem is a special case of the set cover problem with ∆K = 2;
the same technique of deterministic LP rounding can be applied to design
a local (∆K + ε)-approximation algorithm for the set cover problem in
bounded-degree graphs, for an arbitrary ∆K .

It is also possible to use the primal-dual schema [140, 162] to design an
algorithm that finds an approximation of a minimum vertex cover directly
without a rounding step. Moscibroda [134, §6.1] uses this approach to
design a (4 + ε)-approximation algorithm for the vertex cover problem in
bounded-degree graphs.

2.7.3 Weak colouring

Weak colouring provided the first example of a nontrivial combinatorial
problem that admits a local algorithm. Naor and Stockmeyer [138] show
that if G is a bounded-degree graph and every node of G has an odd degree,
then there is a local algorithm that finds a weak 2-colouring of G. Mayer
et al. [130] further show that this is possible without unique identifiers; a
port numbering and an orientation is enough.

Let us now show how to find a weak colouring with ∆O(∆) colours, using
only a port numbering and an orientation. Each node v is coloured with a
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vector x(v) that consists of the following components:

• the out-degree and in-degree of v

• p(u, v) for each successor u of v, in the order of increasing p(v, u)

• p(u, v) for each predecessor u of v, in the order of increasing p(v, u).

Example 2.3. Assume that v has three neighbours, u1, u2, u3, with the
port numbers p(v, u1) = 1, p(v, u2) = 2, and p(v, u3) = 3. Assume that the
edges are oriented (v, u1), (u2, v), and (v, u3). Then

x(v) =
(
2, 1, p(u1, v), p(u3, v), p(u2, v)

)
,

that is, the out-degree, the in-degree, two port numbers for the edges leav-
ing v, and one port number for the edges entering v. Note that the elements
are port numbers of the form p(·, v) but they are ordered by the port num-
bers p(v, ·).

To see that the vectors x(v) are a weak colouring of the graph, we
generalise the argument that we saw in Section 2.5.3. Let v be an arbitrary
node. We need to show that there is a neighbour u of v such that x(u) 6=
x(v). If the first two components (out-degree and in-degree) are equal in
x(v) and x(u) for each neighbour u of v, we can consider the following two
cases.

First, assume that the in-degree of v is k and the out-degree of v is
at least k + 1. Then there are at least k + 1 successors of v, and each
successor has k predecessors. By the pigeonhole principle, there are at least
two successors of v, call them s and t, and an index i with the following
property: the element i of the vector x(s) is p(v, s) and the element i
of the vector x(t) is p(v, t). Therefore x(s) 6= x(t), and we cannot have
x(v) = x(s) = x(t). Put otherwise, v has a different colour from s or t (or
both).

Second, assume that the in-degree of v is at least k + 1 and the out-
degree of v is k. This case is analogous: we apply the pigeonhole principle
to the predecessors of v.

Note that this analysis does not go through in a graph with an even
degree. We may have in-degrees equal to out-degrees, and therefore we
cannot invoke the pigeonhole principle – consider, for example, the 4-regular
graph in Figure 2.5 on page 20.

So far we have seen how to find a weak colouring with a constant but
large number of colours. In the following section, we review techniques that
can be used to reduce the number of colours.
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2.7.4 Colour reduction

A local algorithm cannot find a vertex colouring, but it can decrease the
number of colours. Given a k-colouring for a constant k, it is easy to design
a local algorithm that finds a (∆+1)-colouring. In essence, we run a greedy
algorithm. The original k-colouring partitions the network in k layers. In
the step i = 1, 2, . . . , k, the nodes on the layer i choose a colour that is
not used by any of their neighbours on the layers 1, 2, . . . , i− 1. The nodes
on each layer form an independent set; hence they can make their choices
independently in parallel. In the worst case, ∆ + 1 colours are needed.

A much more efficient algorithm can be designed by exploiting the nu-
merical values of the original colours. In a cycle, the technique originally
presented by Cole and Vishkin [35] allows one to decrease the number of
colours from k to O(log k) in one step. Iterating the procedure, we can turn
a k-colouring into a 3-colouring with a local algorithm in O(log∗ k) steps.
The textbook by Cormen et al. [36, §30.5] has a good illustration of the
Cole–Vishkin technique; in essence, a node with a b-bit label relabels itself
with an O(log b)-bit label (i, x) that identifies the index i and the value x
of the first bit in its old label that differs from the next node in the cycle.

The same basic idea can be applied in general bounded-degree graphs
as well [64]. If k is a constant, a k-colouring can be turned into a (∆ + 1)-
colouring with a local algorithm in O(∆ log ∆ + log∗ k) steps [102, 111]; see
also Attiya et al.’s [11] algorithm that finds a (∆ + 1)-colouring assuming
that a so-called t-orientation is given. Naor and Stockmeyer [138] show how
to turn a weak k-colouring into a weak 2-colouring.

Naturally, if we are given a k-colouring for a constant k, we can also
solve a number of other problems with a local algorithm. The symmetry
has been broken and, for example, finding a maximal independent set is
then easy [11, 14]. The following algorithm provides a reasonable trade-off
between efficiency and simplicity: first apply a colour reduction algorithm,
and then find a maximal independent set with a greedy algorithm. How-
ever, if ∆ is large, more efficient alternatives exist; see, for example, the
techniques used by Schneider and Wattenhofer [154].

2.7.5 Matching

As we have seen in Section 2.6.3, there is no local algorithm for finding
a constant-factor approximation of a maximum matching in any family
of graphs that contains n-cycles. However, positive results are known for
bicoloured graphs and for graphs where each node has an odd degree.
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We have already seen the algorithm by Hańćkowiak et al. [70] for finding
a maximal matching in bicoloured bounded-degree graphs. A maximal
matching is a 2-approximation of a maximum matching. It is possible to
improve the approximation factor to 1 + ε for any ε > 0; it is enough to
make sure that there is no augmenting path of length O(1/ε) [10]. With the
help of the bicoloured double cover from Section 2.7.1, this yields a (2 + ε)-
approximation of a maximum-size simple 2-matching in general bounded-
degree graphs.

Bounded-degree graphs where each node has an odd degree admit a
local ∆-approximation algorithm for the maximum matching problem; the
algorithm proceeds as follows. We can first find a weak 2-colouring c : V →
{1, 2} with the algorithm by Naor and Stockmeyer [138]. Let X ⊆ E consist
of the edges {u, v} ∈ E with c(u) 6= c(v). Let H = (U,X) be the subgraph
of G induced by the edges in X, that is, U consists of the endpoints of the
edges in X. Now H together with c is a bicoloured graph; therefore we can
find a maximal matching M in H; this is also a matching in G. Let us now
establish the approximation ratio. Let M∗ be a maximum matching. Let
U ⊆ V consist of the nodes matched in M and let U∗ ⊆ V consists of the
nodes matched in M∗. If v ∈ U∗\U , then v is non-isolated in G and hence it
is adjacent to a node u with the opposite colour, by the definition of a weak
2-colouring. Therefore {u, v} is an edge in the subgraph H, and since M is
maximal, we have u ∈ U . Furthermore, u is adjacent to at least one node
in U ; therefore u is adjacent to at most ∆ − 1 nodes in U∗ \ U . Summing
over all nodes in U , we have |U∗ \ U | ≤ (∆− 1)|U |, that is, |U∗| ≤ ∆|U |
and |M∗| ≤ ∆|M |. The approximation factor can be further improved to
(∆ + 1)/2, which is tight [10].

The problem of finding a stable matching is inherently non-local, even
in bicoloured graphs. However, it is possible to find an ε-stable matching in
a bicoloured bounded-degree graph with a local algorithm [55]. In essence,
the local algorithm runs the Gale–Shapley algorithm [59] for a constant
number of rounds. The same local algorithm finds a (2 + ε)-approximation
of a maximum-weight matching in bicoloured bounded-degree graphs.

2.7.6 Domination

In a bounded-degree graph, the set of all nodes is a factor ∆ + 1 approxi-
mation of a minimum dominating set. If each node has an odd degree, it
is possible to find a factor ∆ approximation with a local algorithm, using
a port numbering and an orientation: find a weak 2-colouring [130, 138]
and output all nodes of colour 1 and all isolated nodes. This set is, by
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definition, a dominating set: a non-isolated node of colour 2 is adjacent to
at least one node of colour 1. To establish the approximation ratio, assume
that G = (V,E) is connected; otherwise we can apply the result to each
connected component. If |V | = 1, the claim is trivial. Otherwise, let D∗

be an optimal dominating set in G, let D1 consist of the nodes of colour 1,
and let D2 = V \D1 consist of the nodes of colour 2. Now D∗, D1, and D2

are dominating sets in G. Furthermore, for any dominating set D, it holds
that |D| ≥ |V |/(∆ + 1) because a node in D can only dominate at most ∆
nodes outside D. Hence

|D1| = |V | − |D2| ≤ |V | − |V |
∆ + 1

=
∆|V |
∆ + 1

≤ ∆|D∗|,

that is, D1 is a ∆-approximation of a minimum dominating set in G. More-
over, (D1, D2) is a domatic partition of size 2 if there is no isolated node,
and a maximum domatic partition has at most δ + 1 disjoint dominating
sets where δ is the minimum degree of G. Hence a weak 2-colouring pro-
vides a factor (δ + 1)/2 approximation of a maximum domatic partition if
there is no isolated node; the trivial solution (V ) is optimal if there is an
isolated node (i.e., if δ = 0).

It is possible to perform local modifications in a weak 2-colouring so that
the number of colour-1 nodes is at most as large as the number of colour-
2 nodes [10]. This approach provides a factor (∆ + 1)/2 approximation
algorithm for the dominating set problem in graphs of odd degree, and a
∆-approximation in general graphs for an odd ∆.

Both Czygrinow et al. [39] and Lenzen and Wattenhofer [118] present
a local, constant-factor approximation algorithm for the dominating set
problem in planar graphs. The current best known approximation factor is
74, see Lenzen and Wattenhofer [118].

In Section 2.7.1 we saw how to use a maximal matching in a bicoloured
double cover to find a constant-factor approximation for the vertex cover
problem. The same technique provides a 4-approximation of a minimum
edge dominating set as well [8].

2.7.7 Trivial algorithms

For some families of graphs, there is a trivial local approximation algorithm
for the vertex cover problem. For example, the set of all nodes is a 2-
approximation of a minimum vertex cover in regular graphs, and the set of
all non-isolated nodes is a 6-approximation of a minimum vertex cover in
unit-disk graphs [102, 169].
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There is a trivial, local approximation algorithm for the edge cover
problem: independently and in parallel, each node v ∈ V chooses one
neighbour x(v) ∈ V with {v, x(v)} ∈ E. The set C = {{v, x(v)} : v ∈ V } is
a factor 2 approximation of a minimum edge cover. This generalises to the
minimum-weight edge cover as well: each node chooses the cheapest edge.

The edge cover problem is a special case of the set cover problem with
∆V = 2. The trivial 2-approximation algorithm for the edge cover problem
can be applied to approximating set cover as well: each customer k ∈ K
chooses independently and in parallel which agent v ∈ V covers it. The
approximation factor is ∆V .

2.7.8 Local verification and locally checkable proofs

Korman et al. [96, 97] study the problem of verifying a solution with a
local algorithm. We have seen that the problem of finding a spanning tree
is inherently non-local, and if we are given a spanning tree in a natural way
as a subset of edges, a local algorithm cannot verify whether it really is a
spanning tree or not; recall Figure 2.9 on page 24.

However, it is possible to give a spanning tree together with a proof that
can be verified with a local algorithm, so that an invalid input is detected by
at least one node (assuming that the communication graph G is connected).
For example, we can orient the spanning tree towards an arbitrary root
node. For each node, the proof consists of (i) the identity of the root node,
(ii) the distance to the root node in the spanning tree, and (iii) the edge
that points towards the root node.

2.7.9 Other problems

Kuhn et al. [107] studies a generalisation of covering LPs, with upper
bounds for variables xv.

Our work in Papers I and II presents local algorithms for max-min linear
programs; see Chapter 3 for details.

Andersen et al. [5] study local algorithms for PageRank [24] computa-
tions in the web graph.

A weak 2-colouring also determines a cut with at least |E|/∆ edges.
This gives a partial answer to Elkin’s [48] question regarding the distributed
approximability of the maximum cut problem.

Positive results for the circuit complexity class NC0 [7, 37, 81] may
also have positive implications in the field of local algorithms; this possible
connection calls for further research.
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2.8 Randomised local algorithms

There are two key techniques which make randomness a practical tool in
the design of centralised algorithms, both familiar from textbooks on ran-
domised algorithms [132, 136]. First, the probability of a “failure” – the
event of producing an infeasible output – can be made negligible by adapt-
ing the algorithm to the global properties of the input; for example, the
number of iterations can depend on the size of the input. Second, it may
be possible to detect incorrect output and re-execute the algorithm until
the output is correct, turning a Monte Carlo algorithm into a Las Vegas
one.

