
No distributed quantum advantage for
approximate graph coloring

Xavier Coiteux-Roy · School of Computation, Information and Technology, Technical
University of Munich, Germany · Munich Center for Quantum Science and Technology, Germany

Francesco d’Amore · Aalto University, Finland

Rishikesh Gajjala · Aalto University, Finland · Indian Institute of Science, India

Fabian Kuhn · University of Freiburg, Germany

François Le Gall · Nagoya University, Japan

Henrik Lievonen · Aalto University, Finland

Augusto Modanese · Aalto University, Finland

Marc-Olivier Renou · Inria, Université Paris-Saclay, Palaiseau, France · CPHT, Ecole
Polytechnique, Institut Polytechnique de Paris, Palaiseau, France

Gustav Schmid · University of Freiburg, Germany

Jukka Suomela · Aalto University, Finland

Abstract. We give an almost complete characterization of the hardness of c-coloring χ-chromatic
graphs with distributed algorithms, for a wide range of models of distributed computing. In
particular, we show that these problems do not admit any distributed quantum advantage. To do
that:

1. We give a new distributed algorithm that finds a c-coloring in χ-chromatic graphs in Õ(n 1
α)

rounds, with α =
⌊

c−1
χ−1

⌋
.

2. We prove that any distributed algorithm for this problem requires Ω(n 1
α) rounds.

Our upper bound holds in the classical, deterministic LOCAL model, while the near-matching lower
bound holds in the non-signaling model. This model, introduced by Arfaoui and Fraigniaud in 2014,
captures all models of distributed graph algorithms that obey physical causality; this includes not
only classical deterministic LOCAL and randomized LOCAL but also quantum-LOCAL, even with a
pre-shared quantum state.

We also show that similar arguments can be used to prove that, e.g., 3-coloring 2-dimensional
grids or c-coloring trees remain hard problems even for the non-signaling model, and in particular
do not admit any quantum advantage. Our lower-bound arguments are purely graph-theoretic at
heart; no background on quantum information theory is needed to establish the proofs.

ar
X

iv
:2

30
7.

09
44

4v
2

 [
cs

.D
C

]
 1

4
N

ov
 2

02
3

1 Introduction
In this work, we settle the distributed computational complexity of approximate graph coloring, for
deterministic, randomized, and quantum versions of the LOCAL model of distributed computing.

In brief, the setting is this: We have an input graph G with n nodes. Each node is a computer
and each edge represents a communication link. Computation proceeds in synchronous rounds: each
node sends a message to each of its neighbors, receives a message from each of its neighbors, and
updates its own state. After T rounds, each node has to stop and announce its own output, and the
outputs have to form a proper c-coloring of the input graph G. If the chromatic number of G is
χ, in this setting it is trivial to find a χ-coloring in T = O(n) rounds, as in O(n) rounds all nodes
can learn the full topology of their own connected component and they can locally find an optimal
coloring by brute force without any further communication. But the key questions are: How well
can we color graphs in T ≪ n rounds? And how much does it help if we use quantum computers
that can exchange quantum information, possibly with a pre-shared entangled state?

1.1 Main result

We show that for all constants c, χ, and α, it is possible to find a c-coloring of a χ-colorable graph
in T = Õ(n1/α) communication rounds if and only if

α ≤
⌊
c− 1
χ− 1

⌋
.

For example, if the graph is bipartite (χ = 2), this means that the complexity of 2-coloring is Θ̃(n)
rounds, 3-coloring is Θ̃(

√
n) rounds, and 4-coloring is Θ̃(n1/3) rounds. Here we use Õ and Θ̃ to hide

polylogarithmic factors, that is, our results are tight up to polylogarithmic factors.
Perhaps the biggest surprise is that this result holds for a wide range of models of distributed

computing: the answer is the same for deterministic, randomized, and quantum versions of the
LOCAL model, and it holds even if the algorithm has access to shared randomness or pre-shared
quantum state (as long as the quantum state is prepared before we reveal the structure of graph G).

In particular, we show that there is no distributed quantum advantage for approximate graph
coloring in the context of the LOCAL model, at least up to polylogarithmic factors.

1.2 Significance and motivation

Our work is directly linked to two lines of research: understanding the quantum advantage in
distributed settings, and the complexity of distributed graph coloring in classical settings.

Distributed quantum advantage. There is a long line of work [4, 21, 27, 42, 43, 46, 54, 65, 67]
on quantum advantage in the CONGEST model—this is a bandwidth-limited version of the LOCAL
model. However, much less is known about quantum advantage in the LOCAL model.

Earlier work by Gavoille et al. [33] and Arfaoui and Fraigniaud [6] on quantum-LOCAL brought
primarily bad news: they showed that many classical LOCAL model lower bounds still hold in the
quantum-LOCAL model. The quantum advantage demonstrated by [33] was limited to constant
factors or required pre-shared quantum resources. The major breakthrough was the recent work by
Le Gall et al. [47] that demonstrated that there is a problem that can be solved in only 2 rounds
using quantum communication, whereas solving it in the classical setting requires Ω(n) rounds.

However, the problem from Le Gall et al. [47] is very different from the classical problems
commonly studied in the field of distributed graph algorithms, and most importantly, it is not a

1

locally checkable problem. Locally checkable problems are graph problems in which the task is to
find a feasible solution subject to local constraints—perhaps the best-known example of such a
problem is graph coloring. A lot of recent work on the classical LOCAL model has focused on locally
checkable problems, and there is nowadays a solid understanding of the landscape of the distributed
computational complexity of such problems for the classical models—see, e.g., [8, 9, 10, 11, 18, 19,
22, 24, 30, 35, 36, 61]. However, what is wide open is how quantum-LOCAL changes the picture.

A major open problem is whether there is any locally checkable graph problem that can be
solved asymptotically faster in quantum-LOCAL in comparison with the classical randomized LOCAL
model, and it has been conjectured that no such problem exists [63]. In this work we provide more
evidence in support of this conjecture: we show that various problems related to graph coloring do
not admit any significant quantum advantage.

Hardness of distributed coloring. In a very recent work, Akbari et al. [2] studied the notion of
locality in three different settings: distributed, dynamic, and online graph algorithms. They showed
that for locally checkable problems in rooted regular trees the three notions of locality coincide, but
more generally the notions are distinct. The prime example of a problem that separates the models
is 3-coloring bipartite graphs: the distributed locality (i.e., round complexity) of the problem is
Ω(
√
n) [20], but the online locality is O(logn) [2]. While this demonstrates that there is large gap

between distributed and online settings, this also highlights a blind spot in our understanding of
seemingly elementary questions in the classical LOCAL model: What, exactly, is the distributed
complexity of 3-coloring bipartite graphs? Can we solve it in Õ(

√
n) rounds? And, more generally,

what is the distributed complexity of c-coloring χ-colorable graphs?
Given the prominent role graph coloring plays in distributed graph algorithms, the state of

the art is highly unsatisfactory—the upper and lower bounds are far from each other, even if we
consider the seemingly elementary question of coloring bipartite graphs:

• As mentioned above, the complexity of 3-coloring bipartite graphs is known to be somewhere
between Ω(

√
n) and O(n). Brandt et al. [20] show that 3-coloring 2-dimensional grids requires

Ω(
√
n) rounds, and even though they study toroidal grids (which are not necessarily bipartite),

the same result can be adapted to also show that 3-coloring bipartite graphs requires Ω(
√
n)

rounds. It is not known if this is tight; to the best of our knowledge, there is no upper bound
other than the trivial O(n)-round algorithm.

