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Basic Question

What global information can we infer from local
structure?
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Basic Question

What global information can we infer from local
structure?

Specifically: Can we prove to a distributed local
verifier that a graph has a certain global property?
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Local Algorithms
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Local Algorithms
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Locality condition: constant running time t € IN
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Local Algorithms

Definition:
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Local Algorithms
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Graph is accepted £ all nodes output yes
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Locally Checkable Properties

[Naor & Stockmeyer, 1995]
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Locally Checkable Properties
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e.g. Eulerian graphs
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Locally Checkable Properties

oue e

Graph Eulerian <= all vertices have even degree
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Locally Checkable Proofs

Very few properties are locally checkable
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Locally Checkable Proofs

Very few properties are locally checkable

Extension: Add information to local neighbourhoods:

Proof labels: P:V(G) — {0,1}*
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Locally Checkable Proofs

Very few properties are locally checkable

Extension: Add information to local neighbourhoods:

Proof labels: P:V(G) — {0,1}*

“Proof Labelling Schemes”

[Korman, Kutten & Peleg, PODC 2005]
[Korman & Kutten, 2007]

[Fraigniaud, Korman & Peleg, 2010]
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Example: 3-Colourability
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Example: 3-Colourability
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Example: 3-Colourability
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dc: V — {1,2,3} s.t. all edges non-monochromatic
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Locally Checkable Proofs (LCP) — Definition

A graph property P admits locally checkable proofs of
size f : N — N if there exists a local algorithm A so that

G € P: There exists a proof
P:V(G) — {0,1/(n(C)

so that A(G, P, v) outputs yes on all nodes v.

G ¢ 'P: For every proof P, A(G, P,v) outputs no on
some node v.
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Complexity Theory Analogue

Locally checkable properties Locally checkable proofs

Y ~Y

P = NP
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Our Contributions

We study the Locally Checkable Proof (LCP) hierarchy
LCP(0) € LCP(O(1)) ¢ LCP(O(logn)) C LCP(O(n?))

Extending the results of [Korman et al., 2005]
Our model is strictly stronger
Lower-bound constructions—using e.g.

Extremal graph theory
Gadgets (from NP-completeness theory)
Communication complexity
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Non-bipartiteness in LCP(O(logn))
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Non-bipartiteness in LCP(O(logn))

Find an odd cycle C
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Non-bipartiteness in LCP(O(logn))

Find an odd cycle C
|2 Pickaleader L € C
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Non-bipartiteness in LCP(O(logn))

[l Find an odd cycle C
2 Pickaleader L € C
[21 Equip C with node counters
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Non-bipartiteness in LCP(O(logn))

Find an odd cycle C

Pick a leader L € C

Equip C with node counters

Prove the existence of a unique L using spanning tree methods
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:

odd

odd
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Proving Lower Bounds

Suppose non-bipartiteness admits proof of size o(logn)
with local algorithm A

Then A accepts odd cycles with short proofs:
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Local Proof Complexities 1

Class Proof size Graph property Graph family
LCP(0) 0 Eulerian graphs connected
0 line graphs general
LCP(O(1)) 0(1) s—t reachability undirected
0(1) s—t unreachability undirected
0(1) s—t unreachability directed
0(1) s—t connectivity = k planar
0(1) bipartite graphs general
0(1) even n(G) cycles
LCP(O(logk)) O(logk) s—t connectivity = k general
O(logk) chromatic number <k general
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Local Proof Complexities 2

Class Proof size Graph property Graph family

LCP(O(logn)) O(logn) any coLCP(0) property  connected
O(logn) any monadic Z% property connected
O(logn) odd n(G) cycles
O(logn) chromatic number > 2 connected

LCP(poly(n)) ©(n) fixpoint-free symmetry trees
O(n?) symmetric graphs connected
Q(n%/logn) chromatic number > 3 connected
O(n?) any computable property  connected

— — connected general
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Open Problems

The exact local proof complexity for many classical
problems remains unknown

Is it the case that, when A = O(1),
LCP(O(1)) C NP ?
Note: we already know that

¢ NP

LCP(0)CP & LCP(O(logn)){CNP/ 1
= poly
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Thank you!
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