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Lower Bounds for Local Approximation

Main Result: Local algorithms do not need unique IDs
when solving graph optimization problems
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Input = Graph G = Communication Network
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“Simple” Graph Problems

Old Classics

1 Independent sets

2 Vertex covers
3 Dominating sets
4 Matchings
5 Edge covers
6 Edge dom. sets
7 Etc. . .
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Local Algorithms

1 Distributed algorithm A
2 Deterministic, synchronous

3 Locality: running time r is
independent of n = |G|
may depend on maximum
degree ∆ of G

On bounded degree graphs (∆ = O(1))
running time is a constant:

r ∈N (e.g., r = 3)
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Local Algorithms

Definition:

A : { } → {0, 1}

∆
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Two Network Models
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2

Unique Identifiers Anonymous Networks
with Port Numbering

Each node has a unique
O(log n)-bit label:

V(G) ⊆ {1, 2, . . . , poly(n)}

Node v can refer to its
neighbours via ports
1, 2, . . . , deg(v)
Edges are oriented
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Göös et al. (Univ. of Helsinki) Local Approximation 17th July 2012 7 / 14



Example: Independent Sets on a Cycle
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[Cole–Vishkin 86, Linial 92]:
Maximal independent set
can be computed in Θ(log∗ n)
rounds

Above PO-network is
fully symmetric
⇒ All nodes give same output
⇒ Empty set is computed!
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Known Approximation Ratios

ID PO

Max Independent Set ∞ ∞ [LW DISC’08]
[CHW DISC’08]Max Matching ∞ ∞

Min Vertex Cover 2 2 [ÅS SPAA’10]

Min Edge Cover 2 2

Min Dominating Set ∆ + 1 ∆ + 1

Min Edge Dominating Set ??? 4− 2
∆ [Suomela PODC’10]
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Our Result (informally)

next: proof idea...

Main Thm: When Local Algorithms compute
constant factor approximations,

ID = PO
for a general class of graph problems
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What is known?
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ID

= OI ?
=

PO

[Naor–Stockmeyer 95]:
Local ID-algorithms can only compare identifiers

Order invariant (OI) algorithm A:

Input: Ordered graph (G,≤)
Output: A(G,≤, v) depends only on order type of

the radius-r neighbourhood of v

Ordered cycle:

(1− ε)-fraction of
neighbourhoods are

isomorphic

m
(1− ε)-homogeneous
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Key Construction

High-degree homogeneous graphs:
(analogue to homogeneously ordered cycles)

1 (1− ε)-homogeneous
2 Large girth
3 Finite graph
4 2k-regular

}
Main Technical Result:

Graphs (Hε,≤ε) with
properties 1–4 exist

Algebraic construction:

We use Cayley graphs of soluble groups

Proof of Main Thm:

Form graph products (Hε,≤ε)× G
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We use Cayley graphs of soluble groups
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Conclusion

Our result:

For Local Approximation,

ID = OI = PO

Open problems:

Planar graphs?
More applications for homogeneous graphs?
Randomness!
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Cheers!
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