• The complexity of 4-coloring bipartite graphs is only known to be somewhere between Ω(logn)
and O(n). Linial’s [49] lower bound for coloring trees applies, so we know that the complexity
has to be at least Ω(logn), but beyond that very little is known. The lower bound construction
from [20] cannot be used here since it is easy to 4-color grids. To come up with a nontrivial
upper bound, it would be tempting to use network decompositions in the spirit of Barenboim
[12], but we are lacking network decomposition algorithms with suitable parameters, and in
any case this approach cannot produce 4-colorings or 5-colorings in o(

√
n) rounds.

In this work we solve all these open questions, up to polylogarithmic factors, for the general task of
c-coloring χ-colorable graphs. We show that there is plenty of room for improvement in both upper
and lower bounds. For example, in the case of 4-coloring bipartite graphs, the right bound turns
out to be Θ̃(n1/3), which is far from what can be achieved with the state of the art outlined above.

1.3 Contributions in more detail

We will now describe all of our results and contributions in more detail; we refer to Section 2 for an
overview of the proof ideas and to Sections 4 and 5 for the proofs.

2

1.3.1 Classical upper bound (Section 4)

Let us start with the upper bound. We design new distributed algorithms with the following
properties:

Theorem 1.1. There exists a det-LOCAL algorithm Adet and a rand-LOCAL algorithm Arand that,
given a parameter α ∈ N, find a proper vertex coloring with α(χ− 1) + 1 colors in any graph with
chromatic number χ, as follows:

• Adet runs in O
(
n1/α log3−1/α n

)
· (log logn)O(1) rounds.

• Arand runs in O
(
n1/α log2−1/α n

)
rounds and succeeds with probability 1− 1/poly(n).

We note that the algorithms do not need to know χ; it is sufficient to know α and n. As a
corollary, we can, e.g., 3-color bipartite graphs in Õ(

√
n) rounds by setting α = 2.

The number of colors c = α(χ− 1) + 1 may look like a rather unnatural expression, and there
does not seem to be a priori any reason to expect that this would be tight—however, as we will see,
this is indeed exactly the right number.

1.3.2 Non-signaling model

Our main goal is to show that the algorithms in Theorem 1.1 are optimal (up to polylogarithmic fac-
tors), not only in the classical models but also in, e.g., all reasonable variants of the quantum-LOCAL
model. To this end, we work in the non-signaling model, as defined by Arfaoui and Fraigniaud [6];
this is essentially equivalent to the φ-LOCAL model defined earlier by Gavoille et al. [33].

The non-signaling model is a characterization of output distributions that do not violate the no-
signaling from the future principle or, equivalently, the causality principle [25]. To better understand
this, suppose we have some classical rand-LOCAL algorithm A that runs in T rounds and outputs
a vertex coloring. Let p(G) be the output distribution of A when run on a graph G. The key
observation is that this distribution is not arbitrary—in particular, it must satisfy the following
property:

Definition 1.2 (Non-signaling distribution, informal version). The output distribution p(G) of
A is non-signaling beyond distance T if the following holds: Let V be a set of nodes of a graph
G with |V | = n. Fix a subset of nodes U ⊆ V and consider p(G)↾U , the restriction of p(G) to
U . Let G[U, T] be the graph induced by the radius-T neighborhood of U in G. Now modify G
outside G[U, T] to obtain a different n-node graph G′ while preserving G[U, T] = G′[U, T]. Then
p(G)↾U = p(G′)↾U .

Put otherwise, changes more than distance T away from U cannot influence the output dis-
tribution of U . It is not hard to see that this holds for det-LOCAL and rand-LOCAL, even if the
algorithm has access to shared randomness. But what makes this notion particularly useful is that
it is satisfied also by the quantum-LOCAL model, even with a pre-shared quantum state [6, 33].
Informally, a system that violates the non-signaling property would violate causality and enable
faster-than-light communication, which is something that quantum physics does not allow.

We use NS-LOCAL to refer to the non-signaling model. We say that A is an NS-LOCAL algorithm
that runs in T rounds if it produces an output distribution that is non-signaling beyond distance T .
We will then prove statements of the form “any NS-LOCAL algorithm for this problem requires at
least T rounds.” As a corollary, this gives a T -round lower bound for det-LOCAL, rand-LOCAL, and
quantum-LOCAL, even if we have access to shared randomness and pre-shared quantum states. This
also puts limits on the existence of so-called finitely dependent colorings [39, 40].

3

1.3.3 Non-signaling lower bounds (Section 5)

The precise version of our lower bound result states that, for every large enough number of nodes n,
there exists a χ-chromatic graph on n nodes that is hard to color in NS-LOCAL.

Theorem 1.3. Let χ ≥ 2, c ≥ χ be integers, and let α = ⌊ c−1
χ−1⌋. Let ε ∈ (0, α−1

α) be a real value,
and let n ∈ N with

n ≥
⌈

log ε−1

log(1 + 1
α)

⌉
· (6χ+ 1)α+1 − 1

6 .

Suppose A is an NS-LOCAL algorithm for c-coloring graphs in the family F of χ-chromatic graphs
of n nodes with success probability q > ε. Then the running time of A is at least

T = Ω
(

1
χ1+ 1

α

·
(

n

log ε−1

) 1
α

)
.

A key observation is that, if the parameters χ, c, and ε in Theorem 1.3 are constants, then
T = Ω(n 1

α), which matches the upper bound in Theorem 1.1 up to polylogarithmic factors. In
particular, there is at best polylogarithmic room for any distributed quantum advantage.

While Theorem 1.3 implies bounds for coloring bipartite graphs in general, we will also use our
techniques to prove bounds for specific bipartite graphs. By prior work, it is known that 3-coloring
2-dimensional grids is hard in the det-LOCAL model [1, 20]. We show that this also holds for the
non-signaling model:

Theorem 1.4. Let ε ∈ (0, 3
4) and N = ⌈log(ε−1)/ log(4

3)⌉. Let n1, n2 ∈ N with ⌊n1
N ⌋ ≥ 5 and ⌊n2

N ⌋ ≥
5. Suppose A is an NS-LOCAL algorithm that 3-colors n1 × n2 grids with probability q > ε. Then,
the running time of A is at least

T = Ω
(min(n1, n2)

log ε−1

)
.

This result is easiest to interpret in the case of a square grid, i.e., n1 = n2. Then the lower
bound (for constant ε) is simply Ω(

√
n), where n = n1 · n2, and this is trivially tight since the

diameter of the grid is O(
√
n); hence the problem can be solved in O(

√
n) rounds with a det-LOCAL

algorithm. In particular, there is no room for distributed quantum advantage (beyond possibly
constant factors).

Finally, we revisit the classical result by Linial [49] about the hardness of coloring trees. We
show that essentially the same lower bound holds in the non-signaling model:

Theorem 1.5. Let c ≥ 2 be an integer, and ε ∈ (0, 1). Suppose A is an NS-LOCAL algorithm that
c-colors trees of size n ∈ N with probability q > ε. Then, for infinitely many n, as long as ε > e−n,
the running time of A is at least

T = Ω
(
logc n− logc log ε−1).