In a local setting, neither of these two techniques can be applied as
such. First, the execution of a local algorithm cannot depend on the size
of the input. Second, it is not possible to gather the output in a central
location for inspection and re-execute the algorithm depending on whether
the output is incorrect. Indeed, if a randomised local algorithm has a
nonzero probability of failure given some input, then we can simply take
several copies of the input to boost the probability that the algorithm makes
a failure in at least one copy; see, e.g., Kuhn [102, §4.5].

There are strong negative results on the power of randomness in the
local setting. Linial [121] shows that randomness does not help in local
algorithms where the objective is to colour a graph, and Kuhn [102, §4.5]
extends this to the problem of colour reduction. Naor and Stockmeyer [138]
show that randomness does not help in a local algorithm for any locally
checkable labelling; this includes, among others, the problem of finding
a maximal matching or a maximal independent set in a bounded-degree
graph.

Nevertheless, there are positive results where a randomised local algo-
rithm provides a probabilistic approximation guarantee. For example, in
some cases it is possible to give an upper bound on the expected approxima-
tion factor – here the expectation is over the random coin tosses made by
the algorithm; nothing is assumed about the input. If we are content with
a probabilistic approximation guarantee, it is possible to overcome some of
the negative results in Section 2.6.

Interestingly, Kuhn [102, §2.7.1] shows that probabilistic approximation
guarantees do not help with linear programs: if there is a local, randomised
algorithm with the expected approximation factor α, then there is a local,
deterministic α-approximation algorithm as well. Therefore all positive
examples in this section involve combinatorial problems.
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2.8.1 Matching and independent set

As we have seen in Section 2.6.3, packing problems such as maximum match-
ing and maximum independent set do not admit deterministic, local approx-
imation algorithms, not even in the case of an n-cycle with unique node
identifiers. With these problems, randomness clearly helps.

Wattenhofer and Wattenhofer [164] present a randomised local approx-
imation algorithm for the maximum-weight matching problem in trees; the
expected weight of the matching is within factor 4 of the optimum. Hoep-
man et al. [77] improve the expected approximation ratio to 2 + ε.

Nguyen and Onak [139] present a randomised local algorithm for the
maximum matching problem in bounded-degree graphs; the approximation
ratio is 1 + ε with high probability.

Czygrinow et al. [39] present a randomised local algorithm for finding
a maximum independent set in a planar graph; the approximation ratio is
1 + ε with high probability.

2.8.2 Maximum cut and maximum satisfiability

Another negative result from Section 2.6.3 shows that there is no determin-
istic local approximation algorithm for the maximum cut problem. Again,
a randomised local algorithm exists. In this case, we can resort to a very
simple algorithm, familiar from introductory courses to randomised algo-
rithms: flip a fair coin for each node to determine its side [126, 132, 136].
The expected size of the cut is |E|/2; hence the expected approximation
ratio is 2. The algorithm is clearly local; no communication is needed.

A similar approach can be applied to the maximum satisfiability (MAX-
SAT) problem: choose a random assignment [132, 136]. See, e.g., Ausiello
et al. [13, Problem LO1] or Garey and Johnson [60, Problem LO5] for
the definition of the problem. However, unlike the maximum cut problem,
MAX-SAT has a simple, local, deterministic 2-approximation algorithm:
First, for each clause, remove all but one of the literals; in essence, we arrive
at a MAX-1-SAT instance. Second, satisfy at least half of the clauses by
using a local version of Johnson’s [87] 2-approximation algorithm.

2.8.3 LP rounding

Kuhn et al. [102, 107, 108, 110] present a general framework for designing
randomised local algorithms for the set cover and set packing problems in
bounded-degree graphs. The solution is obtained in three phases: (1) Solve
the LP relaxation of the problem approximately with a local algorithm.
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Figure 2.13: (a) A unit-disk graph. (b) A quasi unit-disk graph, with
d = 1/2. (c) A civilised graph, with s = 1/2. This is also a quasi unit-disk
graph, with d < s.

(2) Apply randomised rounding to find a candidate solution; at this point,
the solution is integral but it is not necessarily feasible. (3) Apply a deter-
ministic algorithm to make the solution feasible.

As discussed earlier in Section 2.7, the LP relaxations of the set cover
and set packing problems have local approximation schemes in bounded-
degree graphs. Together with these algorithms, the LP rounding scheme
yields the expected approximation ratio O(log ∆V ) for the set cover problem
and O(∆V ) for the set packing problem.

In bounded-degree graphs, these results imply the following expected
approximation ratios: O(log ∆) for vertex covers, O(log ∆) for dominating
sets, O(∆) for maximum independent sets, and O(1) for maximum match-
ings.

2.9 Geometric problems

In this section, we review local algorithms for geometric graphs. In a geo-
metric graph, each node is embedded in a low-dimensional space, typically
in the two-dimensional plane.

2.9.1 Models

Most research has focused on the case where G is a unit-disk graph: a pair of
nodes is connected by an edge if and only if the Euclidean distance between
them is at most 1. See Figure 2.13a.

Work has also been done on generalisations of unit-disk graphs. A quasi
unit-disk graph [18, 112] is a graph where the nodes are embedded in the
two-dimensional plane, the length of an edge is at most 1, and nodes which
are within distance d from each other are always connected by an edge; here
0 < d < 1 is a constant. See Figure 2.13b. A civilised graph (graph drawn
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in a civilised manner) [47, §8.5] is a graph where the nodes are embedded
in the two-dimensional plane, the length of an edge is at most 1, and the
distance between any pair of nodes is at least s; here 0 < s < 1 is a constant.
See Figure 2.13c.

By definition, a civilised graph with parameter s is a quasi unit-disk
graph with parameter d < s; therefore all positive results for quasi unit-disk
graphs apply directly to civilised graphs. Furthermore, a civilised graph is
a bounded-degree graph, as can be seen by a simple packing argument.

2.9.2 Partial geometric information

For some problems, it is sufficient to have a local knowledge of the embed-
ding. Kuhn et al. [102, 106] show that packing and covering LPs admit
local constant-factor approximation algorithms in unit-disk graphs. It is
enough that the distances between the nodes are known so that each node
can construct a local coordinate system.

Our work in Papers III and IV studies scheduling problems in a semi-
geometric setting in which the coordinates of the nodes are not known,
but a small amount of symmetry-breaking information is available. See
Chapter 4 for details.

Most positive results, however, assume that there is a global coordinate
system and each node knows its coordinate (so-called location-aware nodes).
We review these results in the following.

2.9.3 Algorithms from simple tilings

A simple approach for designing local algorithms in a geometric setting
is to partition the two-dimensional plane into rectangles, and colour the
rectangles with a constant number of colours [72, 73, 102, 106, 134, 168, 170,
171]. Partitioning the two-dimensional plane into rectangles also partitions
the network into clusters. If each node knows its coordinates, it knows into
which cluster it belongs to.

As a concrete example, we can partition the plane into rectangles of
size 2 × 1 and colour them with 3 colours so that the distance between a
pair of nodes in two different rectangles of the same colour is larger than 1.
See Figure 2.14 for illustration; we use the names white, light, and dark for
the colours.

By construction, we know that if the nodes u and v are in two different
rectangles of the same colour, then there is no edge {u, v} in a (quasi) unit-
disk graph. Furthermore, a packing argument shows that there is a constant
upper bound D on the diameter of a connected component of a cluster.
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Figure 2.14: Partitioning the two-dimensional plane into 3-coloured rectan-
gles with dimensions 2× 1.

1
4

2
2

1

33

6

Figure 2.15: Factor 3 approximation for vertex colouring. The edges that
cross the boundaries of the tiles can be safely ignored in the algorithm.

In Awerbuch et al.’s [14] terminology, these coloured rectangles provide a
(3, D)-decomposition of the network. In Attiya et al.’s [11] terminology, the
coloured rectangles provide a t-orientation of the graph G for t = 3D.

Now it is easy to design a local 3-approximation algorithm for vertex
colouring [72, 102, 168, 170]. We handle each connected component in each
cluster independently in parallel. A local algorithm finds an optimal vertex
colouring within each component; the components have bounded diameter
and hence a local algorithm can gather full information about the compo-
nent. Connected components in white rectangles assign colours 1, 4, 7, . . . ,
connected components in light rectangles assign colours 2, 5, 8, . . . , and
connected components in dark rectangles assign colours 3, 6, 9, . . . . Put
together, we obtain a feasible vertex colouring, and the number of colours
that we use is within factor 3 of the optimum; see Figure 2.15.

A similar idea (with larger 3-coloured rectangles) can be used to design
local 3-approximation algorithms for the following problems: edge colour-
ing [72], vertex cover [72, 73, 168], and dominating set [72, 73, 168]. These
are examples of local algorithms that unscrupulously exploit the assump-
tion that local computation is free; nevertheless, Hunt et al. [80] show how
to solve the subproblem of finding a minimum-size dominating set or vertex
cover within a rectangle in polynomial time.
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Another algorithm design technique that employs the same 3-coloured
tiling is the sequential greedy strategy. Consider, for example, the task
of finding a maximal independent set. We can proceed in three phases as
follows [11, 14, 72]. First, each white rectangle finds a maximal indepen-
dent set with a greedy algorithm. Then each light rectangle extends the
independent set greedily, taking into account the output in neighbouring
white rectangles. Finally, each dark rectangle extends the independent set
greedily, taking into account neighbouring white and light rectangles. The
same technique can be applied to find a maximal matching [72, 171] and
a vertex (∆ + 1)-colouring [11, 14, 72]. A local algorithm for maximal
matching then gives a 2-approximation of a minimum vertex cover as well.

Finally, it is possible to find a factor 4 approximation of a maximum
independent set by using a similar 3-coloured tiling [72, 168]. First, each
cluster finds a maximum-size independent set in parallel. This may cause
conflicts. The conflicts are then resolved; first those that involve white
rectangles and then those that involve light rectangles. At each conflict
resolution we lose at most one half of the nodes; hence the remaining nodes
provide a factor 4 approximation.

2.9.4 Other algorithms

Wiese and Kranakis [168, 171–173] present local approximation schemes
for dominating sets, connected dominating sets, vertex covers, maximum
matchings, and maximum independent sets in unit-disk graphs.

Czyzowicz et al. [40] present a 5-approximation algorithm for the dom-
inating set problem and a 7.46-approximation algorithm for the connected
dominating set problem. Wiese and Kranakis [168, 169] study local approx-
imation algorithms with local horizon r ≤ 2 for dominating sets, connected
dominating sets, vertex covers, and independent sets in unit-disk graphs.
Kuhn and Moscibroda [104] present a local approximation algorithm for the
capacitated dominating set problem in unit-disk graphs; this is a variant of
the dominating set problem in which each node has a limited capacity that
determines how many neighbours it can dominate.

Šparl and Žerovnik [157] present a 4/3-approximation algorithm for
multicolouring hexagonal graphs.

2.9.5 Planar subgraphs and geographic routing

In geographic routing [61, 179], it is of interest to construct a connected
planar subgraph H = (V,E′) of a unit-disk graph G = (V,E), with the
original set of nodes V but a smaller set of edges E′ ⊂ E.
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There are local algorithms for constructing planar subgraphs. For ex-
ample, Gabriel graphs [58] and relative neighbourhood graphs [86, 160] can
be constructed with simple local rules.

Once we have constructed a planar subgraph of a unit-disk graph, it
is possible to route messages with local geometric rules, assuming that we
know the coordinates of the target node [22, 100].

2.9.6 Spanners

In applications such as topology control, merely having a connected planar
subgraph H is not enough. Among others, it is desirable that H is a
geometric t-spanner . In a t-spanner, for any pair u, v of nodes in G, the
shortest path between u and v in H is at most t times as long as the
shortest path between u and v in G; here the length of a path is the sum
of the Euclidean lengths of the edges. The constant t is the stretch factor
of the spanner.

Gabriel graphs and relative neighbourhood graphs are not t-spanners
for any constant t. Yao graphs [176] and θ-graphs [92] provide classical
examples of spanners that can be constructed with a simple local algorithm.
However, these constructions lack some desirable properties; in particular,
they do not have a constant upper bound on the node degree.

Examples of more recent work include the following. Wang and Li [163]
present a local algorithm for constructing a planar, bounded-degree spanner
in unit-disk graphs. The local algorithms by Li et al. [120] and Kanj et
al. [90] further guarantee that the total edge length of the spanner is at
most a constant factor larger than the total edge length of a minimum
spanning tree. Chávez et al. [31] generalise the results by Li et al. [120]
to quasi unit-disk graphs. Wattenhofer and Zollinger [165] present a local
algorithm that can be applied in arbitrary weighted graphs, not only in
geometric graphs.

