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Weak Models of Distributed Computing

I Introduce novel complexity classes for distributed computing.

I Each class is a collection of graph problems that can be solved
in a variant of the port-numbering model.

I We give a complete classification of the computational powers
of the classes.

I We also establish a natural connection between the classes
and variants of modal logic.
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Deterministic Distributed Algorithms

I A graph G = (V ,E ) presents a distributed system.

I Each node v runs the same state machine M. Nodes know
only their degree; no unique identifiers.

I Computation proceeds in sychronous steps;

I In one time step, each machine
I sends messages to its neighbours,
I receives messages from its neighbours,
I updates its state based on the received messages.

I If the new state is a stopping state, the machine halts.

I There is no limit on message size.
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Port numbering

I A node of degree k sends messages through k output ports
and receives messages trough k input ports.

I Both input ports and output ports are numbered with
1, 2, ..., k .

I Port in G = (V ,E ) is a pair (v , i) s.t. 1 ≤ i ≤ degree(v).

I Port numbering: bijection p mapping ports to ports of
neighbouring nodes

I p((v , i)) = (u, j): message sent by v to port (v , i) is received
by u from port (u, j)
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Port numbering
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Consistent port numbering

I All neighbours u and v use the same ports in both directions:
if p((v , i)) = (u, j), then p((u, j)) = (v , i).

8 / 23



Graph problems

I Graph problem is a function Π that associates with each
graph G = (V ,E ) a set Π(G ) of solutions.

I Solution is a mapping S : V → Y for a fixed finite set Y .

I Finding a vertex cover: Y = {0, 1} and Π(G ) is the set of
functions S : V → Y s.t. {v ∈ V | S(v) = 1} is a vertex
cover of G .
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Solving graph problems

I A sequence A = (A1,A2, . . .) of algorithms solves Π in
time T : N× N −→ N if for any G of maximum degree at
most ∆ and any port numbering p of G ,

I A∆ stops in time T (∆, |V |) on input (G , p),
I The output of A∆ on (G , p) is in Π(G ).

I A solves Π assuming consistency, if the above holds for all
consistent port numberings p.

I A solves Π in constant time, if T does not depend on |V |.
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Algorithm Classes

I Vector: all distributed algorithms.

I Multiset: nodes receive a multiset of messages.

I Set: nodes receive messages as sets.

I Broadcast: nodes send the same message to all neighbours.
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Vector vs. Multiset vs. Set

m1 = a

m2 = bm3 = a

Vector:

Multiset:

Set:

received (a, b, a)

received {a, a, b}

received {a, b}
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Vector vs. Broadcast
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Vector:

m1 m3

Broadcast:
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Complexity Classes

I VVc: some algorithm sequence A in Vector solves Π assuming
consistency of port numbering.

I VV: some A in Vector solves Π.

I MV: some A in Multiset solves Π.

I SV: some A in Set solves Π.

I VB: some A in Broadcast that solves Π.

I MB: some A in the intesection of Multiset and Broadcast
solves Π.

I SB: some A in the intersection of Set and Broadcast solves Π.
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Constant time classes

I VVc(1): some A in Vector solves Π in constant time assuming
consistency of port numbering.

I VV(1): some algorithm A in Vector solves Π in constant time.

I Similarly MV(1), SV (1), VB(1), MB(1) and SB(1).
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The Classes are Linearly Ordered by Containment
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SV = MV

Theorem
SV = MV.

An MV algorithm is simulated by an SV algorithm.

Multiplicity of incoming messages can be accessed by sending back
and forth—together with the original message—information about
the port numbers to which each message was sent.

Any node v connected to distinct nodes u and w sends messages
to u and w via output ports with different port numbers, so
ultimately u and w will send a different message back to v .
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MV = VV

Theorem
MV = VV.

Define a linear ordering of messages. This defines a lexicographic
order over full message histories received by any port.

Ordering of message histories is used in order to recover
information about received vectors of messages by looking at
received multisets.
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Characterizing the Complexity Classes with Modal Logic

For each class constant time class C there is a modal logic ML(C )
such that there is a canonical one-to-one correspondence between
algorithms in C and formulae of ML(C ).

Therefore ML(C ) is a complete specification language for C .
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Modal Logic

ϕ := qn | ϕ∧ψ | ¬ϕ | 〈i , j〉ϕ, where qn are proposition symbols.

(G , p), v |= qn iff degree(v) = n.

(G , p), v |= 〈i , j〉ϕ iff (G , p), u |= ϕ for some node u

such that p(u, j) = (v , i).

We use tools of modal logic in the proofs separating the classes.
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