2 Key new ideas and techniques
In this section, we will give an informal overview of the key new ideas and techniques that we use
to prove Theorems 1.1, 1.3, 1.4 and 1.5. We refer to Sections 4 and 5 for the formal proofs.

4

2.1 Classical upper bound (Section 4)

Background and prior work. The only existing distributed algorithm for solving the approximate
coloring problem in general graphs that we are aware of is a folklore algorithm based on network
decompositions [7, 50]. For parameters α and d, an (α, d)-network decomposition is a partition of the
nodes V of a graph G = (V,E) into clusters of (weak) diameter at most d together with a proper
α-coloring of the cluster graph; recall that the weak diameter of a cluster C ⊆ V is the maximum
distance in G between any two nodes in C.

Given such a decomposition, it is not hard to see how to color graphs of chromatic number χ
with αχ colors in d rounds by using disjoint color palettes for clusters of different colors: For every
i ∈ [α], the nodes in a cluster of color i use colors from the palette {i, α+ i, 2α+ i, . . . }. Each such
cluster C is colored by having a leader node collect the entire topology of the cluster and then brute
forcing an optimal coloring φC of the cluster. Since the graph has chromatic number χ, coloring
φC uses at most χ colors. Finally, the leader broadcasts the coloring and assigns each node v in C
the color α(φC(v)− 1) + i. This results in a proper coloring with at most αχ colors. In addition,
the nodes do not require knowledge of χ in advance. This algorithm has for example been used by
Barenboim [12] to compute a non-trivial approximate coloring in a constant number of rounds. Our
algorithm is based on two new ideas that are outlined below.

New ingredient 1: New network decomposition algorithms. Network decomposition
algorithms mostly focus on optimizing the product of α and d (as most applications of network
decompositions require time proportional to αd) or on minimizing the number of cluster colors
for a given maximum cluster diameter (e.g., [7, 12, 34, 50, 61]). We are interested in network
decompositions with a fixed number of cluster colors α that is beyond our control and where we
wish to optimize the value of d. By using existing clustering techniques [23, 34, 57, 61] with some
minor adaptations, we give randomized and deterministic algorithms that, for any parameter ε > 0,
compute a set of non-adjacent clusters such that the cluster diameter of each cluster is polylog(n)/ε
and the total number of unclustered nodes is at most εn. For every integer α, this can in turn be
used to compute an (α, d)-network decomposition with d = Õ(n1/α).

Let us illustrate the idea for the case α = 2. Setting ε = 1/
√
n, we compute a set of non-adjacent

clusters of diameter Õ(
√
n) such that at most O(

√
n) nodes remain unclustered. The constructed

clusters can all be colored with color 1 and the connected components of the unclustered nodes form
the clusters of color 2. We thus obtain a (2, Õ(

√
n))-network decomposition in time Õ(

√
n) and one

can therefore color graphs of chromatic number χ with 2χ colors in Õ(
√
n) rounds.

New ingredient 2: The hiding trick. In Section 4 we show how to reduce the number of
colors used while keeping the round complexity the same. The main new idea is what we call the
hiding trick: First we make sure that clusters of the same color are at least four hops apart; this
can be achieved by running a network decomposition protocol on G3. For simplicity, assume that
we have a (2, Õ(

√
n))-network decomposition. Let C be a cluster of color 1. We first extend C to

an extended cluster C1 that includes all unclustered nodes that are adjacent to C. Next we find a
proper χ-coloring of C1 using colors {1, . . . , χ} by brute force. Finally, any boundary node of C1
that has color χ is removed, thus yielding a cluster C0 with C ⊆ C0 ⊆ C1. Note that C0 is colored
using at most χ colors and that and all boundary nodes of C0 have a color different from χ. We
have effectively hidden the color χ inside the cluster. Now we continue with the rest of the process
and can safely use colors {χ, . . . , 2χ− 1} to color the uncolored nodes in clusters of color 2. The
end result is a proper (2χ− 1)-coloring, and the running time is simply a constant times the cluster

5

diameter d = Õ(
√
n). With this strategy, for instance, we can compute a 3-coloring of bipartite

graphs in Õ(
√
n) rounds.

Theorem 1.1 is in essence a formalization and generalization of the hiding trick. We can hide
one color in each cluster and therefore reuse one of the colors for all of the α cluster colors. This
results in a coloring with α(χ− 1) + 1 colors. In addition, if one chooses the color palettes carefully,
it is not necessary for the nodes to know χ beforehand. At first this may seem like an ad-hoc trick
that cannot possibly be optimal—after all, we are saving only one color in each step. However,
our matching lower bound shows that the hiding trick is essentially the best that we can do in
distributed coloring, even if we have access to quantum resources.

2.2 Non-signaling lower bounds (Section 5)

Prior work on classical lower bounds. As a warm-up, let us first see how one could prove a
lower bound similar to Theorem 1.3 for classical models. For concreteness, let us focus on the case
χ = 2 and c = 3 in the det-LOCAL model. Then α = 2, and we would like to show that 3-coloring
bipartite graphs requires Ω(

√
n) rounds.

Here we can make use of existential graph-theoretic arguments similar to the one already used
by Linial [49]. Let A be a det-LOCAL algorithm that purportedly finds a 3-coloring in bipartite
graphs in T (n) = o(

√
n) rounds. Now suppose that we are able to construct a graph G on n nodes

with the following properties:

1. G is locally bipartite: for any node v of G, the subgraph of G induced by the radius-Θ(
√
n)

neighborhood of v is bipartite.

2. G is not 3-colorable: the chromatic number of G is at least 4.

The graph G is not bipartite, but (since A operates in the LOCAL model) we can apply A to G
anyway and observe what happens. As the chromatic number of G is at least 4, certainly A cannot
3-color G; hence there has to be at least one node v such that in the local neighborhood X of
v the output of A is not a valid 3-coloring. However, by assumption, the local neighborhood of
v up to distance Θ(

√
n) is bipartite, so with some cutting and pasting we can construct another

graph G′ = (V,E′) on the same set of nodes such that G′ is bipartite and the graph induced by
the radius-T (n) neighborhood of X is the same in G and G′. Hence the output of A in X is the
same in both graphs, which means A produces an invalid coloring in G′ (which is bipartite) in the
neighborhood X. The key point in this argument is the existence of the cheating graph G that
“fools” A as A cannot locally tell the difference between G and the valid input graph G′.

New ingredient 1: Bogdanov’s construction. To apply the proof strategy outlined above, we
need a suitable construction of a cheating graph. It turns out we can make direct use of Bogdanov’s
[16] graph-theoretic work—this is a 10-year-old result, but so far this seems to have been a blind spot
in the research community, and we are not aware of any lower bounds in the context of distributed
graph algorithms that make use of it.

Together with our new algorithm from Theorem 1.1, this then gives a near-complete charac-
terization of the complexity of c-coloring χ-colorable graphs in det-LOCAL. A similar argument
applies (with some adjustments) to the rand-LOCAL model as well; in particular, we can exploit the
independence of the output distribution between well-separated subgraphs of the input graph to
boost the failing probability of an algorithm (see Section 5.2 for the details).