2.9.7 Coloured subgraphs

Local algorithms have also been presented for constructing coloured sub-
graphs. Urrutia [161] presents a local algorithm that constructs a con-
nected, planar, edge-coloured subgraph of a unit-disk graph. Wiese and
Kranakis [168, 170] present a local algorithm that constructs a connected,
planar, vertex-coloured subgraph of a unit-disk graph. Czyzowicz et al. [41]
present a local algorithm for colouring the nodes in an arbitrary planar sub-
graph of a unit-disk graph. Czyzowicz et al. [42] present a local algorithm
for colouring the edges in certain subgraphs of unit-disk graphs.
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2.10 Open problems

We conclude this chapter with some open problems related to deterministic
local algorithms. We recall that in this work a local algorithm refers to a
constant-time algorithm.

Problem 2.1. Is there a local approximation scheme for general packing
LPs or covering LPs in bounded-degree graphs?

The local approximation scheme by Kuhn et al. [108] assumes not only
a degree bound but also an upper bound for the ratio of largest coefficient
to smallest coefficient in the LP. Techniques by Luby and Nisan [127] and
Bartal et al. [19] can be applied to avoid the dependency on coefficients, but
this comes at the cost of adding a dependency on the size of the input [109].

Problem 2.2. Is it possible to achieve a better approximation ratio than
∆V and ∆K + ε for the set cover problem with a deterministic local algo-
rithm?

In a centralised setting, the greedy algorithm [30, 87, 123] achieves
the approximation ratio 1 + 1/2 + · · · + 1/∆V = O(log ∆V ). The ran-
domised local algorithm [102, 108] achieves the expected approximation
factor O(log ∆V ). However, no deterministic local algorithm is known with
the approximation factor better than ∆V .

Problem 2.3. Is there a combinatorial packing problem that admits a
nontrivial, deterministic, local approximation algorithm?

Finding a simple 2-matching is a packing problem, but it is a slightly
contrived example. It would be interesting to see other, more natural exam-
ples of packing problems that can be solved locally, without any auxiliary
information.

A partial answer is provided by the local approximation algorithm for
the maximum matching problem, based on the weak 2-colouring algorithm
by Naor and Stockmeyer [138]. However, this can be applied only in a
graph where every node has an odd degree, a rather stringent assumption.

Problem 2.4. Is there a problem that (i) can be solved with a local algo-
rithm that exploits the numerical values of the identifiers, and (ii) cannot
be solved with an order-invariant local algorithm that merely compares the
identifiers?

Naor and Stockmeyer [138] show that order-invariant local algorithms
are sufficient for locally checkable labellings: if there is a local algorithm
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for a locally checkable labelling problem, then there is an order-invariant
algorithm as well. Hence we need to seek for an example outside locally
checkable labellings.

If we assume that the set of node identifiers is {1, 2, . . . , |V |}, then we
can find some examples of problems that admit a local algorithm and do not
admit an order-invariant local algorithm. For example, in this case leader
election is trivial with a local algorithm (the node number 1 is the leader)
but there is no order-invariant local algorithm for the task. However, this
example is no longer valid if the unique node identifiers are an arbitrary
subset of, say, {1, 2, . . . , 2|V |}.



Chapter 3

Local algorithms for max-min LPs

This chapter is based on Papers I and II.

3.1 Introduction

Recall the definition of a max-min LP in Section 2.4.4: the objective is to
maximise ω subject to Ax ≤ 1, Cx ≥ ω1, and x ≥ 0 for non-negative
matrices A and C. The name “max-min LP” comes from the following
equivalent formulation:

maximise min
k∈K

ckx

subject to aix ≤ 1 for each i ∈ I,

xv ≥ 0 for each v ∈ V.

Each row ai of A has at most ∆I positive elements, and each row ck of C
has at most ∆K positive elements.

This chapter summarises the results of Papers I and II; the work is
related to local algorithms and max-min linear programs in distributed
systems.

3.2 Applications

We begin with motivating examples that illustrate how max-min LPs arise
in distributed systems. Our main example stems from the task of data
gathering in wireless sensor networks.

49
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k1 k2 k3 k4 k5 ∈ K
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i1 i3 ∈ Ii2

sensors:

relays:

Figure 3.1: A sensor network (based on Figure 1.1 on page 2).

3.2.1 Data gathering in sensor networks

Consider the wireless sensor network illustrated in Figure 3.1. In this simple
example, there are 5 sensors, k1, k2, . . . , k5. Each sensor produces data,
which needs to be gathered in the sink node. The sensor nodes have a low-
power radio, with which they cannot reach the sink node directly. Hence
we use a two-tier topology: there are 3 relay nodes, i1, i2, i3, which can be
used to forward data from the sensor nodes to the sink.

The edges denote possible data flows in the network. For example, data
generated by the sensor k1 can only be forwarded through the relay i1.
However, for the sensor k2, there are several possibilities: we can transfer a
part of the data through the relay i1 and the rest of the data through the
relay i2.

We use the non-negative variables x1, x2, . . . , x9 to denote the amount
of data transmitted on the edges 1, 2, . . . , 9, respectively. For example, the
variable x6 is the amount of data transmitted from the sensor k4 through
the relay i2 to the sink. The total amount of data forwarded by the relay
i2 is hence x4 + x5 + x6, and the total amount of data gathered from the
sensor k2 is x2 + x4.

To keep this example simple, we assume that the bottleneck is the
limited battery capacity of the relay nodes – long-distance data transmis-
sions between the relay and the sink consume a large amount of energy. We
choose the units so that each relay can forward 1 unit of data in total. That
is, we need to choose data flows x ≥ 0 that satisfy the packing constraints
x1 + x2 + x3 ≤ 1, x4 + x5 + x6 ≤ 1, and x7 + x8 + x9 ≤ 1.

To arrive at a well-defined optimisation problem, we need to define the
objective function that characterises the utility or goodness of a feasible
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solution x. Naturally the choice of the objective function depends on the
application, but there are two simple candidates that have been studied in
the literature. The first candidate is to maximise the total amount of data
gathered [78, 153], that is,

maximise x1 + x2 + · · ·+ x9

subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0.

(3.1)

The second candidate is to maximise the minimum amount of data gathered
per sensors [54, 89], that is

maximise min {x1, x2 + x4, x3 + x5 + x7, x6 + x8, x9}
subject to x1 + x2 + x3 ≤ 1,

x4 + x5 + x6 ≤ 1,

x7 + x8 + x9 ≤ 1,

x1, x2, . . . , x9 ≥ 0.

(3.2)

Note that the formulation in (3.2) is equivalent to maximising the lifetime
of the network, assuming that each sensor node produces data at the same
constant rate and all data must be routed to the sink.

The optimisation problem (3.1) is a packing LP, and local algorithms
from prior work [102, 108, 143] can be used to solve it approximately in a
distributed setting. However, this formulation alone does not capture well
the requirements of a typical sensor network [54]. For example, an optimal
solution of (3.1) gathers 1 unit of data from each of the sensors k1, k2, k3

and completely ignores the sensors k4, k5.
The optimisation problem (3.2) is arguably a more faithful represen-

tation of the real-world goals of a typical sensor network: no sensor is
ignored. In any optimal solution of (3.2), we receive 3/5 units of data from
each sensor k1, k2, . . . , k5. An example of an optimal solution is

x1 = x5 = x9 = 3/5,

x2 = x8 = 2/5,

x4 = x6 = 1/5,

x3 = x7 = 0.

However, the problem (3.2) is a max-min LP, and prior work on packing or
covering LPs cannot be applied to solve it. In this chapter, we study local
algorithms for solving this kind of optimisation problems.
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3.2.2 Fair bandwidth allocation

Other optimisation problems in communication networks have a structure
similar to Figure 3.1, and they also lead to max-min LPs similar to (3.2).
For example, consider the task of allocating a fair share of bandwidth to
each customer of an Internet service provider. Each customer is connected
to some wireless access points in the vicinity, and each access point has
a limited-bandwidth connection to the Internet. The objective is to max-
imise the minimum bandwidth allocated to each customer, subject to the
bandwidth constraints. This setting is essentially equal to the example in
Section 3.2.1, if we replace the sensors with customers and the relays with
access points.

3.2.3 Mixed packing and covering

On a more abstract level, a local approximation algorithm for max-min LPs
is also a local algorithm for approximate mixed packing and covering . A
mixed packing and covering problem is a system of inequalities of the form

Ax ≤ 1,

Cx ≥ 1,

x ≥ 0

(3.3)

for non-negative matrices A and C. In α-approximate mixed packing and
covering [178] the task is to either (i) find an approximately feasible solution
x ≥ 0 such that Ax ≤ α1 and Cx ≥ 1, or (ii) prove that the original
problem (3.3) does not have a solution.

Now assume that we have a local α-approximation algorithm A for
max-min LPs. Using A, we can find an α-approximation to the problem of
maximising ω subject to Ax ≤ α1, Cx ≥ ωα1, and x ≥ 0. We make two
observations.

1. If there is a vector x that satisfies (3.3), the output of the algorithm A
provides an approximately feasible solution x ≥ 0 such that Ax ≤ α1
and Cx ≥ 1.

2. If the output of A violates ckx ≥ 1 for some k ∈ K, then we know
that (3.3) does not have a feasible solution. Furthermore, the node k
can detect the violation.

Hence we can solve an α-approximate mixed packing and covering problem
in the following sense: either (i) we find an approximately feasible solu-
tion x, or (ii) at least one node detects that (3.3) does not have a solution.
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agents: 9 ∈ V87654321

Figure 3.2: The graph G = (V ∪ I ∪K, E) for the max-min LP (3.2).

An application of mixed packing and covering mentioned by Young [178]
is related to non-negative systems of linear equations. Given a non-negative
matrix A, the task is to find a non-negative x such that Ax = 1. If we can
solve the α-approximate mixed packing and covering problem, we can also
find a non-negative x such that 1 ≤ Ax ≤ α1, or show that there is no
non-negative solution to Ax = 1.

3.3 Definitions

As defined in Section 2.4.4, we assume the following distributed setting.
The communication graph is a bipartite graph G = (V ∪ I ∪ K, E) where
edges e ∈ E are of the form e = {v, i} or e = {v, k} with v ∈ V (agents),
i ∈ I (constraints), and k ∈ K (customers). A positive coefficient aiv > 0
implies that {i, v} ∈ E, and a positive coefficient ckv > 0 implies that
{k, v} ∈ E.

3.3.1 An example of the communication graph

For the problem (3.2), the graph G is illustrated in Figure 3.2. Comparing
Figure 3.1 with Figure 3.2, it is evident that the graph G is closely related
to the physical structure of the original sensor network. In particular, a
short path in G corresponds to a small number of sensor–relay links in
the original network. A local algorithm in the graph G can be efficiently
implemented in the sensor network of Figure 3.1, and we do not need to
use any of the long-distance links between the relays and the sink.

In this example, the customers k ∈ K and the constraints i ∈ I cor-
respond to physical computational entities in the network (sensor nodes
and relay nodes, respectively). This is not the case for the agents v ∈ V ;
however, the behaviour of an agent can be simulated by a physical entity,
for example, by the adjacent relay node.



54 3 Local algorithms for max-min LPs

In the following, we focus on the abstract communication graph G. The
algorithms are written as if each node of G was a computational entity.

3.3.2 Bipartite and 0/1 max-min LPs

The max-min LP (3.2) has two special properties, both of which turn out
to simplify the design of local algorithms.

First, each element of A and C is either 0 or 1. Using the definition
from Section 2.4.4, we say that (3.2) is a 0/1 max-min LP.

Second, each column of A has exactly 1 positive element, and each
column of C has exactly 1 positive element as well. Put otherwise, in the
graph G, each agent v ∈ V is adjacent to exactly one constraint i ∈ I
and exactly one customer k ∈ K. Such a special case is called a bipartite
max-min LP .

The name “bipartite max-min LP” refers to the fact that our starting
point was a bipartite graph, with edges between the customers and the
constraints (black arrows in Figure 3.1). We then replaced each edge with
a customer–agent–constraint path. By definition, this procedure leads to a
bipartite max-min LP, with each agent adjacent to one customer and one
constraint. It should be noted that the graph G is always bipartite, both
in the case of bipartite max-min LPs and non-bipartite max-min LPs.

A simple two-tier structure – such as the sensors and the relays in
the example of Section 3.2.1, or the customers and the access points in
Section 3.2.2 – leads to a bipartite max-min LP. A more complicated
network, with bottlenecks on several levels of the hierarchy, would give rise
to a more general non-bipartite max-min LP.

3.4 Background

Papadimitriou and Yannakakis [143] present a simple local approximation
algorithm for packing LPs, the so-called safe algorithm; it turns out that
this is a local approximation algorithm for max-min LPs as well.

3.4.1 The safe algorithm

In the safe algorithm, the agent v chooses

xv = min
i∈I: {i,v}∈E

1
aiv deg(i)

.

Intuitively, each constraint i ∈ I divides its “capacity” evenly among all its
neighbours: if i has deg(i) neighbours, each neighbour v ∈ V of i can use
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at most 1/ deg(i) of the capacity – that is, aivxv is at most 1/ deg(i). In
particular, the node v chooses the largest possible value xv that does not
violate these allotments for any of its adjacent constraints.

