

Lower Bounds *for* Local Approximation

<u>Mika Göös</u>, Juho Hirvonen & Jukka Suomela University of Helsinki

Göös et al. (Univ. of Helsinki)

Local Approximation

Lower Bounds for Local Approximation

Main Result: Local algorithms do not need *unique IDs* when solving graph optimization problems

Input = Graph G = Communication Network

- Independent sets
- 2 Vertex covers
- 3 Dominating sets
- 4 Matchings

Göös et al. (Univ. of Helsinki)

Local Approximation

17th July 2012 4 / 14

XI Door

Old Classics

- Independent sets
- 2 Vertex covers
- 3 Dominating sets
- 4 Matchings

Göös et al. (Univ. of Helsinki)

5 Edge covers

Local Approximation

17th July 2012 4 / 14

Old Classics

Independent sets

 \sim

- 2 Vertex covers
- 3 Dominating sets
- 4 Matchings
- 5 Edge covers

Göös et al. (Univ. of Helsinki)

- 6 Edge dom. sets
 - Etc...

Local Approximation

17th July 2012 4 / 14

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm **A**
- 2 Deterministic, synchronous

- 1 Distributed algorithm A
- 2 Deterministic, synchronous
- **3 Locality:** running time *r* is
 - **independent** of $n = |\mathcal{G}|$
 - may depend on maximum degree Δ of \mathcal{G}

Distributed algorithm A
 Deterministic, synchronous
 Locality: running time *r* is

 independent of *n* = |*G*|
 may depend on maximum degree Δ of *G*

On *bounded degree graphs* ($\Delta = O(1)$) running time is a constant:

$$r \in \mathbb{N}$$
 (e.g., $r = 3$)

Definition:

Definition:

Two Network Models

Unique Identifiers

Anonymous Networks with Port Numbering

Two Network Models

Unique Identifiers

Each node has a unique O(log n)-bit label:

 $V(\mathcal{G}) \subseteq \{1, 2, \dots, \operatorname{poly}(n)\}$

Two Network Models

Unique Identifiers

Each node has a unique O(log n)-bit label:

 $V(\mathcal{G}) \subseteq \{1, 2, \dots, \operatorname{poly}(n)\}$

Anonymous Networks with Port Numbering

- Node v can refer to its neighbours via ports 1,2,...,deg(v)
- Edges are oriented

ID-model

PO-model

ID-model

ID-model

 [Cole–Vishkin 86, Linial 92]: Maximal independent set can be computed in Θ(log* n) rounds

Above PO-network is fully symmetric

ID-model

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output

ID-model

 $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{pmatrix}$

PO-model

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

ID-model

 [Lenzen–Wattenhofer 08, Czygrinow et al. 08]: MIS cannot be approximated to within a constant factor in O(1) rounds! PO-model

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

 [Lenzen–Wattenhofer 08, Czygrinow et al. 08]: MIS cannot be approximated to within a constant factor in O(1) rounds!

- Above PO-network is fully symmetric
- \Rightarrow All nodes give same output
- \Rightarrow Empty set is computed!

Known Approximation Ratios

	ID	PO	
Max Independent Set	∞	∞	[LW DISC'08] [CHW DISC'08]
Max Matching	∞	∞	
Min Vertex Cover	2	2	[ÅS SPAA'10]
Min Edge Cover	2	2	
Min Dominating Set	$\Delta + 1$	$\Delta + 1$	
Min Edge Dominating Set	???	$4-rac{2}{\Delta}$	[Suomela PODC'10]

Known Approximation Ratios

	ID	PO	
Max Independent Set	∞	∞	[LW DISC'08] [CHW DISC'08]
Max Matching	∞	∞	
Min Vertex Cover	2	2	[ÅS SPAA'10]
Min Edge Cover	2	2	
Min Dominating Set	$\Delta + 1$	$\Delta + 1$	
Min Edge Dominating Set	$4-rac{2}{\Delta}$	$4-rac{2}{\Delta}$	[Suomela PODC'10]

Main Thm: When Local Algorithms compute constant factor approximations,

ID = PO

for a general class of graph problems

Main Thm: When Local Algorithms compute constant factor approximations,

ID = PO

for a general class of graph problems

next: proof idea...

Göös et al. (Univ. of Helsinki)

Local Approximation

ID

ID PC

[Naor-Stockmeyer 95]:

Local ID-algorithms can only compare identifiers

ID = OI PO

[Naor–Stockmeyer 95]:

Local ID-algorithms can only compare identifiers

ID = OI PO

[Naor–Stockmeyer 95]:

Local ID-algorithms can only compare identifiers

Order invariant (OI) algorithm A:

Input: Ordered graph (\mathcal{G}, \leq) Output: $\mathbf{A}(\mathcal{G}, \leq, v)$ depends only on **order type** of the radius-*r* neighbourhood of *v*

Göös et al. (Univ. of Helsinki)

Local Approximation

ID = OI PO

Ordered cycle:

 $(1-\epsilon)$ -fraction of neighbourhoods are isomorphic

ID = OI PO

Ordered cycle:

 $(1-\epsilon)$ -fraction of neighbourhoods are isomorphic $(1-\epsilon)$ -homogeneous

ID = OI PO

High-degree homogeneous graphs: (analogue to *homogeneously ordered cycles*)

High-degree homogeneous graphs: (analogue to *homogeneously ordered cycles*)

- 1 $(1-\epsilon)$ -homogeneous
- 2 Large girth
- 8 Finite graph

High-degree homogeneous graphs: (analogue to *homogeneously ordered cycles*)

- 1 $(1-\epsilon)$ -homogeneous
- 2 Large girth
- 8 Finite graph
- 4 2k-regular

High-degree homogeneous graphs: (analogue to *homogeneously ordered cycles*)

- 1 $(1-\epsilon)$ -homogeneous
- 2 Large girth
- 3 Finite graph
- 4 2*k*-regular

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

High-degree homogeneous graphs: (analogue to *homogeneously ordered cycles*)

- 1 (1ϵ) -homogeneous
- 2 Large girth
- 3 Finite graph
- 4 2*k*-regular

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

Algebraic construction:

We use Cayley graphs of soluble groups

High-degree homogeneous graphs: (analogue to *homogeneously ordered cycles*)

- 1 (1ϵ) -homogeneous
- 2 Large girth
- 3 Finite graph
- 4 2*k*-regular

Main Technical Result:

Graphs $(\mathcal{H}_{\epsilon}, \leq_{\epsilon})$ with properties 1–4 exist

Proof of Main Thm: Form graph products $(\mathcal{H}_{\epsilon}, \leq_{\epsilon}) \times \mathcal{G}$

Conclusion

Our result:

For Local Approximation, ID = OI = PO

Open problems:

- Planar graphs?
- More applications for homogeneous graphs?
- Randomness!

Cheers!

Göös et al. (Univ. of Helsinki)

Local Approximation

17th July 2012 14 / 14