6

New ingredient 2: Defining cheating graphs for NS-LOCAL. While proof techniques based
on cheating graphs are commonly used in the context of det-LOCAL and rand-LOCAL, we stress the
same line of reasoning does not hold in quantum-LOCAL or NS-LOCAL. In fact, in the context of
NS-LOCAL new challenges emerge, which we discuss later in this section. Our new proof strategy
overcomes these issues: it builds on the idea of cheating graphs, but it allows us to directly derive a
lower bound for NS-LOCAL. To the best of our knowledge, this is the first work establishing that
Linial’s argument [49] can be adapted to more general non-signaling models. This is one of our
main technical contributions.

In Section 5 we present a new definition of a cheating graph that is applicable in NS-LOCAL.
Suppose we are interested in a locally checkable problem P in graph family F .

Definition 2.1 (Cheating graph, informal version). Consider a sufficiently large N > 0. A graph G
is a cheating graph for (P,F) if

(1) problem P is not solvable on G;

(2) for a suitable k, we can cover G with k subgraphs G(1), . . . , G(k) such that P is solvable over
each of the graphs induced by their radius-T (n) neighborhoods, where n = |V (G)| ·N ;

(3) we can take any N subgraphs G(x1), . . . , G(xN) together with their radius-T (n) neighborhoods,
possibly with replacement, form their disjoint union G̃, and find a graph H ∈ F of size n that
contains an induced subgraph isomorphic to G̃.

See Definition 5.6 for the formal version. We show that the existence of graphs of arbitrarily
large size with the above properties directly implies a lower bound equal to T to the problem P
over the graph family F that holds also in NS-LOCAL—this is formalized in Theorem 5.7.

We note that the precise requirements for k and N depend on T : in Section 5.5 we will exploit
the fact that when T is small we can afford a large k, while in Sections 5.3 and 5.4 we deal with a
large T , and then it will be important to construct a cheating graph with a constant k.

Our definition of a cheating graph is somewhat technical, but through three examples we
demonstrate that this is indeed an effective way of proving lower bounds.

New ingredient 3: New analysis of Bogdanov’s construction. While in the classical models
we could directly apply Bogdanov [16] as a black box, this is no longer the case in NS-LOCAL.
Nevertheless, in Section 5.3 we show that the construction of [16] indeed gives a cheating graph for
c-coloring χ-chromatic graph.

It is known that the graph constructed by [16] is locally χ-chromatic, but globally has chromatic
number greater than c, implying property (1) in Definition 2.1. We further go through the details of
the construction and prove that the graph also satisfies properties (2) and (3) from Definition 2.1—
these are properties outside the scope of [16]. Then from Theorem 5.7 we obtain Theorem 1.3.

New ingredient 4: New analysis of quadrangulations of the Klein bottle. In Section 5.4
we make use of properties of quadrangulations of the Klein bottle [5, 58, 59] to construct a family
of graphs that is locally grid-like but is not 3-colorable. We show that such quadrangulations give
cheating graphs for 3-coloring grids, and then Theorem 5.7 implies Theorem 1.4.

New ingredient 5: New analysis of Ramanujan graphs. In Section 5.5 we revisit the
construction of Ramanujan graphs [52], that is, high-girth and high-chromatic regular graphs, which
Linial used in his lower-bound proof. Again, we show that it provides us with a cheating graph
(Definition 2.1) for c-coloring trees, and Theorem 1.5 follows.

7

Discussion. While quadrangulations of the Klein bottle and Ramanujan graphs have been used
in prior work to prove lower bounds for the classical models, by e.g. Aboulker et al. [1] and Linial
[49], we remark that to our knowledge, this is the first time that the applicability of Bogdanov’s
graph-theoretic work [16] in the context of distributed computing and quantum computing lower
bounds is recognized (in spite of it being a 10-year-old result).

We also note that the classical version of Theorem 1.4 by [20] uses fundamentally different
proof techniques: the argument in [20] is primarily algorithmic, while our proof is primarily graph-
theoretic. The algorithmic proof from the prior work seems to be fundamentally incompatible with
the NS-LOCAL model, while the graph-theoretic proof also yields a lower bound for NS-LOCAL.
This suggests a general blueprint for lifting prior lower bounds from det-LOCAL or rand-LOCAL
to NS-LOCAL: (1) re-prove the previous result using existential graph-theoretic arguments, and
(2) apply the cheating graph idea to lift it to NS-LOCAL.

While the proof technique developed in this work is applicable in many graph problems, there are
also problems for which cheating graphs do not exist (e.g., sinkless orientation on 2-regular graphs).
An open research direction is developing proof strategies that can be used to derive NS-LOCAL
lower bounds for those cases.

2.3 Lower bound technique in more details

Fix a sufficiently large N > 0. Consider any locally checkable problem P over some graph family F .
We want to show that, whenever a cheating graph (Definition 2.1) for the pair (P,F) exists, any
T -round algorithm solving the problem has failing probability at least 1− (1− 1/k)N , where k is
the size of the subgraph cover of the cheating graph.

Let G be the cheating graph. For simplicity, we can think of P as the 3-coloring problem, and F
to be the family of bipartite graphs. Provided that F respects some natural properties, properties
(1) and (2) from Definition 2.1 ensure that we can get a lower bound in rand-LOCAL. Indeed, assume
there is a T -round randomized algorithm A that 3-colors bipartite graphs. Clearly, A fails to 3-color
G with probability 1. Hence, there is an i⋆ ∈ [k] such that the failing probability of A over G(i⋆) is
at least 1/k. Hence, A will fail on any bipartite graph of at most n = |V (G)| ·N nodes containing an
induced subgraph isomorphic to the radius-T (n) neighborhood of G(i⋆) with probability 1/k. If k is
not small enough (e.g., k = w(1)), the failing probability tends to 0. In rand-LOCAL we can amplify
the failure probability as follows: Suppose F contains a graph HN of at most n = |V (G)| ·N nodes
that contains, as subgraphs, N disjoint copies of the radius-T (n) neighborhood of G(i⋆) in G. This
is always possible if F is the family of bipartite graphs. By independence, the failing probability of
A over HN is at least 1− (1− 1/k)N (see Fig. 1a). Hence, such an algorithm cannot exist. The
property that F contains HN is reasonable for many natural problems (e.g., c-coloring χ-chromatic
graphs for all combinations of c and χ) where, given a graph for which the problem is solvable, one
can connect disjoint copies of the graphs and obtain a solvable instance of the problem.

However, as we anticipated, in the NS-LOCAL model some issues arise:
(i) If two graphs G and H have different sizes, then even if they share two identical subgraphs G′

and H ′ with isomorphic radius-T neighborhoods, a non-signaling output distribution is not
guaranteed to be identical over G′ and H ′; this is due to the no-cloning principle [25, 55, 66].

(ii) If we look at the output distributions for two subsets of nodes X and Y , then even if X and Y
are far from each other, we cannot assume that the outputs of these subsets are independent.

Issue (i) puts some limits on the choice of the graph used to “fool” the algorithm, while issue (ii)
makes it necessary to deal with possible dependencies among different parts of the input graph. Such
issues are the reason why we require the cheating graph to satisfy property (3) in Definition 2.1.

8

Cheating graph G

G(1) G(2) G(3)

G(4) G(5) G(6)

G(8) G(9)G(7)

G(4)

G(4)

G(4)

Pr(A fails on G(4)) ≥ 1/9

Pr(A fails on HN) ≥ 1− (1− 1/9)N

Graph HN :
contains N copies
of G[NT (G

(4))]

(a) Construction for the rand-LOCAL model. For any T (n)-round algorithm A solving the problem, there is an
i⋆ ∈ [9] (in the figure, i⋆ = 4) such that Pr[A fails in G(i⋆)] ≥ 1/9. Then, Pr[A fails on HN] ≥ 1− (1− 1/9)N

by independence, where HN is an admissible instance. As long as |V (HN)| ≤ n, this gives the lower bound.

