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Setting: LOCAL model, 2D grids

2-colouring 3- colourlng 4- colourmg
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1.

Introduction



Setting:

LOCAL model

* graph = computing network
* graph = input instance

* input: local information at each node
e output: [ocal structure of solution



Setting:

LOCAL model

 LOCAL model

e Unique identifiers

e synchronous communication rounds

e time measure: number of rounds

o unlimited local computation, unlimited message size

* This work: deterministic algorithms



Setting:

LCL problems

* LCL = locally checkable labelling
 Naor and Stockmeyer (1995)

e constant-size labels
e validity of a solution checkable in O(1)-radius
neighbourhood of each node

 maximal independent set, maximal matching, vertex
colouring, edge colouring ...



BSackground:

LCLs on cycles

* Directed cycles

e Cole and Vishkin (1986),
Linial (1992)...

 Well-understood classification
e O(1) time: “trivial”
* O(log® n) time: “local” (3-colouring)
* O(n) time: “global” (2-colouring)
* classification decidable



BSackground:

LCLs on general graphs

* General (bounded-degree) graphs
 |ots of ongoing work
e challenge: expander graphs

* A more complicated landscape
e gaps: nothing is w(log* n) and o(log n)
* intermediate problems: ©(log n) complexity
 Brandt et al. (2016), Chang et al. (2016),
Ghaffari and Su (2017), ...




his work:

2D grids

* Oriented grids (2D)
 toroidal grid, n x n nodes, unique identifiers
e consistent orientations north/east/south/west

* Generalisation of directed cycles (1D)

* Closer to real-world systems than expander-like
worst-case constructions?



his work:

2D grids 1

-+

* Vertex colouring (deterministic)

e 2-colouring: global, ©(n) rounds

e 3-colouring: 777

* 4-colouring: 7?7

e 5-colouring: local, ©(log* n) rounds



his work:

2D grids

* Vertex colouring (deterministic)

e 2-colouring: global, ©(n) rounds
e 3-colouring: global, ©(n) rounds
* 4-colouring: local, ©(log* n) rounds
* 5-colouring: local, ©(log* n) rounds




2.

Classification of
LCL problems on grids



Main theorem:

Classification on grids

* LCL problems on 2D grids have exactly three
possible deterministic complexities:
e O(1) time: “trivial”
 O(log”* n) time: “local”
e O(n) time: “global”

e Why?
* 0(log”® n) time implies O(1) time (Naor—Stockmeyer)
* 0(n) time implies O(log* n) time (this work)



Main theorem:

up

* Theorem: Any deterministic o(n)-time algorithm

Normalisation/speed

can be translated to a “normal form”:

fixed O(log* n)-time symmetry breaking component

2. problem-specific O(1)-time component

1.

...@...



Main theorem:

Normalisation, proof ideas

* For any problem P of complexity o(n), there are
constants k and r and function f such that P can

be solved as follows:

* input: 2D grid G with unique identifiers
 find a maximal independent set in G*

e discard unigue identifiers

e apply function f to each r x r neighbourhood




Main theorem:

Normalisation, proof ideas

 Why does this work?

* 0(n) algorithm A cannot see the whole graph
e symmetry breaking gives locally unique identifiers
» pretend that instance has constant size

— A still has to produce valid output

* Compare with speed-up for general graphs
* o(log n) = O(log™ n)
 Chang et al. (20106)



3.

Vertex colouring
upper and lower bounds



Local problems:

4-colouring

* 4-colouring is local
e why?

* First proof: prior work and norma
* A-colouring is polylog(n) for consta
* Panconesi and Srinivasan (1995)
 normalisation = O(log* n)
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Local problems: :':'.-.- _ : - .:
4-colouring o won n
L i
H
* 4-colouring is local a"n '.éi::.-' ':'
e why?

 Second proof: synthesis
e guess It Is local, use computers to find normal form

e turns out it is enough to find an MIS in G2, then
consider 7 x 5 tiles

e algorithm = mapping {0, 1} *°> = {1, 2, 3, 4}

e only 2079 possible tiles, easy to find a solution












Local problems:

More on synthesis

* Can be applied to any LCL problem

* However, classification on grids is undecidable
e synthesis works if the problem is local
e cannot give a negative answers for global problems

e constants quite small in practice
* more examples in the paper



Global problems:

2-colouring and 3-colouring

e 2-colouring is global

* 3-colouring is global
* not local, but lower bound non-trivial
» 3-colouring algorithm on grids solves
“sum coordination” on n-cycles

¢ “sum coordination” is global %
e reduction has fopological flavour



Vertex colouring:

Some remarks

* Human-designed local algorithm
for 4-colouring on d-dimensional

grids

e Connection to finitary colourings
* infinite 2D grids
e same proof techniques

e upper and lower bounds
 Holroyd et al. (2016)



4.

Conclusions




* Generalisations
e d-dimensional grids: everything generalises
* bounded neighbourhood growth: similar speed-up
* randomised algorithms?

* LCL landscape on general graphs still open

¢ O(n'?) problems exist (this work)
e O(n'*) problems exist (Chang and Pettie 2017)
e more gap theorems



* Generalisations
e d-dimensional grids: everything generalises
* bounded neighbourhood growth: similar speed-up
* randomised algorithms?

* LCL landscape on general graphs still open

¢ O(n'?) problems exist (this work)
e O(n'*) problems exist (Chang and Pettie 2017)
e more gap theorems

Thanks! Questions?






