

What can be decided locally without identifiers?

Pierre Fraigniaud <u>Mika Göös</u> Amos Korman Jukka Suomela University Paris Diderot & CNRS University of Toronto University Paris Diderot & CNRS University of Helsinki & HIIT

Local decision without IDs

[FKP FOCS'11]

Input:graph GOutput:is $G \in \mathcal{P}$?

[FKP FOCS'11]

Input: graph G**Output:** is $G \in \mathcal{P}$?

Local algorithm $\equiv O(1)$ communication rounds $\equiv O(1)$ radius neighbourhood

Fraigniaud et al.

Local decision without IDs

[FKP FOCS'11]

Input: graph G**Output:** is $G \in \mathcal{P}$?

G is accepted iff all nodes ouput *yes*

[FKP FOCS'11]

Input: graph *G* **Output:** is $G \in \mathcal{P}$?

Locally decidable \mathcal{P} :

- triangle-freeness
- Eulerian graphs
- line graphs
- Locally checkable labellings (*G*, *ℓ*)

Fraigniaud et al.

Our question

We ask: Do **node identifiers** help in local decision?

Our question

We ask: Do **node identifiers** help in local decision?

IDs do not seem useful...

- Graph properties do not depend on node labels
- Symmetry breaking is not needed for decision problems!

Our question—formalised

LOCAL model (deterministic)

 $V(G) \subseteq \{1, 2, 3, \ldots\}$

[FHK OPODIS'12]

Our question—formalised

LOCAL model (deterministic)

 $V(G) \subseteq \{1, 2, 3, \ldots\}$

ID-oblivious model

Restriction: Output is invariant under relabelling the nodes

(i.e., depends only on **topology**)

VS.

Warm up!

Under some assumptions:

$\mathcal{LOCAL} = ID$ -oblivious

Proof by simulation...

Easy cases

Let A be a \mathcal{LOCAL} decision algorithm

ID-oblivious simulation of A

Input: local neighbourhood (H, v) of *G*

For each ID-assignment $f: V(H) \rightarrow \{1, 2, \dots, n\}$:

• if A(f(H, v)) = no then **output** no.

Otherwise output yes.

Assumptions: \blacktriangleright Nodes know n

Easy cases

Let A be a \mathcal{LOCAL} decision algorithm

ID-oblivious simulation of A

Input: local neighbourhood (H, v) of *G*

For each ID-assignment $f: V(H) \rightarrow \{1, 2, ...\}$:

• if A(f(H, v)) = no then **output** no.

Otherwise output yes.

Assumptions: Nodes do not know *n*

Easy cases

Let A be a \mathcal{LOCAL} decision algorithm

Nodes are Turing computable

Our main result

Main theorem*

$\mathcal{LOCAL} \neq$ ID-oblivious

(I.e., there is a locally decidable property that cannot be decided ID-obliviously)

Assumptions:► Nodes do not know n► Nodes are Turing computable

Main theorem*

$\mathcal{LOCAL} \neq$ ID-oblivious

(I.e., there is a locally decidable property that cannot be decided ID-obliviously)

* Contrary to a conjecture of [FHK'12]

Assumptions:► Nodes do not know n► Nodes are Turing computable

Our main result

Main theorem*

$\mathcal{LOCAL} \neq$ ID-oblivious

(I.e., there is a locally decidable property that cannot be decided ID-obliviously)

* Contrary to a conjecture of [FHK'12]

Separation under promise

Separation under promise

ID-oblivious Impossible: Must solve the Halting Problem

Era	10n	1211	de	t a	
114	-6-	10101	u c		

Separation under promise

ID-obliviousImpossible: Must solve the Halting Problem \mathcal{LOCAL} Possible: Node v simulates M for ID(v) steps

Getting rid of the promise

Promise: • If *M* halts in *s* steps, then $n \ge s$

Getting rid of the promise

↓ Replace! ↓

Getting rid of the promise

↓ Replace! ↓

For local decision, we proved:

$\mathcal{LOCAL} \neq$ ID-oblivious

For local decision, we proved:

$\mathcal{LOCAL} \neq$ ID-oblivious

	IDs help	IDs don't help	
Decision	This work	[FHK OPODIS'12]	
Search	[HHRS SIROCCO'12]	[NS Sicomp'95] [GHS PODC'12]	

For local decision, we proved:

 $\mathcal{LOCAL} \neq$ ID-oblivious

Randomisation?

Open problems in randomised decision [FKPP DISC'12]

Fraigniaud et al.

Local decision without IDs

For local decision, we proved:

 $\mathcal{LOCAL} \neq$ ID-oblivious

Randomisation?

Open problems in randomised decision [FKPP DISC'12]

Cheers!

Fraigniaud et al.

Local decision without IDs