N copies of the cheating graph G

G
(9)
N

G
(4)
1

Graph Hx for x = (4, 3, . . . , 9)

Pr(A fails on Hx) ≥ 1− (1− 1/9)N

Cheating graph G1 Cheating graph G2 Cheating graph GN

G
(5)
1 G

(6)
1 G

(4)
2 G

(5)
2 G

(4)
N G

(5)
N G(6)G1(4)

G
(8)
1 G

(9)
1G

(7)
1 G

(8)
2 G

(9)
2G

(7)
2 G(8)G(7) G(9)

G
(1)
1 G

(2)
1 G

(3)
1 G

(1)
2 G

(2)
2 G

(1)
N G

(2)
N G

(3)
NG

(3)
2

G
(6)
2

Pr(A fails on ∪j∈[N] G
(xj)
j) ≥ 1− (1− 1/9)N for x = (4, 3, . . . , 9)

G
(3)
2

(b) Construction for the NS-LOCAL model. We start with N copies G1, . . . , GN of G and consider their disjoint
union. We prove that, in this specific graph, there is already a combination of indices x = (x1, . . . , xN) ∈ [9]N

(in the figure, x = (4, 3, . . . , 9)) for which Pr[A fails on
⋃

j∈[N] G
(xj)
j] ≥ 1 − (1 − 1/9)N . Then, property

(3) of Definition 2.1 ensures that we can construct an admissible instance Hx as shown in the figure, with
|V (Hx)| = n. By the properties of the NS-LOCAL model, since Hx and

⊔
i∈[N] Gi share the same local view

around
⋃

j∈[N] G
(xj)
j , A fails on Hx too with at least the same probability.

Figure 1: Illustration of the lower-bound argument based on the cheating graph G. For n = |V (G)|·N ,
the problem is solvable in each T (n)-radius neighborhood of G(i), i ∈ [9], but not on G.

9

To solve issue (i), we consider a graph that is the disjoint union of N copies G1, . . . , Gn of the
cheating graph G: such graph has |V (G)| ·N vertices, exactly the same as the graph of property (3)
from Definition 2.1. Consider now any NS-LOCAL algorithm A that 3-colors bipartite graphs with
locality T , and apply it to the graph ⊔i∈[N]Gi. Clearly, A will fail to solve the problem in each Gj

with probability 1. At this point, we cannot continue as before: while it is true that in each Gj we
can find an index i⋆ such that the probability of A failing in G

(i⋆)
j is at least 1/k, we cannot use

independence to increase the failing probability.
Property (3) ensures that, for a sufficiently large N , and for any sequence of indices x =

(x1, . . . , xN) ∈ [k]N , there exists a graph Hx of size |V (G)| ·N that contains an induced subgraph
isomorphic to the disjoint union of the radius-T neighborhoods of G(x1), . . . , G(xN). However,
correlations among these subgraphs of Hx might hold. To overcome this issue, we need to consider
all possible sequences of subgraphs G(x1)

1 , . . . , G
(xN)
N at the same time, where x = (x1, . . . , xN) ∈ [k]N

(see Fig. 1b). Fix a total order for the elements in [k]N , and let its ordered elements be x1, . . . ,xkN .
Let Fxj be the event that A fails in G

(zi)
i , where zi is the i-th element of xj , for each i = 1, . . . , N .

Furthermore, for each index x ∈ [k]N , let Ix be the set of all indices y ∈ [k]N such that y and x share
the same element at the i-th position, for some i, i.e., x(i) = y(i). Notice that, for x = (x1, . . . , xN),
∪y∈IxFy describes the event that there is an i ∈ [N] such that A fails on G

(xi)
i .

We claim that there exists a x⋆ ∈ [k]N such that Pr
[
∪y∈Ix⋆Fy

]
≥ 1 − (1 − 1/k)N , implying

that the dependencies behave “well enough”, hence solving issue (ii). We proceed by contradiction:
we assume that, for all x ∈ [k]N , Pr [∪y∈IxFy] < 1 − (1 − 1/k)N . While Pr

[
∪x∈[k]NFx

]
= 1, the

events in {Fx}x∈[k]N are not disjoint and the sum of their probability is not 1. To better deal
with the math, we define Ex1 = Fx1 and, recursively, we define Exj = Fxj \ (∪j−1

i=1)Exi . Clearly
the events in {Ex}x∈[k]N are pairwise disjoint: furthermore, it holds that ∑x∈[k]N Pr [Ex] = 1 as
∪x∈[k]NEx = ∪x∈[k]NFx. For each x ∈ [k]N , it trivially holds that∑

y∈Ix

Pr [Ey] +
∑

y∈[k]N \Ix

Pr [Ey] = 1.

Moreover, for each x ∈ [k]N , we have Pr [Ex] ≤ Pr [Fx] as Ex ⊆ Fx, hence ∑y∈Ix Pr [Ey] <
1− (1− 1/k)N . Thus, ∑

y∈[k]N \Ix

Pr [Ey] > (1− 1/k)N .

It follows that ∑
x∈[k]N

∑
y∈[k]N \Ix

Pr [Ey] > kN (1− 1/k)N = (k − 1)N .

Also, notice that for each y ∈ [k]N the cardinality of the set
{

x ∈ [k]N
∣∣∣ y ∈ [k]N \ Ix

}
is (k − 1)N .

Hence, ∑
x∈[k]N

∑
y∈[k]N \Ix

Pr [Ey] =
∑

y∈[k]N

∑
x∈[k]N :

y∈[k]N \Ix

Pr [Ey] = (k − 1)N
∑

y∈[k]N
Pr [Ey] = (k − 1)N ,

reaching a contradiction. Thus, there exists an x⋆ ∈ [k]N such that Pr
[
∪y∈Ix⋆Fy

]
≥ 1− (1− 1/k)N .

Property (3) of Definition 2.1 ensures that there is a graph Hx⋆ ∈ F of n nodes such that Hx⋆

contains, as induced subgraph, ∪i∈[N]G
(x⋆

i)
i , and Hx⋆ and ⊔i∈[N]Gi share the same radius-T (n)

neighborhood around ∪i∈[N]G
(x⋆

i)
i . By the property of the NS-LOCAL model, we get that the failing

probability of A on Hx⋆ is at least 1− (1− 1/k)N .

10

3 Preliminaries
We consider the set N of natural numbers to start with 0. We also define N+ = N \ {0}. For any
positive integer n ∈ N+, we denote the set {1, . . . , n} by [n].

Graphs. All graphs in this paper are simple graphs without self-loops. Let G = (V,E) be a simple
graph with n ∈ N nodes. If the set of nodes and the set of edges are not specified, we refer to them
by V (G) and E(G), respectively. For any edge e = {u, v} ∈ E(G), we also write e = uv = vu.

