

LCL Problems on Grids

Janne H. Korhonen Aalto University

LCL Problems on Grids

Janne H. Korhonen

Aalto University

joint work with:

- Tuomo Lempiäinen, Patric R.J. Östergård, Christopher Purcell, Jukka Suomela (Aalto)
- Sebastian Brandt, Przemysław Uznański (ETH Zürich)
- Juho Hirvonen (Paris Diderot)
- Joel Rybicki (U. Helsinki)

(arXiv:1702.05456)

Setting: LOCAL model, 2D grids

1.

Introduction

Setting: LOCAL model

- graph = computing network
- graph = input instance
- input: local information at each node
- **output:** local structure of solution

Setting: LOCAL model

LOCAL model

- unique identifiers
- synchronous communication rounds
- time measure: *number of rounds*
- unlimited local computation, unlimited message size
- This work: deterministic algorithms

Setting: LCL problems

- LCL = locally checkable labelling
 - Naor and Stockmeyer (1995)
 - constant-size labels
 - validity of a solution checkable in O(1)-radius neighbourhood of each node
 - maximal independent set, maximal matching, vertex colouring, edge colouring ...

Background: LCLS on cycles

- Directed cycles
 - Cole and Vishkin (1986), Linial (1992)...

- Well-understood classification
 - **Θ(1)** time: "trivial"
 - Θ(log* n) time: "local" (3-colouring)
 - Θ(*n*) time: "global" (2-colouring)
 - classification decidable

Background: LCLs on general graphs

- General (bounded-degree) graphs
 - lots of ongoing work
 - challenge: expander graphs
- A more complicated landscape
 - gaps: nothing is ω(log* n) and o(log n)
 - intermediate problems: Θ(log n) complexity
 - Brandt et al. (2016), Chang et al. (2016), Ghaffari and Su (2017), ...

This work: **2D grids**

- Oriented grids (2D)
 - toroidal grid, $n \times n$ nodes, unique identifiers
 - consistent orientations north/east/south/west
- Generalisation of directed cycles (1D)
- Closer to real-world systems than expander-like worst-case constructions?

This work: **2D grids**

- Vertex colouring (deterministic)
- **2-colouring**: global, $\Theta(n)$ rounds
- 3-colouring: ???
- 4-colouring: ???
- 5-colouring: local, Θ(log* n) rounds

This work: **2D grids**

- Vertex colouring (deterministic)
- 2-colouring: global, Θ(n) rounds
- 3-colouring: global, Θ(n) rounds
- 4-colouring: local, Θ(log* n) rounds
- 5-colouring: local, Θ(log* n) rounds

2.

Classification of LCL problems on grids

Main theorem:

Classification on grids

- LCL problems on 2D grids have exactly three possible deterministic complexities:
 - **Θ(1)** time: "trivial"
 - Θ(log* n) time: "local"
 - Θ(n) time: "global"
- Why?
 - **o(log* n)** time implies **O(1)** time (Naor–Stockmeyer)
 - **o(n)** time implies **O(log* n)** time (this work)

Main theorem: Normalisation/speed-up

- Theorem: Any deterministic o(n)-time algorithm can be translated to a "normal form":
 - 1. fixed Θ(log* n)-time symmetry breaking component
 - 2. problem-specific O(1)-time component

Main theorem: Normalisation, proof ideas

- For any problem P of complexity o(n), there are constants k and r and function f such that P can be solved as follows:
 - **input:** 2D grid **G** with unique identifiers
 - find a maximal independent set in G^k
 - discard unique identifiers
 - apply function *f* to each *r* × *r* neighbourhood

Main theorem:

Normalisation, proof ideas

Why does this work?

- o(n) algorithm A cannot see the whole graph
- symmetry breaking gives *locally unique identifiers*
- pretend that instance has constant size
 - \rightarrow A still has to produce valid output
- Compare with speed-up for general graphs
 - o(log n) → O(log* n)
 - Chang et al. (2016)

3.

Vertex colouring upper and lower bounds

Local problems: 4-colouring

- 4-colouring is local
 - why?

- First proof: prior work and normalisation
 - Δ-colouring is polylog(n) for constant Δ
 - Panconesi and Srinivasan (1995)
 - normalisation $\rightarrow O(\log^* n)$

Local problems: 4-colouring

- 4-colouring is local
 - why?

Second proof: synthesis

- guess it is local, use computers to find normal form
- turns out it is enough to find an MIS in G^3 , then consider 7×5 tiles
- algorithm \approx mapping $\{0, 1\}^7 \times 5 \rightarrow \{1, 2, 3, 4\}$
- only 2079 possible tiles, easy to find a solution

Local problems: More on synthesis

- Can be applied to any LCL problem
- However, classification on grids is **undecidable**
 - synthesis works if the problem is **local**
 - cannot give a negative answers for **global** problems
 - constants quite small in practice
 - more examples in the paper

Global problems: 2-colouring and 3-colouring

- 2-colouring is global
- 3-colouring is global
 - not local, but lower bound non-trivial
 - 3-colouring algorithm on grids solves "sum coordination" on n-cycles
 - "sum coordination" is global
 - reduction has topological flavour

Vertex colouring: Some remarks

- Human-designed local algorithm for 4-colouring on *d-dimensional* grids
- Connection to *finitary colourings*
 - infinite 2D grids
 - same proof techniques
 - upper and lower bounds
 - Holroyd et al. (2016)

4.

Conclusions

Generalisations

- d-dimensional grids: everything generalises
- bounded neighbourhood growth: similar speed-up
- randomised algorithms?

LCL landscape on general graphs still open

- Θ(n^{1/2}) problems exist (this work)
- Θ(n^{1/k}) problems exist (Chang and Pettie 2017)
- more gap theorems

Generalisations

- d-dimensional grids: everything generalises
- bounded neighbourhood growth: similar speed-up
- randomised algorithms?
- LCL landscape on general graphs still open
 - Θ(n^{1/2}) problems exist (this work)
 - Θ(n^{1/k}) problems exist (Chang and Pettie 2017)
 - more gap theorems

Thanks! Questions?