Clearly this is a feasible solution to a packing LP or a max-min LP: by
construction, none of the packing constraints are violated. Now let x∗ be
an optimal solution. Then it holds that aivx

∗
v ≤ 1 for all i ∈ I and v ∈ V ,

that is,

x∗v ≤ min
i∈I: {i,v}∈E

1
aiv

.

Therefore xv ≥ x∗v/∆I for all v ∈ V . In particular, x is a ∆I -approximation
to a packing LP. Furthermore, it is a ∆I -approximation to a max-min LP,
and the solution does not depend on the matrix C at all. The local horizon
of this local algorithm is 1.

3.4.2 Simple special cases

The special cases of ∆I = 1 or ∆K = 1 can be solved optimally with a
simple local algorithm. To see this, note that the safe algorithm produces an
optimal solution in the case ∆I = 1. Let us then present a local algorithm
for the case ∆K = 1. For each agent v ∈ V , constraint i ∈ I, and customer
k ∈ K, we use the shorthand notation

I(v) = {i ∈ I : {i, v} ∈ E},
K(v) = {k ∈ K : {k, v} ∈ E},
V (i) = {v ∈ V : {i, v} ∈ E},
V (k) = {v ∈ V : {k, v} ∈ E}.

By assumption, |V (k)| ≤ 1 for each k ∈ K. If V (k) = ∅, the problem is
trivial: the row ck of the matrix C is equal to zero, the optimum of the
max-min LP is ω = 0, and any feasible solution is optimal. Hence we can
focus on the case |V (k)| = 1 for all k ∈ K. Furthermore, if K(v) = ∅ for an
agent v ∈ V , we can set xv = 0; therefore we focus on the case K(v) 6= ∅
for all v ∈ V .

Now the sets K(v) form a partition of K, and we can write the utility
ω(x) of a solution x as

ω(x) = min
k∈K

ckx = min
v∈V

min
k∈K(v)

ckvxv = min
v∈V

xv min
k∈K(v)

ckv = min
v∈V

c(v)xv,

where c(v) = mink∈K(v) ckv. Therefore there is an optimal solution x∗ with
utility ω such that c(v)x∗v = ω for all v ∈ V . Let v ∈ V be an agent and let
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i ∈ I(v) be an adjacent constraint; the optimal solution x∗ satisfies

c(v)x∗v
∑

u∈V (i)

aiu

c(u)
= ω

∑
u∈V (i)

aiu

c(u)
=

∑
u∈V (i)

aiux∗u ≤ 1. (3.4)

Consider the local algorithm that chooses

xv = c(v)−1 min
i∈I(v)

( ∑
u∈V (i)

aiu

c(u)

)−1

(3.5)

for each agent v ∈ V . First, this choice is feasible, as

∑
v∈V (i)

aivxv ≤
∑

v∈V (i)

aiv

c(v)

( ∑
u∈V (i)

aiu

c(u)

)−1

= 1

for each constraint i ∈ I. Second, this choice is optimal, as xv ≥ x∗v for
each agent v ∈ V by (3.4) and (3.5).

Hence the case ∆I = 1 or ∆K = 1 can be solved optimally with a simple
local algorithm. For the rest of this chapter, we focus on the non-trivial
case ∆I ≥ 2 and ∆K ≥ 2.

3.5 Our results

As we saw in Section 3.4.1, the same local algorithm, the safe algorithm, can
be used to obtain a ∆I -approximation for both packing LPs and max-min
LPs. However, from the perspective of local approximability, the common-
alities between packing LPs and max-min LPs end here. For packing and
covering LPs in bounded-degree graphs, the approximation factor can be
improved to 1 + ε for any ε > 0, at the cost of increasing the local hori-
zon [102, 108]. For max-min LPs, this is not the case; our work in Papers
I and II presents lower bounds for the approximation factor achievable with
any local algorithm.

3.5.1 Lower bounds

The first lower bound is from Paper I. While this is not yet a tight bound, it
already establishes that there is no local approximation scheme for max-min
LPs in general.

Theorem 3.1. For any ∆I ≥ 2 and ∆K ≥ 2, there is no local approxi-
mation algorithm for max-min LPs with an approximation ratio less than
∆I/2 + 1/2− 1/(2∆K − 2).
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Subsequently, the result was improved in Paper II:

Theorem 3.2. For any ∆I ≥ 2 and ∆K ≥ 2, there is no local approxi-
mation algorithm for max-min LPs with the approximation ratio equal to
∆I(1− 1/∆K).

This lower bound holds even in the case of a bipartite 0/1 max-min LP,
and with globally unique node identifiers given as input.

Theorem 3.2 leaves a small gap between the approximation factor ∆I

that can be achieved with the safe algorithm, and the approximation factor
∆I(1− 1/∆K) that cannot be achieved with any local algorithm. It turns
out that Theorem 3.2 is tight; to close the gap between the positive and
negative results, we need improved local approximation algorithms.

3.5.2 Upper bounds

In Paper II, we present a local algorithm that closes the gap between the
positive and negative results for all bipartite max-min LPs:

Theorem 3.3. For any ∆I ≥ 2, ∆K ≥ 2, and ε > 0, there is a local
approximation algorithm for bipartite max-min LPs with the approximation
ratio ∆I(1− 1/∆K) + ε.

The algorithm assumes only a port numbering; hence unique node iden-
tifiers are not needed to achieve the best possible approximation factor for
bipartite max-min LPs. The algorithm from Theorem 3.3 is based on the
following ingredients.

1. Graph unfolding (see Section 2.5.1) is used to simplify the structure
of the problem. We show that if there is a local α-approximation
for bipartite max-min LPs in (infinite) trees in the port numbering
model, then there is a local α-approximation for bipartite max-min
LPs in general graphs as well. Hence it is enough to focus on the
special case of trees.

2. The tree is regularised , so that each constraint has degree exactly ∆I

and each customer has degree exactly ∆K .

3. A local subproblem is constructed for each customer k ∈ K, based on
a constant-radius neighbourhood of k in the regularised tree. This is
a max-min LP of a constant size, and it can be solved optimally with
an LP solver.

4. Each agent is involved in several local subproblems. The agent com-
putes the average of these solutions.
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5. Finally, the value is scaled down by a constant q to obtain a feasible
solution.

Our latest work [53] shows that Theorem 3.2 is tight for non-bipartite
max-min LPs as well:

Theorem 3.4. For any ∆I ≥ 2, ∆K ≥ 2, and ε > 0, there is a local
approximation algorithm for max-min LPs with the approximation ratio
∆I(1− 1/∆K) + ε.

3.5.3 Bounded relative growth

From a practical perspective, the negative result of Theorem 3.2 is discour-
aging, in particular in the case of a large ∆I . However, the constructions
that we use to derive the negative results are based on regular trees – or,
more accurately, regular high-girth graphs [79, 117, 125, 131]. The girth
is the length of a shortest cycle; regular high-girth graphs look locally like
regular trees, as there is no short cycle.

In a regular tree, the size of BG(v, r), the radius-r neighbourhood of the
node v, is exponential in r. However, in a typical large-scale deployment
of a wireless sensor network, it is likely that the growth of BG(v, r) is only
polynomial in r; after all, if there is an upper bound on the density of the
sensors in the 2 or 3-dimensional space, and an upper bound on the range
of the radio, it is not possible to fit more than poly(r) sensors within r hops
from a device. As a simple example, consider a regular d-dimensional grid;
in such a graph, the size of BG(v, r) is proportional to rd.

In this section, we investigate the local approximability of max-min LPs
in graphs where the growth of BG(v, r) resembles grid graphs, at least for
sufficiently large values of r. We say that the graph G has bounded relative
growth 1 + δ beyond radius R if

|V ∩BG(v, r + 2)|
|V ∩BG(v, r)|

≤ 1 + δ

for all v ∈ V and r ≥ R. Note that here we focus on the number of agents;
hence the increment in the formula is 2, as the distance between a pair of
agents is always even. If G is a regular d-dimensional grid, then for any
δ > 0 there is an R such that G has bounded relative growth 1 + δ beyond
radius R.

In Paper I, we present an algorithm that finds a good approximation
for max-min LPs in graphs with small relative growth:
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Theorem 3.5. For any R, there is a local approximation algorithm for
max-min LPs with the approximation ratio (1 + δ)2 in graphs that have
bounded relative growth 1 + δ beyond radius R.

The local horizon of the algorithm is linear in R. This is a local ap-
proximation scheme for max-min LPs in grid graphs and other families of
graphs in which δ approaches 0, as R increases.

For a small δ, the leading terms in the approximation factor of Theo-
rem 3.5 are 1 + 2δ. In Paper II, we investigate whether this is close to the
best possible. We prove the following lower bound.

Theorem 3.6. Let ∆I ≥ 3, ∆K ≥ 3, and 0 < δ < 1/10, and assume
that the graph G has bounded relative growth 1 + δ beyond some constant
radius R. Then there is no local approximation algorithm for max-min LPs
with an approximation ratio less than 1 + δ/2.

Hence the coefficient of δ in the approximation factor cannot be im-
proved by a factor larger than 4; in particular, there is no local (1 + o(δ))-
approximation algorithm for max-min LPs in graphs with bounded relative
growth 1 + δ. Informally, the algorithm of Theorem 3.5 makes good use of
the structure of graphs with bounded relative growth.
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Chapter 4

Local algorithms for scheduling

This chapter is based on Papers III and IV.

4.1 Introduction

In this chapter, we study local algorithms for scheduling problems. In a
distributed scheduling problem, the objective is to choose a schedule for
each node. A schedule is a list of time intervals; the time intervals indicate
when the node is active. We focus on two different kinds of scheduling
problems: sleep scheduling, which is a maximisation problem, and activity
scheduling, which is a minimisation problem.

We begin with an informal introduction to these two problems in Sec-
tions 4.2 and 4.3. We will give the formal definitions in Section 4.4.

4.2 Sleep scheduling

The motivation for studying the sleep scheduling problem comes from the
task of maximising the lifetime of a wireless sensor network. Consider
the network illustrated in Figure 4.1a; the graph G = (V,E) shows the
communication links in the network. Each sensor node v ∈ V is powered
by a battery with capacity b(v). In this example, b(v) = 1 for each node
v ∈ V ; this means that the node v can operate for 1 time unit (for example,
1 year).

4.2.1 Redundancy graphs

If all sensor nodes are switched on at the same time, then all batteries
drain in 1 time unit. The lifetime of the network is 1. However, it may be
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Figure 4.1: (a) An instance of the sleep scheduling problem. (b) An optimal
integral solution (a maximum domatic partition); a black node is awake and
a white node is asleep. (c) A fractional solution (feasible but not optimal).

possible to achieve a longer lifetime by exploiting redundancy in the sensor
network: we can put redundant nodes into sleep mode.

In this chapter, we focus on pairwise redundancy [25, 99, 135, 146]. We
say that sensors u and v are pairwise redundant if the node u can be asleep
whenever v is awake and vice versa. For example, the nodes u and v may
be physically so close to each other that the measurements from u and v
are highly correlated, and in our application, we only need measurements
from one of them.

Pairwise redundancy can be represented as a redundancy graph R; see
Figure 4.1a for an example. An edge {u, v} in the graph R denotes that u
and v are pairwise redundant. We assume that the redundancy graph R is
a subgraph of the communication graph G: if there is no radio link between
a pair of nodes, it is not likely that they are pairwise redundant either.

4.2.2 Examples of schedules

Figure 4.1b shows a way to achieve a longer lifetime by exploiting pairwise
redundancy. The illustration shows a sleep schedule of length 2. First, for
1 time unit, a set of 3 nodes is awake – all other nodes can be asleep as
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they are redundant. Second, for 1 time unit, a set of 5 nodes is awake and
all other nodes are asleep. Each node is awake for exactly 1 time unit in
total; the lifetime of the network is 2 units.

If D ⊆ V is a valid set of nodes that is awake simultaneously, then D is
a dominating set in the redundancy graph R, and vice versa. Indeed, in a
dominating set D any node v /∈ D (asleep) is adjacent to at least one node
u ∈ D (awake). For example, Figure 4.1b shows two dominating sets of
the graph R. Furthermore, these dominating sets are disjoint; they form a
domatic partition of R (see Section 2.4.1 for definitions).

If each battery has capacity 1, and if we cannot temporarily switch off
a node once we have switched it on, then an optimal domatic partition
provides the longest possible schedule – note that in this case it is never
advantageous to switch on a node at a non-integral point in time, say, at
time t = 0.5, as we can equally well wait until time t = 1. The domatic
partition in Figure 4.1b is optimal; to establish the optimality, note that
there is no dominating set of size 2 in R. Hence each dominating set has
size at least 3; as there are only 8 nodes in the graph, it is not possible to
find more than 2 disjoint dominating sets.