If G is a subgraph of H, we write G ⊆ H. For any subset of nodes A ⊆ V , we denote by
G[A] the subgraph induced by the nodes in A. For any nodes u, v ∈ V , distG(u, v) denotes the
distance between u and v in G (i.e., the number of edges of any shortest path between u and v
in G); if u and v are disconnected, then distG(u, v) = +∞. If G is clear from the context, we
may also simply write dist(u, v) = distG(u, v). For T ∈ [n], the T -neighborhood of a node u ∈ V
is the set NT (u) = {v ∈ V | dist(u, v) ≤ T}. The T -neighborhood of a subset A ⊆ V is the set
NT (A) = {v ∈ V | ∃u ∈ A : dist(u, v) ≤ T}. Similarly, the T -neighborhood of a subgraph H ⊆ G is
the set NT (H) = {v ∈ V (G) | ∃u ∈ V (H) : distG(u, v) ≤ T}.

For c ∈ N, a c-coloring of a graph G is a map φ : V (G) → [c]. The coloring φ is said to be
proper if we have φ(u) ̸= φ(v) for every uv ∈ E. If, for some χ ∈ N, there exists a proper χ-coloring
for G and χ is minimal with this property, then G is said to be χ-chromatic; we also say that the
chromatic number of G, denoted by X (G), is χ. In the c-coloring problem, the input is a graph G,
and the task is to find a proper c-coloring of G.

The LOCAL model. The LOCAL model is a distributed system consisting of a set of |V | = n
processors (or nodes) that operates in a sequence of synchronous rounds. In each round the processors
may perform unbounded computations on their respective local state variables and subsequently
exchange of messages of arbitrary size along the links given by the underlying input graph. Nodes
identify their neighbors by using integer labels assigned successively to communication ports. (This
assignment may be done adversarially.) Barring their degree, all nodes are identical and operate
according to the same local computation procedures. Initially all local state variables have the same
value for all processors; the sole exception is a distinguished local variable x(v) of each processor v
that encodes input data.

Let c ≥ 1 be a constant, and let Σin be a set of input labels. The input of a problem is defined in
the form of a labeled graph (G, x) where G = (V,E) is the system graph, V is the set of processors
(hence it is specified as part of the input), and x : V → [nc] × Σin is an assignment of a unique
identifier id(v) ∈ [nc] and of an input label λin(v) ∈ Σin to each processor v. The output of the
algorithm is given in the form of a vector of local output labels λout : V → Σout, and the algorithm
is assumed to terminate once all labels λout(v) are definitely fixed. We assume that nodes and
their links are fault-free. The local computation procedures may be randomized by giving each
processor access to its own set of random variables; in this case, we are in the randomized LOCAL
(rand-LOCAL) model as opposed to deterministic LOCAL (det-LOCAL).

The running time of an algorithm is the number of synchronous rounds required by all nodes
to produce output labels. If an algorithm running time is T , we also say that the algorithm has
locality T . Notice that T can be a function of the size of the input graph.

We say that the c-coloring problem over some graph family F has complexity T in the det-LOCAL
model if there exists a det-LOCAL algorithm solving the problem in time T for all input graphs
G ∈ F , but no det-LOCAL algorithm solves the problem in time T − 1 (where T can be a function
of the input graph size) for all input graphs G ∈ F . The complexity in the rand-LOCAL model is
defined similarly.

11

4 New classical graph coloring algorithms
In this section we prove the existence of algorithms in det-LOCAL and rand-LOCAL that almost
match the NS-LOCAL lower bound. We recall here the precise statement for the reader’s convenience.

Theorem 1.1. There exists a det-LOCAL algorithm Adet and a rand-LOCAL algorithm Arand that,
given a parameter α ∈ N, find a proper vertex coloring with α(χ− 1) + 1 colors in any graph with
chromatic number χ, as follows:

• Adet runs in O
(
n1/α log3−1/α n

)
· (log logn)O(1) rounds.

• Arand runs in O
(
n1/α log2−1/α n

)
rounds and succeeds with probability 1− 1/poly(n).

Notice that, if we plug in the same parameters (with c = α(χ− 1) + 1) in Theorem 1.3 with an
appropriate choice of constant ε, we get that α =

⌊
c−1
χ−1

⌋
, implying a lower bound of Ω

(
n1/α/χ1+1/α

)
for the problem. Therefore, for constant χ and α, our algorithms give a perfect trade-off between
quality of approximation and time complexity up to logarithmic factors.

Fast coloring from fast network decomposition. Our algorithm follows an approach similar
to that of Barenboim et al. [13], which in turn is based on network decompositions.

Definition 4.1 (Network decomposition). An (α, d)-network decomposition of a graph G is a
partition V (G) = C1 ∪ · · · ∪ Ck along with a map µ : {C1, . . . , Ck} → [α] meeting the following
conditions:

• The clusters Ci are pairwise disjoint (i.e., Ci ∩ Cj = ∅ unless i = j).

• For every i, the (weak) diameter maxu,v∈Ci distG(u, v) of Ci is at most d.

• The supergraph S = S(G) with node set V (S) = {C1, . . . , Ck} and edge set E(S) = {{Ci, Cj} |
∃u ∈ Ci, v ∈ Cj : {u, v} ∈ E(G)} that is obtained by contracting each Ci is α-colorable.

• µ is an α-coloring of S.

In addition, the coloring µ is presented explicitly to the nodes of G; that is, every node v ∈ Ci

knows the cluster color µ(Ci) of its respective cluster Ci.

We recall the algorithm of Barenboim et al. [13]. Suppose we are given an (α, d(n))-network
decomposition D. We iterate sequentially through the α cluster colors of D. For each cluster color
a and each cluster C having the cluster color µ(C) = a, collect the entire topology of C in some
arbitrary node v ∈ C (chosen by, e.g., leader election). The node v then computes a perfect coloring
π for the nodes of C that uses at most χ colors and then broadcasts to each node u ∈ C its color
π(u). Clearly in the LOCAL model each iteration takes at most diameter of Ci many rounds, so at
most O(d(n)) rounds. With a clever implementation, this process can also be sped up by doing all
the iterations in parallel. We will see this in the later sections.

In order for this strategy to work, we must ensure that neighboring clusters use distinct sets of
colors; otherwise, the colorings of the nodes of neighboring clusters may not match. To deal with
this, we have clusters of different cluster colors use completely different sets of colors for the nodes,
which we will refer to as color palettes. More precisely, each cluster C of cluster color µ(C) = a
may only use colors from the palette pa = {(a, b) | b ∈ N+}. Since there are α many colors for
the clusters, (assuming each cluster is colored using at most χ colors) this then gives a coloring
of G with αχ colors. As we color each cluster by gathering its entire structure in a single node,
knowledge of χ is not needed in order to use the optimal number of colors for each cluster.

12

The “hiding trick”. We show how to optimize the above strategy using what we call a “hiding
trick”. We add one special hidden color −1 in common to all color palettes pa and that is guaranteed
to appear only in the “inside” of the clusters; that is, if a node v in some cluster C has a neighbor
that is not in C, then v is guaranteed to not be colored −1. This ensures the colorings produced
by two neighboring clusters are still compatible since the only color shared by their palettes is
the hidden color −1, which is only present in the “insides” of the clusters. Since the palettes now
share exactly one color, this allows us to save α− 1 colors in total. Surprisingly enough, this small
modification is enough to attain the minimum number of colors possible, that is, α(χ− 1) + 1 colors
(as per our lower bound from Theorem 1.3).

