

Locally Checkable Proofs

Mika Göös & Jukka Suomela

Helsinki Institute for Information Technology HIIT

What global information can we infer from local structure?

- What global information can we infer from local structure?
- Specifically: Can we prove to a distributed local verifier that a graph has a certain global property?

i

Local Algorithms

Local Algorithms

Locality condition: constant running time $t \in \mathbb{N}$

Göös, Suomela (HIIT)

Locally Checkable Proofs

Local Algorithms

Locally Checkable Properties

[Naor & Stockmeyer, 1995]

Locally Checkable Properties

e.g. Eulerian graphs

Locally Checkable Properties

Graph Eulerian \iff all vertices have even degree

1 Very few properties are locally checkable

- Very few properties are locally checkable
- 2 Extension: Add information to local neighbourhoods:

Proof labels: $P: V(G) \rightarrow \{0,1\}^*$

- Very few properties are locally checkable
- <u>Extension</u>: Add information to local neighbourhoods:

Proof labels: $P: V(G) \rightarrow \{0,1\}^*$

Proof Labelling Schemes"
[Korman, Kutten & Peleg, PODC 2005]
[Korman & Kutten, 2007]
[Fraigniaud, Korman & Peleg, 2010]

Example: 3-Colourability

Example: 3-Colourability

Example: 3-Colourability

 $\exists c: V \rightarrow \{1, 2, 3\}$ s.t. all edges non-monochromatic

A graph property \mathcal{P} admits **locally checkable proofs of** size $f : \mathbb{N} \to \mathbb{N}$ if there exists a local algorithm \mathcal{A} so that $G \in \mathcal{P}$: There exists a proof

$$P: V(G) \to \{0,1\}^{f(n(G))}$$

so that $\mathcal{A}(G, P, v)$ outputs yes on all nodes v. $G \notin \mathcal{P}$: For every proof P, $\mathcal{A}(G, P, v)$ outputs no on some node v.

Complexity Theory Analogue

Locally checkable properties

Locally checkable proofs

We study the Locally Checkable Proof (LCP) hierarchy

 $LCP(0) \subset LCP(O(1)) \subset LCP(O(\log n)) \subset LCP(O(n^2))$

- 2 Extending the results of [Korman et al., 2005]
 - Our model is strictly stronger
- Lower-bound constructions—using e.g.
 - Extremal graph theory
 - Gadgets (from NP-completeness theory)
 - Communication complexity

3 Equip C with node counters

- Equip C with node counters
- 4 Prove the existence of a unique L using spanning tree methods

Suppose *non-bipartiteness* admits proof of size $o(\log n)$ with local algorithm A

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose *non-bipartiteness* admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

- Suppose non-bipartiteness admits proof of size o(log n) with local algorithm A
- **2** Then \mathcal{A} accepts **odd cycles** with short proofs:

Class	Proof size	Graph property	Graph family
LCP (0)	0 0	Eulerian graphs line graphs	connected general
LCP (<i>O</i> (1))	$\begin{array}{c} \Theta(1) \\ \Theta(1) \\ \Theta(1) \\ \Theta(1) \\ \Theta(1) \\ \Theta(1) \\ \Theta(1) \end{array}$	s-t reachability s-t unreachability s-t unreachability s-t connectivity = k bipartite graphs even $n(G)$	undirected undirected directed planar general cycles
$LCP(O(\log k))$	$\begin{array}{c} O(\log k) \\ O(\log k) \end{array}$	s-t connectivity $= kchromatic number \leq k$	general general

Local Proof Complexities 2

Class	Proof size	Graph property	Graph family
$LCP(O(\log n))$	$O(\log n)$ $O(\log n)$ $\Theta(\log n)$ $\Theta(\log n)$	any $coLCP(0)$ property any monadic Σ_1^1 property odd $n(G)$ chromatic number > 2	connected connected cycles connected
LCP(poly(n))	$ \begin{array}{c} \Theta(n) \\ \Theta(n^2) \\ \Omega(n^2/\log n) \\ O(n^2) \end{array} $	fixpoint-free symmetry symmetric graphs chromatic number > 3 any computable property	trees connected connected connected
—	_	connected	general

- The exact local proof complexity for many classical problems remains unknown
- **2** Is it the case that, when $\Delta = O(1)$,

 $LCP(O(1)) \subseteq NP$?

Note: we already know that

 $\mathbf{LCP}(0) \subseteq \mathbf{P} \qquad \& \qquad \mathbf{LCP}(O(\log n)) \begin{cases} \not\subseteq \mathbf{NP} \\ \subseteq \mathbf{NP}_{/\mathsf{poly}} \end{cases}$

Thank you!