However, if we can switch a node on and off several times during its
lifetime, it may be possible to find a better solution (cf. Berman et al. [20]);
this chapter focuses on such schedules. Figure 4.1c shows an example. Here
we have 5 dominating sets, and each of them is active for 1/2 time units.
In total, each individual node is awake for 1 time unit, and the lifetime of
the network is 5/2 = 2.5 units. For example, the node d is switched on at
time 0, switched off at time 1/2, switched on again at time 3/2, and finally
drains its battery at time 2.

But is it possible to achieve an even longer lifetime? To address this
question, let us formulate the problem as a linear program.

4.2.3 LP formulation

We need to choose a (possibly empty) time period for each dominating set.
Without loss of generality, we can focus on minimal dominating sets – a
dominating set is minimal if none of its proper subsets is a dominating
set. In the redundancy graph R of Figure 4.1a, there are 17 minimal
dominating sets: {a, b, h}, {a, c, e, g}, {a, c, e, h}, {a, d, f}, {a, f, g}, {a, f, h},
{b, c, g}, {b, d, f}, {b, d, h}, {b, e, g}, {b, e, h}, {b, f, g}, {b, g, h}, {c, d, f},
{c, d, g}, {c, d, h}, and {d, e, f}.

The order of the time periods is arbitrary; we are interested in choosing
the lengths of the time periods. Let, for example, xabh denote the length
of the time period associated with the dominating set {a, b, h}. With this
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notation, the task is to

maximise xabh + xaceg + xaceh + · · ·+ xdef

subject to xabh + xaceg + xaceh + xadf + xafg + xafh ≤ 1,

xabh + xbcg + xbdf + xbdh + xbeg + xbeh + xbfg + xbgh ≤ 1,

xaceg + xaceh + xbcg + xcdf + xcdg + xcdh ≤ 1,

xadf + xbdf + xbdh + xcdf + xcdg + xcdh + xdef ≤ 1,

xaceg + xaceh + xbeg + xbeh + xdef ≤ 1,

xadf + xafg + xafh + xbdf + xbfg + xcdf + xdef ≤ 1,

xaceg + xafg + xbcg + xbeg + xbfg + xbgh + xcdg ≤ 1,

xabh + xaceh + xafh + xbdh + xbeh + xbgh + xcdh ≤ 1,

xabh, xaceg, xadf , . . . , xdef ≥ 0.

For example, the first constraint ensures that the node a is awake for at
most 1 time unit in total.

Solving the LP, we find out that the optimum is 13/5 = 2.6. To see
that the optimum is at least 13/5, consider the feasible solution xdef = 3/5,
xabh = xafh = xbcg = xcdg = 2/5, xaceh = xbeg = 1/5, and all other variables
equal to 0. To see that the optimum is at most 13/5, consider the dual and
its feasible solution ya = yc = ye = 1/5 and yb = yd = yf = yg = yh = 2/5.

4.3 Activity scheduling

In this section, we introduce the activity scheduling problem. The moti-
vation for studying the problem comes from the task of completing a set
of activities in parallel in the shortest possible time – for example, trans-
mitting a set of messages in a wireless network in the shortest possible
time.

Figure 4.2a illustrates such a scenario. In the communication graph
G = (V,E), each node v ∈ V needs to be active for a(v) units of time. In
this example, a(v) = 1 for each v.

4.3.1 Conflict graphs

If the activities of the nodes do not interfere with each other, then we can
simply let all nodes be active simultaneously and complete all activities in a
total of 1 time unit. However, the task becomes non-trivial if the activities
of the nodes conflict with each other – for example, the activities may be
radio transmissions close to each other on the same frequency band.
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Figure 4.2: (a) An instance of the activity scheduling problem. (b) An
optimal integral solution; a black node is active and a white node is inactive.
(c) An optimal fractional solution.

We will focus on pairwise conflicts [84]: we say that the activities of the
nodes u and v conflict with each other if u must be inactive whenever v is
active and vice versa. Again, such pairwise relations can be represented as
a graph, a conflict graph C; again, we will assume that the conflict graph
C is a subgraph of the communication graph G. See Figure 4.2a for an
illustration.

4.3.2 Examples of schedules

Figure 4.2b shows how to complete the activities in 3 time units: first a set
of 4 nodes is active for 1 time units, then a set of 3 nodes is active for 1
time unit and finally a set of 1 node is active for 1 time unit. Each node
is active for 1 time unit in total; that is, each node is able to complete its
activities.

If I ⊆ V is a set of nodes that are active simultaneously, then I is
an independent set in the conflict graph C, and vice versa. All three sets
illustrated in Figure 4.2b are independent sets of C; furthermore, they form
a partition of the vertex set V . Put otherwise, Figure 4.2b illustrates a
vertex 3-colouring of the conflict graph C; each independent set is one colour
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class. Furthermore, as there is an odd cycle in C, we know that there is no
2-colouring of C. That is, we cannot partition V into 2 independent sets.

However, if we can switch nodes on and off more than once, then it is
possible to find a schedule that is strictly shorter than 3 time units; see
Figure 4.2c for an example that shows how to complete all activities in
5/2 time units. The solution is optimal: there is a 5-cycle in C, and any
independent set contains at most 2 of these 5 nodes; hence at least 5/2
units of time is required until all nodes of the 5-cycle have completed their
activities.

4.4 Definitions

Now we proceed to give the formal definitions of the scheduling problems
that we study in this chapter. Both problems can be formulated as linear
programs.

4.4.1 Sleep scheduling

Let G = (V,E) be a communication graph and let R be a redundancy
graph, a subgraph of G. Associated with each v ∈ V is a capacity b(v) ≥ 0.
In the sleep scheduling problem, the task is to

maximise
∑
D

x(D)

subject to
∑

D: v∈D

x(D) ≤ b(v) for each v ∈ V,

x(D) ≥ 0 for each D.

(4.1)

Here D ranges over all dominating sets of R, and x(D) is the length of
the time period associated with the dominating set D. The LP (4.1) is a
generalisation of the example in Section 4.2.3.

In a local setting, we cannot find an explicit solution x to (4.1); we use
the following implicit representation of the solution. In a local algorithm
for sleep scheduling, the local output of a node v ∈ V is a schedule for the
node v – a set of time intervals during which the node v is awake. The
total length of these time intervals must be at most b(v). We say that a
local algorithm produces a sleep schedule of length T if the following holds
for all 0 ≤ t ≤ T and for all nodes v ∈ V : if the node v is asleep at time t,
then there is at least one node u adjacent to v in R such that u is awake
at time t. Such a schedule exists if and only if the optimum of (4.1) is at
least T .
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Note that we explicitly allow that some nodes are awake even after
time T ; from the perspective of applications, these is merely a good thing.
In general, a local algorithm cannot know the lifetime T ; a bottleneck for
the lifetime can be in a distant part of the network.

4.4.2 Activity scheduling

Let G = (V,E) be a communication graph and let C be a conflict graph, a
subgraph of G. Associated with each v ∈ V is a requirement a(v) ≥ 0. In
the activity scheduling problem, the task is to

minimise
∑

I

x(I)

subject to
∑

I: v∈I

x(I) ≥ a(v) for each v ∈ V,

x(I) ≥ 0 for each I.

(4.2)

Here I ranges over all independent sets of C, and x(I) is the length of the
time period associated with the independent set I.

Again, in a local setting, the output of a node v ∈ V is a schedule for the
node v – a set of time intervals during which the node v is active. The total
length of these time intervals must be at least a(v). We say that a local
algorithm produces an activity schedule of length T if the following holds
for all nodes v ∈ V : the node v is not active after the time T ; furthermore,
if the node v is active at a time 0 ≤ t ≤ T , then each node u adjacent to v
in C is inactive at time t. Again, such a schedule exists if and only if the
optimum of (4.2) is at most T .

4.5 Background

The special cases of b(v) = 1 and a(v) = 1 are closely related to classical
optimisation problems. First, consider the integer program

maximise
∑
D

x(D)

subject to
∑

D: v∈D

x(D) ≤ 1 for each v ∈ V,

x(D) ∈ {0, 1} for each D,

(4.3)

where D ranges over all dominating sets of R. In essence, (4.3) is a re-
formulation of the maximum domatic partition problem: the dominating
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sets D with x(D) = 1 are, by construction, disjoint. The optimum of (4.3)
is the domatic number of R [32, 51]. Hence (4.1) is, in the case b(v) = 1,
an LP relaxation of the domatic partition problem.

Second, consider the integer program

minimise
∑

I

x(I)

subject to
∑

I: v∈I

x(I) ≥ 1 for each v ∈ V,

x(I) ∈ {0, 1} for each I,

(4.4)

where I ranges over all independent sets of C. This integer program is a
re-formulation of the minimum vertex colouring problem: the independent
sets I with x(I) = 1 cover all vertices, and each such set is one colour class.
The optimum of (4.4) is the chromatic number of C. Hence (4.2) is, in the
case a(v) = 1, an LP relaxation of the vertex colouring problem.

4.5.1 Terminology

The LP relaxation of (4.4) is called the fractional vertex colouring (or frac-
tional graph colouring) problem, and the optimum is the fractional chro-
matic number of the graph. Following the analogy between domination and
colouring [32], we use the term fractional domatic partition for the LP re-
laxation of (4.3), and the term fractional domatic number for its optimum.
Hence the sleep scheduling problem (4.1) is a generalisation of the fractional
domatic partition problem, and the activity scheduling problem (4.2) is a
generalisation of fractional vertex colouring.

4.5.2 Centralised algorithms

The LP (4.1) is a packing LP, and the LP (4.2) is a covering LP (see Sections
2.4.2 and 2.4.3). However, even in a centralised setting these problems are
not easy to solve. In the worst case, the number of variables in (4.1) or (4.2)
is exponential in |V |: there is one variable for each (minimal) dominating
set of R in (4.1) and one variable for each (maximal) independent set of C
in (4.2).

It turns out that both of these scheduling problems are computationally
hard to solve and even hard to approximate in general graphs. For example,
Lund and Yannakakis [128] show that both vertex colouring and fractional
vertex colouring are NP-hard to approximate within factor |V |ε for some
positive ε.
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Some special cases admit centralised polynomial-time algorithms. For
example, if the conflict graph C is the line graph of a given graph H, then
an independent set in C corresponds to a matching in H and vice versa.
In this case the activity scheduling problem can be solved in polynomial
time [69].

4.6 Marked graphs

As we have seen in Section 2.6.3, a local algorithm cannot find a non-trivial
approximation to dominating set or independent set; this is true even in the
case of cycle graphs. As a direct consequence, there is no local algorithm for
sleep scheduling or activity scheduling with a good approximation factor.

Some auxiliary information is needed to break the symmetry. Knowing
the coordinates of the nodes is one possibility (see Section 2.9); however,
having a globally consistent coordinate system is a rather stringent assump-
tion. In this chapter, we show that a relatively weak assumption is enough:
some nodes are designated as marker nodes. Paper III gives semi-geometric
requirements for the choice of the markers; in this chapter, we focus on the
strictly combinatorial definition in Paper IV.

We say that the graph G = (V,E) together with a set of markers M ⊆ V
is a (∆, `1, `µ, µ)-marked graph if for each v ∈ V , (i) the degree of v in G is
at most ∆, (ii) M ∩BG(v, `1) 6= ∅, and (iii) |M ∩BG(v, `µ)| ≤ µ.

Put otherwise, a marked graph is a bounded-degree graph where there
is always at least one marker within distance `1 from any node, and at
most µ markers within distance `µ from any node; here `µ > `1. Ideally,
µ is small and `µ − `1 is large. Figure 4.3a shows a marked graph with 4
markers.

4.7 Our results

Paper IV presents local approximation algorithms for the scheduling prob-
lems in marked graphs. Here the communication graph G is required to be
a marked graph; the redundancy graph R and the conflict graph C can be
arbitrary subgraphs of G. The main results are summarised by the following
theorems.

Theorem 4.1. There is a local (1 + ε)-approximation algorithm for sleep
scheduling in (∆, `1, `µ, µ)-marked graphs for any ε > 4∆/b(`µ − `1)/µc.

Theorem 4.2. There is a local 1/(1 − ε)-approximation algorithm for ac-
tivity scheduling in (∆, `1, `µ, µ)-marked graphs for any ε > 4/b(`µ−`1)/µc.
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(a) (b)

(c) (d)

Figure 4.3: (a) A communication graph with four markers. (b) Configu-
ration 0; four cells are denoted by four different symbols. The cells are
Voronoi cells for the markers in the metric of the communication graph.
(c)–(d) Configurations 1 and 2. In comparison with the configuration 0,
each cell boundary is shifted in a particular direction, depending on the
identifiers of the markers.

Thanks to Topi Musto for help with preparing the illustration.
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Paper IV builds on the techniques introduced in Paper III. The tech-
nique can be interpreted as an adaptation of the classical shifting strat-
egy [17, 75] into a local, coordinate-free setting.

As illustrated in Figure 4.3b, the Voronoi cells for the markers can be
used to partition the nodes of the communication graph into cells; the size
of a cell is bounded by a constant (that depends on `1 and ∆). For each
cell, we can define a subproblem, solve it optimally with a local algorithm,
and then put together the schedules obtained from the subproblems. This
indeed produces a solution where the nodes in the interior of each cell are
performing at least as well as in the optimum. However, the nodes near
the cell boundaries perform suboptimally, as there is no global coordination
between the cells.