Fast decomposition from fast clustering. The specific complexity of the resulting algorithm
depends on value d(n) of the underlying decomposition D. We show how to obtain a decomposition
with d(n) = Õ

(
n1/α

)
in O(d(n)) time. To do so, we show how to efficiently turn any existing

clustering algorithm into a network decomposition algorithm. The difference between the two is that
the former only needs to group a subset of nodes in the graph, whereas the latter must partition the
entire graph.

Definition 4.2 ((λ, d)-clustering). Given a graph G, a (λ, d)-clustering is a partition V (G) =
D ∪ S1 ∪ · · · ∪ Sk meeting the following conditions:

• S1, . . . , Sk are mutually non-adjacent; that is, the distance between any two nodes u ∈ Si and
v ∈ Sj where i ̸= j is at least 2.

• For every i, the (weak) diameter maxu,v∈Si distG(u, v) of Si is at most d.

• D contains at most λ|V (G)| vertices.

Our conversion from a clustering algorithm into a network decomposition one is by a bootstrapping
procedure: if the clustering algorithm is guaranteed to cluster at least half of the nodes in G, then
we can apply it again and again until only an ε fraction of nodes remains unclustered, where ε is a
parameter of our choosing. For an appropriate choice of ε, the fraction of nodes that remains is
sufficiently small that we can directly gather the remaining nodes into their own cluster (simply by
grouping every remaining connected component of the graph).

Organization. In Section 4.1 we show how to obtain a fast coloring algorithm given the underlying
network decomposition D. In Section 4.2 we then show how to obtain such a decomposition following
the two-step approach described above: first we show our bootstrapping result for clustering
algorithms in Section 4.2.1 and then how this implies a network decomposition algorithm in
Section 4.2.2. Plugging in the state-of-the-art for clustering algorithms, we then obtain Theorem 1.1.

4.1 The hiding trick

The main result of this section is the following, which is a coloring algorithm based on our so-called
hiding trick (see also Lemma 4.4 below). The algorithm presupposes the existence of a network
decomposition algorithm, which we show how to obtain in Section 4.2.

Theorem 4.3. Fix some parameter α ∈ N and suppose there is an (α, d(n))-network decomposition
algorithm B for det-LOCAL or rand-LOCAL that runs in time d(n). Then there is an algorithm A
that (α(χ − 1) + 1)-colors any χ-chromatic graph G with n nodes in O(d(n)) time. Moreover, A
works in det-LOCAL or rand-LOCAL, depending on which model B runs in. In addition, if B is

13

randomized (i.e., it is a rand-LOCAL algorithm) and succeeds with probability 1− 1/poly(n), then so
does A succeed with probability 1− 1/poly(n).

The core idea of our algorithm is the following constructive lemma. It shows that, in any graph
G, it is always possible to color a subset A of nodes in a way that “hides” one designated hidden
color −1. To color A in this manner, it may be necessary to fix the color of some nodes in N(A) as
well.

Lemma 4.4 (Hiding Lemma). Let G = (V,E) be a graph, and let χ be the chromatic number of G.
For any subset A ⊆ V , there exists A ⊆ A′ ⊆ (A∪N(A)) and a proper coloring φ : A′ → [χ−1]∪{−1}
of A′ such that A is completely colored and, for any node v ∈ V \ A′, v is not adjacent to a node
with color −1.

Proof. Since G is χ-colorable, there exists a χ-coloring ψ of A ∪ N(A). We uncolor some of the
nodes of N(A) such that none of the uncolored nodes has a neighbor with color −1. Formally, let

A′ = (A ∪N(A)) \ {u ∈ N(A) | ψ(u) = −1}

and φ = ψ↾A′ (i.e., the restriction of ψ to A′). Since we only uncolor nodes in N(A) and ψ is a
proper χ-coloring of A ∪N(A), φ is certainly a proper coloring of A′ ⊆ (A ∪N(A)). We now argue
that v ∈ V \A′ has no neighbor that is colored −1 by φ. Since A ⊆ A′, we must consider only the
following two cases:

v ∈ N(A). Since v is not in A′ but still in N(A), ψ(v) = −1. Hence, since ψ is a proper coloring,
every node in N(v) colored by ψ has a color that is different from −1. Since φ is a restriction
of ψ, the same holds for any node in N(v) colored by φ.

v /∈ A ∪N(A). Then v is only adjacent to nodes in N(A). Since no node in N(A) is colored −1 by
φ by definition, clearly v has no neighbor colored −1 by φ.

Note that Lemma 4.4 (in its current form) cannot be immediately applied to a decomposition
of G to produce colorings for the clusters of G. The reason for that is the following: Consider
two clusters C and C ′ that are assigned the same cluster color a by the network decomposition.
(In particular, this means C and C ′ are not adjacent.) Recall that we will color the nodes of
C and C ′ using the same color palette. However, if we color them such as in Lemma 4.4, then
we are potentially also coloring nodes in N(C) and N(C ′) and, for all we know, the intersection
N(C) ∩ N(C ′) may not be empty. Hence we cannot simply use the same color palette in both
clusters, as this could potentially lead to an invalid coloring.

Therefore, we would like that not only C and C ′ but also N(C) and N(C ′) are not adjacent.
Equivalently, we wish for the distance between C and C ′ to be at least 4. We can indirectly guarantee
this by using an (α, d(n))-network decomposition D of G3 instead of G. This is because being not
adjacent in G3 immediately implies a distance of at least 4 in G. Asymptotically speaking, this
does not incur any additional cost (compared to computing a decomposition of G) since, for any k,
we can simulate each round of communication in Gk by using k rounds of communication in G.

We now present Algorithm 1, which, given a χ-chromatic graph G and an (α, d(n))-network
decomposition D of G3, colors G using α(χ−1)+1 colors. By proving the correctness of Algorithm 1
we then obtain Theorem 4.3.

Let us give a brief high-level description of Algorithm 1. Each cluster Ci acts independently
and based on the cluster color a that is assigned to it by the decomposition D. First, the entire
topology of Ci ∪ N(Ci) is gathered in some leader node leaderi. Next leaderi brute-forces an
optimal coloring φi of its respective cluster Ci using a color palette pa that depends on a. (Without

14

Algorithm 1 Coloring a decomposition
Require: G = (V,E), (α, d(n))-network decomposition D of G3

1: for each cluster Ci in parallel do
2: Elect a leader node leaderi of Ci

3: Collect the entire topology of Ci ∪N(Ci) in leaderi

4: a← the cluster color assigned to Ci by D
5: pa ← {(a, b) | b ∈ N} ∪ {−1}
6: if a = α then
7: leaderi computes a minimal coloring φi : Ci → pa of Ci

8: leaderi broadcasts φi to all nodes in Ci

9: else
10: leaderi computes a minimal node coloring φi : C ′

i → pa of some C ′
i ⊆ Ci ∪ N(Ci)

according to Lemma 4.4
11: leaderi broadcasts φi to all nodes in Ci ∪N(Ci)
12: end if
13: end for
14: for each node u in parallel do
15: Φu ← the set of all colors assigned to u by the φi

16: if Φu = {−1} then
17: Color u with the color −1
18: else
19: Color u with an arbitrary color from Φu \ {−1}
20: end if
21: end for
22: Each node outputs its own color

15

restriction we use only the smallest elements of pa (according to the natural ordering of pa) in φi.
This enables the nodes to choose correct colors even without knowledge of χ.) If a = α, φi is simply
a χ-coloring of Ci whose existence is guaranteed by the χ-chromaticness of G. Otherwise (i.e., if
a < α), leaderi instead computes a coloring φi of C ′

i ⊆ Ci ∪N(Ci) according to Lemma 4.4. Each
coloring φi is broadcasted to all nodes that may have been assigned a color by φi. The nodes that
were assigned multiple colors (i.e., potentially those at the border of two distinct clusters) then
simply choose one of them arbitrarily.

