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Basic Question

1 What global information can we infer from local
structure?

...

2 Specifically: Can we prove to a distributed local
verifier that a graph has a certain global property?
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Local Algorithms

Locality condition: constant running time t ∈N

Definition:

A : { } → {yes, no}

Graph is accepted def⇐⇒ all nodes output yes
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Locally Checkable Properties

[Naor & Stockmeyer, 1995]

e.g. Eulerian graphsGraph Eulerian ⇐⇒ all vertices have even degree
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Locally Checkable Proofs

1 Very few properties are locally checkable

2 Extension: Add information to local neighbourhoods:

Proof labels: P : V(G)→ {0, 1}?

3 “Proof Labelling Schemes”
[Korman, Kutten & Peleg, PODC 2005]
[Korman & Kutten, 2007]
[Fraigniaud, Korman & Peleg, 2010]
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Göös, Suomela (HIIT) Locally Checkable Proofs 7th June 2011 5 / 15



Example: 3-Colourability

∃c : V → {1, 2, 3} s.t. all edges non-monochromatic
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Locally Checkable Proofs (LCP) — Definition

A graph property P admits locally checkable proofs of
size f : N→N if there exists a local algorithm A so that

G ∈ P : There exists a proof

P : V(G)→ {0, 1} f (n(G))

so that A(G, P, v) outputs yes on all nodes v.
G /∈ P : For every proof P, A(G, P, v) outputs no on

some node v.
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Complexity Theory Analogue

Locally checkable properties

'

P
Locally checkable proofs

'

NP⇒
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Our Contributions

1 We study the Locally Checkable Proof (LCP) hierarchy

LCP(0) ⊂ LCP(O(1)) ⊂ LCP(O(log n)) ⊂ LCP(O(n2))

2 Extending the results of [Korman et al., 2005]
Our model is strictly stronger

3 Lower-bound constructions—using e.g.
Extremal graph theory
Gadgets (from NP-completeness theory)
Communication complexity
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Non-bipartiteness in LCP(O(log n))

1 Find an odd cycle C
2 Pick a leader L ∈ C
3 Equip C with node counters

4 Prove the existence of a unique L using spanning tree methods
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Proving Lower Bounds

1 Suppose non-bipartiteness admits proof of size o(log n)
with local algorithm A

2 Then A accepts odd cycles with short proofs:
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Göös, Suomela (HIIT) Locally Checkable Proofs 7th June 2011 11 / 15



Proving Lower Bounds

1 Suppose non-bipartiteness admits proof of size o(log n)
with local algorithm A

2 Then A accepts odd cycles with short proofs:
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Local Proof Complexities 1

Class Proof size Graph property Graph family

LCP(0) 0 Eulerian graphs connected
0 line graphs general

LCP(O(1)) Θ(1) s–t reachability undirected
Θ(1) s–t unreachability undirected
Θ(1) s–t unreachability directed
Θ(1) s–t connectivity = k planar
Θ(1) bipartite graphs general
Θ(1) even n(G) cycles

LCP(O(log k)) O(log k) s–t connectivity = k general
O(log k) chromatic number ≤ k general
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Local Proof Complexities 2

Class Proof size Graph property Graph family

LCP(O(log n)) O(log n) any coLCP(0) property connected
O(log n) any monadic Σ1

1 property connected
Θ(log n) odd n(G) cycles
Θ(log n) chromatic number > 2 connected

LCP(poly(n)) Θ(n) fixpoint-free symmetry trees
Θ(n2) symmetric graphs connected
Ω(n2/ log n) chromatic number > 3 connected
O(n2) any computable property connected

— — connected general
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Open Problems

1 The exact local proof complexity for many classical
problems remains unknown

2 Is it the case that, when ∆ = O(1),

LCP(O(1)) ⊆ NP ?

Note: we already know that

LCP(0) ⊆ P & LCP(O(log n))

{
* NP
⊆ NP/poly
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Thank you!
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