To alleviate the problem, we can shift the node boundaries as illustrated
in Figures 4.3b–4.3d. For each pair of adjacent cells, the boundary is moved
in a direction that is determined based on the unique identifiers of the
marker nodes; for the details of the shifting technique, see Paper IV. We
construct a number of such configurations. The key observation is the
following: for each node v ∈ V , the number of configurations where v is
near any cell boundary is small in comparison with the total number of
configurations (see Lemmas 2–4 in Paper IV).

We solve the local subproblems for each configuration; thus we obtain
one globally consistent schedule for each configuration. In the worst case,
none of these schedules is near-optimal in itself: in each of them, the nodes
near the cell boundaries may perform suboptimally. However, if we inter-
leave all these schedules, we even out the suboptimalities, as no single node
is too often near a cell boundary. The same basic approach can be applied
to both the sleep scheduling problem and the activity scheduling problem.
In essence, we exploit the linearity of (4.1) and (4.2).

The results of this chapter highlight the trade-off between computa-
tional efficiency and ease of deployment. If we do not install marker nodes
or any other symmetry-breaking devices, we have a multitude of negative
results for constant-time distributed algorithms (see Section 2.6). However,
if we invest some extra effort in the network deployment and place some
marker nodes in appropriate locations, then it is possible to design local
algorithms for problems such as sleep scheduling and activity scheduling.
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Chapter 5

Local graphs

This chapter is based on Papers V and VI.

5.1 Introduction

In this chapter, we study centralised algorithms instead of distributed algo-
rithms. Whenever we mention an approximation algorithm, we refer to a
polynomial-time approximation algorithm. A polynomial-time approxima-
tion scheme or a PTAS is a family of polynomial-time algorithms such that
for each ε > 0 there is a (1 + ε)-approximation algorithm.

We begin with the definitions of local graphs (see Paper VI) and local
conflict graphs (see Paper V). The focus is on graphs embedded in the two-
dimensional space R2. In the following, ‖x− y‖ is the Euclidean distance
between x ∈ R2 and y ∈ R2. A unit disk is a disk of radius 1, i.e., a unit
disk centred at x consists of the points y with ‖x− y‖ ≤ 1.

5.1.1 Local graphs

For a positive integer N, an N-local graph is a graph G = (V,E) in which
each node v ∈ V is associated with a unique point p(v) ∈ R2 so that

(i) any unit disk contains at most N points in p(V ),

(ii) each edge {u, v} ∈ E satisfies ‖p(u)− p(v)‖ ≤ 1.

The definition of local graphs is similar in nature to civilised graphs (see
Section 2.9.1): edges are not too long, and nodes are not deployed in a too
dense manner. However, in a local graph, there may be a pair of nodes
very close to each other (assuming N ≥ 2). Hence a local graph is not
necessarily a civilised graph, unless we change the embedding of the nodes.

73
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The definition of an N -local graph is motivated by the redundancy
graphs that we studied in Section 4.2.1. Each node v ∈ V is a sensor
that is placed at the location p(v). In this context, both assumptions are
arguably realistic:

(i) sensor nodes are not deployed in an arbitrarily dense manner,

(ii) if the nodes u and v are pairwise redundant, then u and v are close
to each other.

We do not assume that u and v are pairwise redundant whenever they are
close to each other. We merely assume that nodes placed far from each
other cannot be pairwise redundant.

5.1.2 Local conflict graphs

As a generalisation of local graphs, we define the family of local conflict
graphs. An N-local conflict graph is a graph C = (V,E) in which each node
v ∈ V is associated with a unique pair of points τ(v), ρ(v) ∈ R2 so that

(i) any unit disk contains at most N points in τ(V ) ∪ ρ(V ),

(ii) each edge {u, v} ∈ E satisfies ‖τ(u)− ρ(v)‖ ≤ 1 or ‖τ(v)− ρ(u)‖ ≤ 1.

In the special case τ(v) = ρ(v) for all v, an N -local conflict graph is an
N -local graph. However, the family of N -local conflict graphs is much
larger than the family of N -local graphs. For example, we show in Paper V
that any bipartite graph can be represented as a 1-local conflict graph.
Furthermore, an arbitrary graph on at most N2 vertices can be represented
as an N -local conflict graph.

The definition of an N -local conflict graph is motivated by the conflict
graphs that we studied in Section 4.3.1. Each node v ∈ V corresponds to a
radio transmission; the transmitter is placed at the location τ(v) and the
receiver is placed at the location ρ(v). The focus is on radio networks where
the radio interference is dominated by the near-far effect: a radio receiver
may be blocked by another transmitter close to it. In this context, both
assumptions are arguably realistic:

(i) radio transceivers are not deployed in an arbitrarily dense manner,

(ii) if the radio transmissions u and v interfere with each other, then the
transmitter of u is close to the receiver of v or vice versa.

Again, we do not assume that interference occurs whenever two devices are
close to each other. We merely assume that there is no interference between
a distant pair of a transmitter and a receiver.
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5.2 Maximum-weight independent set

In this section, we revisit the activity scheduling problem that we defined
in Section 4.4.2. However, this time we approach the problem from the
perspective of centralised algorithms; the aim is to design an algorithm
that can be applied in any N -local conflict graph C, for any constant N .

If we could afford exponential time, we could simply enumerate all (max-
imal) independent sets of the conflict graph C and solve the LP (4.2). How-
ever, we aim at a polynomial-time approximation algorithm.

5.2.1 Activity scheduling and oracles

It turns out that the problem of approximating the LP (4.2) is closely
related to the problem of finding a maximum-weight independent set in
the conflict graph C = (V,E). In the maximum-weight independent set
problem, each node v ∈ V is associated with a positive weight w(v). The
objective is to find an independent set I ⊆ V in C that maximises the total
weight w(I) =

∑
v∈I w(v).

If we had an oracle that returns a maximum-weight independent set of
C for any given weight vector w, then we could use, e.g., the approxima-
tion scheme by Young [178] to find an approximately optimal solution to
the activity scheduling problem (4.2); the number of oracle invocations is
polynomial in the size of the input.

Finding a maximum-weight or maximum-size independent set is an NP-
hard problem. However, it turns out that it is sufficient to have an oracle
that finds an α-approximation of a maximum-weight independent set; see,
e.g., the general results by Jansen [85]. If the oracle runs in a polynomial
time, this yields a polynomial-time (α+ε)-approximation algorithm for the
activity scheduling problem for any ε > 0.

5.2.2 Our results

The independent set problem is prohibitively hard to approximate in gen-
eral graphs [82, 94]; hence some structural assumptions on the conflict
graph C are needed in order to find a polynomial-time constant-factor ap-
proximation algorithm.

In Paper V, we show that it is enough to assume that C is an N -local
conflict graph, for some constant N .

Theorem 5.1. For any constants N and ε > 0, there is a polynomial-time
(5 + ε)-approximation algorithm for the maximum-weight independent set
problem in N-local conflict graphs.
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The approximation factor does not depend on the constant N ; the value
of N affects only the running time of the algorithm.

The algorithmic techniques in the proof of Theorem 5.1 include an appli-
cation of the shifting strategy [17, 75, 80] to construct subproblems. The
subproblems are solved in polynomial time by a combination of two ap-
proaches: exhaustive search and a greedy algorithm.

As a complement to Theorem 5.1, we also show that the problem of
finding a maximum-weight independent set in a local conflict graph does
not admit a PTAS, unless P = NP. The proof is by a reduction from the
directed cut problem [142].

5.3 Identifying and locating–dominating codes

In this section, we turn our attention to identifying codes and locating–
dominating codes. We begin by introducing a shorthand notation. Let
G = (V,E) be a simple undirected graph, and let C ⊆ V be a subset of
nodes. For each node v ∈ V , we define

C(v) = C ∩BG(v, 1),

the set of elements in C within the radius-1 neighbourhood of v. Using
this notation, we recall that C is a dominating set (see Section 2.4.1) if and
only if C(v) 6= ∅ for all v ∈ V .

Now we are ready to define the codes that we study in this section. We
say that C is a locating–dominating code if C(v) 6= ∅ for all v ∈ V , and
C(u) 6= C(v) for all u, v ∈ V \ C. Furthermore, C is an identifying code if
C(v) 6= ∅ for all v ∈ V , and C(u) 6= C(v) for all u, v ∈ V .

Put otherwise, an identifying code is a dominating set in which the
subset of dominators C(v) ⊆ C uniquely identifies the node v ∈ V . In
a locating–dominating code, we only require that C(v) is unique for the
nodes that are not in C.

5.3.1 Examples and applications

Figure 5.1a shows a dominating set that is not a locating–dominating code:
we have C(1) = C(6) = {2}, which contradicts with the definition of
a locating–dominating code. Hence it is not an identifying code, either.
Figure 5.1b shows a locating–dominating code: the sets C(2) = {1, 3},
C(5) = {4}, and C(6) = {3} are non-empty and pairwise distinct. However,
this is not an identifying code, as we have C(3) = C(4) = {3, 4}. Finally,



5.3 Identifying and locating–dominating codes 77

1
3 4 5

6

1
3 4 5

6

1
3 4 5

6

(a)

(b)

(c)

2

2

2

Figure 5.1: The black nodes illustrate (a) a dominating set, (b) a locating–
dominating code, and (c) an identifying code.

Figure 5.1c shows an identifying code: the sets C(1) = {1}, C(2) = {1, 3},
C(3) = {3, 4}, C(4) = {3, 4, 5}, C(5) = {4, 5}, and C(6) = {3} are all
non-empty and pairwise distinct.

As an application, assume that the graph G = (V,E) in Figure 5.1 is a
schematic representation of a building. Each node v ∈ V is a room in which
we can place a sensor, for example, a motion detector. Each edge {u, v} ∈ E
indicates visibility between the rooms u and v: a motion detector in the
room v is triggered if there is motion in the room u and vice versa.

Now assume that we place the motion detectors in a subset C ⊆ V of
the rooms. If C is a dominating set, then we know that at least one motion
detector is triggered if there is motion in some room v ∈ V . For example,
the dominating set in Figure 5.1a shows how to guard the whole building
with only two sensors. However, while we can detect the intruders, we
cannot locate them: in the example of Figure 5.1a, if the motion detector
is triggered only in the room 2, we do not know whether the intruder is in
the room 1, 2, or 6.

An identifying code – for example, the one shown in Figure 5.1c – solves
the problem. An identifying code is a dominating set, and hence whenever
there is an intruder in the building, we can detect it. But we can also locate
the intruder, assuming there is only one intruder. If there is an intruder in
the room v, the set C(v) ⊆ C of the motion detectors that are triggered
uniquely identifies the room v, allowing us to locate the intruder.

If our motion detectors were three-state devices that can distinguish
between no motion (no signal), motion in an adjacent room (a weak signal),
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and motion in the same room (a strong signal), then the task is slightly
easier, and it is sufficient that C is a locating–dominating code.

5.3.2 Background and related work

The definition of a locating–dominating code is due to Slater [156], and iden-
tifying codes were introduced by Karpovsky et al. [91]. Related concepts
include the metric dimension of a graph [60, 95], and the alarm placement
problem [116, 149].

A locating–dominating code always exists: C = V is an example. It is
possible that there is no identifying code; however, if an identifying code ex-
ists, then C = V is an identifying code, and hence it is easy to test whether
there is an identifying code for a given graph. However, finding a locating–
dominating code or identifying code of minimum size is computationally
hard.

For a given graph G and a given integer k, it is NP-hard to decide
whether there is an identifying code C with |C| ≤ k [28, 33]; the same ap-
plies to locating–dominating codes [28, 34] and their directed versions [27].
Polynomial-time algorithms are known for certain special cases [26, 34,
156], and heuristic algorithms [150, 151] have been proposed in the liter-
ature. However, in spite of extensive research related to identifying and
locating–dominating codes [122], the approximability of identifying codes
and locating–dominating codes remained an open question [133, §4.1].

The work in Paper VI resolved the issue. This turned out to be a
timely problem to study. The approximability of identifying and locating–
dominating codes was investigated independently and in parallel by at least
two other groups [66, 67, 114, 115]; see Laifenfeld and Trachtenberg [113,
114] for a summary of the contributions and the complementary approaches
taken in the papers.

5.3.3 Our results

It is possible to reduce the problem of finding a minimum-size identifying
code or a locating–dominating code to the set cover problem; then we can
apply the greedy algorithm for the set cover problem [30, 87, 123]. This
results in a polynomial-time approximation algorithm with a logarithmic
approximation ratio.

Theorem 5.2. There are polynomial-time O(log |V |)-approximation algo-
rithms for minimum-size identifying codes and locating–dominating codes.

However, Paper VI shows that sublogarithmic approximation factors are
intractable. It is possible to construct a reduction from the dominating set
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problem; this polynomial reduction establishes the following theorem. See,
for example, Lund and Yannakakis [128], Raz and Safra [152], and Feige [50]
for the inapproximability of the minimum dominating set problem.

Theorem 5.3. There is a constant ρ > 0 such that for any constant α > 0,
a polynomial-time (1+α ln |V |)-approximation algorithm for minimum-size
identifying codes or locating–dominating codes implies a polynomial-time
max(1, ρα ln |V |)-approximation algorithm for minimum dominating set.

In bounded-degree graphs, the trivial choice C = V provides a constant-
factor approximation. However, there is no PTAS for identifying codes or
locating–dominating codes in bounded-degree graphs unless P = NP. This
is shown in Paper VI by presenting a reduction from the problem of finding a
minimum dominating set in a bounded-degree graph; the problem is known
to be APX-hard [93, 142].

Theorem 5.4. If there is a PTAS for minimum-size identifying codes or
locating–dominating codes in bounded-degree graphs, then there is a PTAS
for minimum dominating set in bounded-degree graphs.

However, there is a PTAS in local graphs; the algorithm presented in
Paper VI uses the shifting strategy [17, 75, 80].

Theorem 5.5. For any N and ε > 0, there are polynomial-time (1 + ε)-
approximation algorithms for minimum-size identifying codes and locating–
dominating codes in N-local graphs.

Paper VI also presents extensions of the results to so-called t-identifying
codes and t-locating–dominating codes for a general t, as well as an exten-
sion of Theorem 5.5 to more than 2 dimensions (e.g., points are located in
R3 instead of R2).
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Chapter 6

Conclusions

In this thesis we have studied approximation algorithms for optimisation
problems that were motivated by large-scale distributed systems such as
wireless sensor networks.

The results presented in Section 5 have provided answers to two open
questions: the question posed by Jain et al. [84, §A] regarding a structural
property of realistic conflict graphs that makes it easy to find maximum
independent sets, and the question posed by Moncel [133, §4.1] regarding
the approximability of the minimum identifying code problem.

Our results also give rise to a new research question: the approximabil-
ity of other classical graph problems in local conflict graphs. The shifting
strategy [17, 75] can be applied to obtain PTASs for many classical graph
problems in families of graphs that are similar to local graphs [80]. How-
ever, the same technique cannot be applied to local conflict graphs directly
– indeed, we have shown that there is no PTAS for maximum-weight inde-
pendent sets in local conflict graphs unless P = NP.

The main contributions of this thesis are the local algorithms presented
in Chapters 3 and 4. Our work has provided new examples of non-trivial
network coordination problems that can be solved with a local approxima-
tion algorithm. Put otherwise, we have shown that these global problems
can be solved by using only local information: the local outputs of the nodes
constitute a solution that is not only feasible but also provably within a
constant factor of the global optimum.

In spite of the new positive results, the full capabilities of local algo-
rithms are still far from being fully understood. The question posed by
Naor and Stockmeyer [138] in the title of their seminal paper – “What can
be computed locally?” – is still largely unanswered. For example, only a
few problems in Table 2.4 have matching upper and lower bounds; see also
Section 2.10 for other concrete research questions.
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A possible path towards a more comprehensive understanding of lo-
cal algorithms is to borrow powerful techniques from other areas of the-
oretical computer science. For example, polynomial-time reductions have
been widely successful in the study of polynomial-time algorithms and NP-
completeness [60], and the idea of reductions can also be applied in the
context of local algorithms. Our recent work has provided new examples of
the uses of local reductions, both in the design of local algorithms [53], and
also as a proof technique for obtaining lower bounds [10]. In the future, we
aim to explore this line of research in more depth, and to identify new con-
nections between local algorithms and other areas of theoretical computer
science.
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[90] Iyad A. Kanj, Ljubomir Perković, and Ge Xia. Computing lightweight span-
ners locally. In Proc. 22nd International Symposium on Distributed Com-
puting (DISC, Arcachon, France, September 2008), volume 5218 of Lecture
Notes in Computer Science, pages 365–378. Springer, Berlin, Germany, 2008.

[91] Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On a
new class of codes for identifying vertices in graphs. IEEE Transactions on
Information Theory, 44(2):599–611, 1998.

[92] J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the
complete Euclidean graph. Discrete & Computational Geometry, 7(1):13–28,
1992.

[93] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh Vazirani. On
syntactic versus computational views of approximability. SIAM Journal on
Computing, 28(1):164–191, 1999.

[94] Subhash Khot. Improved inapproximability results for MaxClique, chro-
matic number and approximate graph coloring. In Proc. 42nd Annual Sym-
posium on Foundations of Computer Science (FOCS, Las Vegas, NV, USA,
October 2001), pages 600–609. IEEE Computer Society Press, Los Alamitos,
CA, USA, 2001.

[95] Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in
graphs. Discrete Applied Mathematics, 70(3):217–229, 1996.

[96] Amos Korman and Shay Kutten. On distributed verification. In Proc. 8th In-
ternational Conference on Distributed Computing and Networking (ICDCN,

http://dx.doi.org/10.1016/j.ejc.2007.07.001
http://dx.doi.org/10.1016/j.ejc.2007.07.001
http://dx.doi.org/10.1007/s11276-005-1769-9
http://dx.doi.org/10.1007/s11276-005-1769-9
http://dx.doi.org/10.1007/s11276-005-1769-9
http://dx.doi.org/10.1016/S0304-3975(02)00829-0
http://dx.doi.org/10.1016/S0304-3975(02)00829-0
http://dx.doi.org/10.1016/S0304-3975(02)00829-0
http://dx.doi.org/10.1109/5.163414
http://dx.doi.org/10.1109/5.163414
http://dx.doi.org/10.1145/323596.323598
http://dx.doi.org/10.1145/323596.323598
http://dx.doi.org/10.1145/323596.323598
http://dx.doi.org/10.1145/323596.323598
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1016/S1389-1286(03)00212-3
http://dx.doi.org/10.1007/978-3-540-87779-0_25
http://dx.doi.org/10.1007/978-3-540-87779-0_25
http://dx.doi.org/10.1007/978-3-540-87779-0_25
http://dx.doi.org/10.1007/978-3-540-87779-0_25
http://dx.doi.org/10.1109/18.661507
http://dx.doi.org/10.1109/18.661507
http://dx.doi.org/10.1109/18.661507
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1007/BF02187821
http://dx.doi.org/10.1137/S0097539795286612
http://dx.doi.org/10.1137/S0097539795286612
http://dx.doi.org/10.1137/S0097539795286612
http://dx.doi.org/10.1109/SFCS.2001.959936
http://dx.doi.org/10.1109/SFCS.2001.959936
http://dx.doi.org/10.1109/SFCS.2001.959936
http://dx.doi.org/10.1109/SFCS.2001.959936
http://dx.doi.org/10.1109/SFCS.2001.959936
http://dx.doi.org/10.1016/0166-218X(95)00106-2
http://dx.doi.org/10.1016/0166-218X(95)00106-2
http://dx.doi.org/10.1007/11947950_12
http://dx.doi.org/10.1007/11947950_12
http://dx.doi.org/10.1007/11947950_12


References 91

Guwahati, India, December 2006), volume 4308 of Lecture Notes in Com-
puter Science, pages 100–114. Springer, Berlin, Germany, 2006.

[97] Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. In
Proc. 24th Annual ACM Symposium on Principles of Distributed Computing
(PODC, Las Vegas, NV, USA, July 2005), pages 9–18. ACM Press, New
York, NY, USA, 2005.

[98] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer, Berlin, Germany, 3rd edition, 2006.

[99] Farinaz Koushanfar, Nina Taft, and Miodrag Potkonjak. Sleeping coordina-
tion for comprehensive sensing using isotonic regression and domatic parti-
tions. In Proc. 25th Conference on Computer Communications (INFOCOM,
Barcelona, Spain, April 2006). IEEE, Piscataway, NJ, USA, 2006.

[100] Evangelos Kranakis, Harvinder Singh, and Jorge Urrutia. Compass routing
on geometric networks. In Proc. 11th Canadian Conference on Computa-
tional Geometry (CCCG, Vancouver, BC, Canada, August 1999). 1999.

[101] Bhaskar Krishnamachari. Networking Wireless Sensors. Cambridge Univer-
sity Press, Cambridge, UK, 2005.

[102] Fabian Kuhn. The Price of Locality: Exploring the Complexity of Distributed
Coordination Primitives. PhD thesis, ETH Zürich, 2005.
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Index

0/1 covering LP, 14
0/1 max-min LP, 16, paper II
0/1 packing LP, 15
2-coloured, see bicoloured
2-matching, 12

local algorithm, 33
2-partite, see bipartite

A, algorithm, 7
a(v), activity requirement, 64
activity scheduling, 64, 67, papers IV, V

approximability, 69, paper V
inapproximability, 68, papers IV, V
local approximability, 69,

papers IV, V
local inapproximability, paper IV

advice, 25
agent

in covering problems, 13
in max-min LPs, 15, papers I, II
in packing problems, 14

alarm placement, 78, paper VI
approximability, paper VI
inapproximability, paper VI

anchor node, see marker node
anonymous network, 16
approximability, see also

inapproximability, local
approximability

activity scheduling, 69, paper V
alarm placement, paper VI
domatic partition, paper III
fractional domatic partition,

paper III
fractional set cover packing, paper III
fractional vertex colouring, 69
identifying code, 78, 79, paper VI
independent set, paper V

locating–dominating code, 78, 79,
paper VI

metric dimension, paper VI
routing and scheduling, paper V
set cover, 47, 78, paper VI
sleep scheduling, paper III
vertex cover, 30, 33

approximation algorithm, 9
local, 9
polynomial-time, 73, papers V, VI

approximation scheme
local, 9
polynomial-time, see PTAS

APX, 79, papers V, VI

BG(v, r), neighbourhood, 6
b(v), battery capacity, 61
base station, see sink node
battery, 1
battery capacity, 50, 61,

papers I, II, III, IV
beacon, paper VI
beneficiary party, see customer
bicoloured double cover, 32
bicoloured graph, 30
bipartite double cover, 32
bipartite graph, 6, 13, paper V
bipartite max-min LP, 54, paper II

local approximability, 57, paper II
local inapproximability, paper II

bit complexity, 9
boundary node, papers III, IV
bounded relative growth, 58, paper I
bounded-degree graph, 7, paper VI
bridge, see relay node

C, code, 76
C(v), nodes of C near v, 76
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C, conflict graph, 65
canonical double cover, see bipartite

double cover
capacitated dominating set

local approximability, 45
centralised algorithm, 68

constant-time, 11
linear-time, 10
polynomial-time, 73, papers V, VI
sublinear-time, 11

chromatic number, 68
circuit complexity, 10
civilised graph, 42, 73, papers III, VI
clock synchronisation, paper III
cluster head, paper III
code, paper VI

identifying, 76, paper VI
locating–dominating, 76, paper VI

colour reduction
local algorithm, 36

colouring, see edge colouring, fractional
vertex colouring, vertex
colouring, weak colouring

communication graph, 7, papers III, IV
communication round, 8
comparable identifiers, 24
complete graph, 6
conflict graph, 65, paper IV

local, 74, paper V
conflict-free activity scheduling, see

activity scheduling
connected dominating set, 13

local approximability, 45
connectivity, paper III
constant size input, 9
constant-time

centralised algorithm, 11
distributed algorithm, 8
dynamic graph algorithm, 10
self-stabilising algorithm, 10

constraint
a.k.a. resource, paper I
in covering problems, see customer
in max-min LPs, 15, paper II
in packing problems, 14

correlation, 62, paper III
covering

bipartite double cover, 32
double cover, 32
edge cover, 12

mixed packing and covering, 52
set cover, 13, paper VI
vertex cover, 12
with independent sets, see vertex

colouring
covering constraint, 15
covering graph, 17, paper II
covering LP, 14, 68, paper I

local approximability, 34, 47
local inapproximability, 30, paper I

covering map, 17, paper II
covering space, 18, paper II
customer

a.k.a. beneficiary party, paper I
in covering problems, 13
in max-min LPs, 15

cut, 13, paper V
local approximability, 39, 41
local inapproximability, 27

cycle
detecting, 19
directed, 25
distributed colouring, 36
local algorithms, 25
local approximation algorithms, 27
odd, 66
shortest, 58
sleep scheduling, paper III
spanning tree, 24
symmetry breaking, 16, 20, 24
unfolding, 18
with a port numbering, 7, 16
with an orientation, 20
with comparable identifiers, 24
with unique identifiers, 25

D, dominating set, 13, 63, 66
dG(u, v), distance, 6
data gathering in sensor networks, 1, 50,

papers I, II
decomposition, 44
deg(v), degree, 6
degree, 6

in-degree, 19
out-degree, 19

∆, degree bound, 7
δ, minimum degree, 38
∆I , degree bound, 14
∆K , degree bound, 13
∆V , degree bound, 13, 14
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density of markers, paper IV
density of nodes, 58, 73, 74, paper III
directed cut, paper V

inapproximability, paper V
directed graph, 19, paper V
directed line graph, paper V
disjoint

dominating sets, see domatic
partition

identifying codes, paper VI
set covers, see set cover packing

disk graph, paper V
distance, 6
distributed algorithm, 7

constant-time, 8
distributed constant-size problem, 9
distributed decision making, 10
domatic number, 68, paper III
domatic partition, 13, paper III

approximability, paper III
inapproximability, paper III
integer program, 67
local approximability, 38
local inapproximability, 27
LP relaxation, 68

dominating set, 13, papers III, IV, VI, see
also edge dominating set

inapproximability, 79, paper VI
local approximability, 37, 42, 44, 45
local inapproximability, 27

double cover, 32
dual LP, 15, 64
dynamic graph algorithm, 9

E, set of edges, 7
edge, 7
edge colouring, 13

local approximability, 44
local unsolvability, 25

edge cover, 12
local approximability, 39
local inapproximability, 27

edge dominating set, 13
local approximability, 38
local inapproximability, 27

edge length, 42, 46, 73, paper III
energy resources, see battery capacity
ε-stable matching, 12

local algorithm, 37
Euclidean distance, 42, 73

exhaustive search, 76, papers V, VI

f , covering map, 17
fault tolerance, 9

sleep scheduling, paper III
fractional chromatic number, 68, paper V
fractional domatic number, 68, paper III
fractional domatic partition, 68,

papers III, IV
approximability, paper III
inapproximability, papers III, IV
local approximability, 69,

papers III, IV
local inapproximability, paper IV

fractional graph colouring, see fractional
vertex colouring

fractional packing, paper VI
fractional set cover packing, paper III

approximability, paper III
fractional vertex colouring, 68,

papers IV, V
approximability, 69
inapproximability, 68, papers IV, V
local approximability, 69,

papers IV, V
local inapproximability, paper IV

G, communication graph, 7
G(v, r), subgraph of G, 6
G[v, r], subgraph of G, 6
Gabriel graph, 46
gateway, see relay node
geographic routing, 45
geometric spanner, see spanner
girth, 58, see also high-girth graph
globally unique identifier, 22
graph colouring, see edge colouring,

fractional vertex colouring,
vertex colouring, weak colouring

graph drawn in a civilised manner, see
civilised graph

greedy algorithm, 36, 45, 47, 76, 78,
papers V, VI

grid graph, 58, paper IV
globally grid-like graphs, paper IV

high-girth graph, 58, papers I, II
hop count, 6
hyperedge, paper I
hypergraph, paper I
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hypertree, paper I

I, independent set, 12, 65, 67, 75
I, set of constraints, 14
iv, local input, 7
IC, see identifying code
identifier (of a node), 22
identifying code, 76, paper VI

approximability, 78, 79, paper VI
inapproximability, 79, paper VI

in-degree, 19
inapproximability, see also local

inapproximability
activity scheduling, 68, papers IV, V
alarm placement, paper VI
directed cut, paper V
domatic partition, paper III
dominating set, 79, paper VI
fractional domatic partition,

papers III, IV
fractional vertex colouring, 68,

papers IV, V
identifying code, 79, paper VI
independent set, paper V
locating–dominating code, 79,

paper VI
sleep scheduling, papers III, IV
vertex colouring, 68, paper V

independent set, 12, papers IV, V
approximability, paper V
inapproximability, paper V
local algorithm, 45
local approximability, 41, 42, 45
local inapproximability, 27
local unsolvability, 25

infinite tree, 18, paper II
inherently non-local problem, 23
integer program

domatic partition, 67
set cover, 14
set packing, 15
vertex colouring, 68

interference, 64, 74, paper V
Internet, 11
isolated node, 6
iterated logarithm, 25

K, set of customers, 13
Kn, complete graph, 6
Kronecker double cover, 32

Kronecker product, 32

`1, radius with at least 1 marker, 69
`µ, radius with at most µ markers, 69
Las Vegas algorithm, 40
LDC, see locating–dominating code
leader election, 48
length of an edge, 42, 46, 73, paper III
lifetime, 51, 61, papers III, IV, VI
lift, 18
line graph, 69, paper V
linear program, see LP
linear-time centralised algorithm, 10
link, paper V
link scheduling, see activity scheduling
local algorithm, 8

2-matching, 33
colour reduction, 36
ε-stable matching, 37
independent set, 45
matching, 32, 45
planar subgraphs, 46
spanner, 46
weak colouring, 34
with unique identifiers, 23

local approximability
activity scheduling, 69, papers IV, V
bipartite max-min LP, 57, paper II
capacitated dominating set, 45
connected dominating set, 45
covering LP, 34, 47
cut, 39, 41
domatic partition, 38
dominating set, 37, 42, 44, 45
edge colouring, 44
edge cover, 39
edge dominating set, 38
fractional domatic partition, 69,

papers III, IV
fractional vertex colouring, 69,

papers IV, V
independent set, 41, 42, 45
matching, 37, 41, 42, 45
max-min LP, 54, 57, 58, papers I, II
multicolouring, 45
packing LP, 34, 47
satisfiability, 41
set cover, 34, 39, 42, 47
set packing, 42
sleep scheduling, 69, papers III, IV
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stable matching, 37
vertex colouring, 44, 45
vertex cover, 30, 34, 38, 42, 44, 45

local approximation algorithm, 9
local approximation scheme, 9
local computation, 8, 9
local conflict graph, 74, paper V
local coordinate system, 43
local edge labelling, 7
local graph, 73, papers III, V, VI
local horizon, 8
local inapproximability, 26

activity scheduling, paper IV
bipartite max-min LP, paper II
covering LP, 30, paper I
cut, 27
domatic partition, 27
dominating set, 27
edge cover, 27
edge dominating set, 27
fractional domatic partition,

paper IV
fractional vertex colouring, paper IV
independent set, 27
LP, 30
matching, 27
max-min LP, 56, 58, papers I, II
packing LP, 30, paper I
sleep scheduling, paper IV
vertex cover, 27

local input, 7
local isomorphism, paper II
local unsolvability

edge colouring, 25
independent set, 25
matching, 25
spanning tree, 23
stable matching, 23
vertex colouring, 25

local verification, 24, 39
local view, 18

with unique identifiers, 22
locally checkable labelling, 25
locally checkable proof, 39
locally unique identifiers, 22,

papers III, IV
locating–dominating code, 76, paper VI

approximability, 78, 79, paper VI
inapproximability, 79, paper VI

location-awareness, 43

log∗ n, iterated logarithm, 25
LP

countably infinite, paper II
covering LP, 14, 68, paper I
duality, 15, 64
local inapproximability, 30
max-min LP, 15, papers I, II
mixed packing and covering, 52
packing LP, 15, 68, papers I, II, VI

LP relaxation
domatic partition, 68
set cover, 14
set packing, 15
vertex colouring, 68
vertex cover, 33

LP rounding
deterministic, 33
randomised, 42

MAC addresses, paper III
marked graph, 69, paper IV

deploying, 71, paper IV
marker node, 69

a.k.a. anchor node, paper III
matching, 12

2-matching, 12
local algorithm, 32, 45
local approximability, 37, 41, 42, 45
local inapproximability, 27
local unsolvability, 25

max-min LP, 15, papers I, II
local approximability, 54, 57, 58,

papers I, II
local inapproximability, 56, 58,

papers I, II
max-min packing problem, see max-min

LP
MAX-SAT, 41
maximal

independent set, 12
matching, 12

maximum
cut, 13, paper V
domatic partition, 13, 67, paper III
independent set, 13, paper V
lifetime, 51, 61, papers III, IV, VI
matching, 13
satisfiability, 41
set packing, 14

message size, 8, 9
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metric dimension, 78, paper VI
approximability, paper VI

minimal
dominating set, 63

minimum
cut, 13
dominating set, 13, paper VI
edge colouring, 13
edge cover, 12
edge dominating set, 13
identifying code, 78, paper VI
locating–dominating code, 78,

paper VI
set cover, 13, paper VI
vertex colouring, 13, 68
vertex cover, 13
weak colouring, 13

minor, paper V
mixed packing and covering, 52
Monte Carlo algorithm, 40
mote, see sensor node
motion detector, 77
µ, maximum number of markers within

radius `µ, 69
multicolouring

local approximability, 45
MWIS, see weighted independent set

NC0, complexity class, 10, 39
near-far effect, 74, paper V
neighbourhood, 6
network decomposition, 44
node, 7
node colouring, see vertex colouring
node cover, see vertex cover
numerical identifiers, 25

ov, local output, 8
O(1)-local algorithm, 8
objective

in max-min LPs, paper II
objective (max-min LPs), see customer
OPT, optimum, 9
oracle, 11, 75, paper VI
order-invariant, 24
orientation, 19
t-orientation, 44
out-degree, 19

p(u, v), port number, 7

packing
mixed packing and covering, 52
set packing, 14

packing constraint, 15
packing dominating sets, see domatic

partition
packing LP, 15, 68, papers I, II, VI

local approximability, 34, 47
local inapproximability, 30, paper I

packing set covers, see set cover packing
PageRank, 39
pairwise conflict, 65
pairwise redundancy, 62, paper III
party, see customer
pigeonhole principle, 35
planar graph, 28, 45, paper V
planar subgraphs

local algorithm, 46
polynomial-time approximation algorithm,

73, papers V, VI
polynomial-time approximation scheme,

see PTAS
port numbering, 7, paper II
PRAM model, 10
predecessor, 19
prediction graph, paper III
primal-dual schema, 34
product of graphs, 32
PTAS, 73, papers V, VI

quasi unit-disk graph, 42
quasi-isometry, paper IV

R, redundancy graph, 62
radio transmission, paper V
radius-r local view, 18
Ramsey’s theorem, 27
randomised algorithm, 40
ranking, 12
receiver, 1, 74, paper V
reduction, 78, papers V, VI
redundancy, 62, paper III
redundancy graph, 62, papers III, IV
regularisation of max-min LPs, 57,

paper II
relative growth, 58, paper I
relative neighbourhood graph, 46
relay node, 1, 50, papers I, II, III
resource, see constraint
robustness, 9
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routing, 45
routing and scheduling, paper V

approximability, paper V

safe algorithm, 54, papers I, II
satisfiability, 41

local approximability, 41
schedule, 61
scheduling, 61

activity scheduling, 64, 67,
papers IV, V

local approximability, 69
sleep scheduling, 61, 66,

papers III, IV, VI
scheduling problem, 43
self-organising algorithm, 10
self-stabilising algorithm, 10
sensor network, 1
sensor node, 1
set cover, 13, paper VI

approximability, 47, 78, paper VI
integer program, 14
local approximability, 34, 39, 42, 47
LP relaxation, 14

set cover packing, paper III
set K-cover problem, see set cover packing
set packing, 14

integer program, 15
local approximability, 42
LP relaxation, 15

shape-shifting network, 10
shifting strategy, 71, 76, 79,

papers III, IV, V, VI
shortest-path distance, 6
signal-to-interference-plus-noise, see SINR
simple 2-matching, 12
sink node, 1
SINR, paper V
sleep scheduling, 61, 66, papers III, IV, VI

approximability, paper III
inapproximability, papers III, IV
local approximability, 69,

papers III, IV
local inapproximability, paper IV

social network, 11
spanner, 46, paper III

local algorithm, 46
spanning tree

local unsolvability, 23
stable matching, 12

ε-stable matching, 12
local approximability, 37
local unsolvability, 23

stretch factor, 46, paper III
strictly local algorithm, 8
sublinear-time centralised algorithm, 11
successor, 19
symmetry breaking, 16
synchronous communication, 8

T , unfolding of G, 17
tensor product, see Kronecker product
θ-graph, 46
tile-assembly model, 10
time synchronisation, paper III
tournament, paper V
transceiver, 1
transmitter, 1, 74, paper V
two-tier network, 1, 50

undirected graph, 6
unfolding, 17, 57, paper II
unique identifiers, 22, paper II, see also

locally unique identifiers
comparable, 24
numerical, 25

unit disk, 73
unit-disk graph, 42, paper V
universal covering graph, 17, paper II
universal covering space, paper II
unstable edge, 12

V , set of agents, 13, 14
V , set of nodes, 7
value of information, 10
verification, 24, 39
vertex colouring, 13, paper V, see also

fractional vertex colouring
inapproximability, 68, paper V
integer program, 68
local approximability, 44, 45
local unsolvability, 25
LP relaxation, 68

vertex cover, 12
approximability, 30, 33
local approximability, 30, 34, 38, 42,

44, 45
local inapproximability, 27
LP relaxation, 33

Voronoi cell, 71, paper III
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weak colouring, 13
local algorithm, 34

weighted
directed cut, paper V
edge cover, 39
graph problems, 12
identifying code, paper VI
independent set, 75, paper V
locating–dominating code, paper VI
matching, 37, 41
set cover, paper VI
vertex cover, 33

wireless sensor network, 1

Yao graph, 46
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