Lemma 4.5. Algorithm 1 computes a valid coloring of G using no more than α(χ− 1) + 1 colors.

Proof. First we argue that no more than α(χ− 1) + 1 colors are used in total. For a cluster color
a ∈ [α], let

p′
a = {φi(v) | ∃i : µ(Ci) = a ∧ v ∈ Ci} ⊆ pa

be the set of colors actually used by the nodes to color clusters with the color a. By the χ-
chromaticness of G, every minimal coloring of any induced subgraph of G uses at most χ colors, so
we have |p′

a| ≤ χ. Since the intersection of two palettes pa and pb is exactly {−1} for a ̸= b, we use∣∣∣∣∣
α⋃

a=1
p′

a

∣∣∣∣∣ = |{−1}|+
α∑

a=1

∣∣p′
a \ {−1}

∣∣ ≤ α(χ− 1) + 1

colors in total, as claimed.
To show that the color is proper, first observe that, based on Lemma 4.4, no node in N(Ci) is

assigned −1 by φi; as a result, if a node v is assigned the color −1 by φi, then necessarily v ∈ Ci.
Consider any two adjacent nodes v and v′ and recall that both of them choose the largest color
among any of the colors they were assigned. For the sake of contradiction, suppose that both nodes
pick the same color x. Consider the following two cases:

x ̸= −1. Since the intersection of any two color palettes is {−1}, this implies that v and v′ were
assigned colors from the same color palette pa. Since the φi are all valid colorings, the colors
of v and v′ come from different coloring functions φi and φi′ , respectively. However, since φi

and φi′ use the same color palette, the respective clusters Ci and Ci′ are assigned the same
cluster color by D. This means that Ci and Ci′ are not adjacent in G3 and, in turn, the
distance between nodes in N(Ci) and N(Ci′) is at least 2, which immediately contradicts v
and v′ being adjacent.

x = −1. This means that both of the nodes are assigned their color by the coloring of their respective
cluster. Let i and i′ be the numbers of the clusters of v and v′, respectively. If i = i′, then
both v and v′ pick their colors according to φi = φi′ , which contradicts φi being a proper
coloring. Hence let i ̸= i′. We have then that Ci and Ci′ are adjacent clusters and, since they
are distinct, without restriction we have i ̸= α. Since v′ ∈ N(Ci) and the color of both v and
v′ is −1, Lemma 4.4 implies that v′ is in the domain of φi (as otherwise it would be adjacent
to v, which has the color −1). Now since φi(v) = −1, we know that φi(v′) > −1, which means
that the color of v′ cannot be −1.

Note that, in the proof above, we simply showed that no more than c = α(χ− 1) + 1 colors are
used, but there is still a minor technicality to be dealt with since the colors do not come from the
set [c] as the definition of c-coloring demands (but rather either the color is −1 or a pair (a, b)). A
straightforward way of resolving this is, for instance, remapping −1 to 1 and every pair (a, b) ∈ pa to
α(b− 1) + a+ 1. (Note this gives a bijection between {−1} ∪⋃a∈[α] pa and N+.) Since we use only
the smallest elements of the palette pa in each respective coloring φi, we know that any (a, b) ∈ p′

a

16

must be such that b ≤ χ− 1. Hence the largest color used is α(χ− 2) + α+ 1 = c (corresponding to
(α, χ− 1) ∈ pα).

Lemma 4.6. Given the (α, d(n))-network decomposition D, Algorithm 1 can be run distributedly in
O(d(n)) rounds in the det-LOCAL model.

Proof. The only lines in the algorithm that require communication are Lines 2, 3 and 11. Since
our clusters have diameter at most d(n), Line 2 requires only O(d(n)) rounds of communication.
The other two trivially take only d(n) + 1 rounds since the message size in the det-LOCAL model is
unbounded and also any node in N(Ci) has distance at most d(n) + 1 to its respective leaderi. All
other steps in the algorithm are local computations that do not incur any cost in the det-LOCAL
model.

Together, Lemmas 4.5 and 4.6 prove Algorithm 1 satisfies the requirements of Theorem 4.3, thus
concluding its proof.

4.2 Fast network decomposition

Given any clustering algorithm, we can obtain a network decomposition algorithm as follows.

Theorem 4.7. Let f, g : N → N be arbitrary functions and suppose there is an O(f(n))-round
distributed (1/2, g(n))-clustering algorithm named cluster for det-LOCAL or rand-LOCAL. There
is an algorithm A that, given a graph G = (V,E) and any α ∈ N+, computes an (α,O(n1/αg(n)))-
network decomposition of G in

d(n) = O
((

n

g(n)

)1/α

(f(n) + g(n)) log n

g(n)

)

rounds. The algorithm A works in det-LOCAL or rand-LOCAL, depending on which model cluster
itself is based on. In addition, if cluster is randomized and succeeds with probability 1− 1/poly(n),
then A also succeeds with probability 1− 1/poly(n).

We mention two state-of-the-art clustering algorithms that can be plugged into Theorem 4.7,
one for the det-LOCAL model and one for the rand-LOCAL model. For the det-LOCAL model we use
the clustering algorithm from [34]. In fact this algorithm actually works even in the more restricted
CONGEST model, where each node can only send O(logn)-bit messages each round.

Theorem 4.8 ([34]). There exists an algorithm that computes a (1/2,O(logn · log log logn))-
clustering in det-CONGEST in Õ

(
log2 n

)
rounds.

Plugging in this algorithm in Theorem 4.7, we obtain the first item of Theorem 1.1. For the
rand-LOCAL model (i.e., the second item of Theorem 1.1), we use the following.

Theorem 4.9 ([23]). There exists an algorithm that computes a (1/2,O(logn))-clustering in the
rand-LOCAL model in O(logn) rounds with probability 1− 1/poly(n).

There are two steps to the proof of Theorem 4.7. In Section 4.2.1 we show a bootstrapping result
where we use the (1/2, g(n))-clustering algorithm cluster to obtain a (ε,O(g(n)/ε))-clustering
algorithm for any ε of our choosing. Plugging in an adequate value for ε, in Section 4.2.2 we then
obtain the network decomposition algorithm of Theorem 4.7.

17

4.2.1 Fast clustering

Next we show our bootstrapping procedure, with which we can reduce a 1/2 fraction of unclustered
nodes to any ε of our choosing. The price to pay is only a multiplicative O(1/ε) factor in the
diameter of the clusters and a multiplicative O

(
ε−1 log(1/ε)

)
factor in the running time. Formally,

what we achieve is the following:
Theorem 4.10. Let cluster be as in Theorem 4.7. For any 0 < ε ≤ 1, there is an algorithm
ε-cluster that computes an (ε,O(g(n)/ε))-clustering in

O
((f(n) + g(n)) log(1/ε)

ε

)
rounds. The algorithm ε-cluster can be implemented in the same distributed model as cluster and
its runtime is dominated by 2 log(1/ε) invocations of cluster. In addition, if cluster is randomized
(i.e., it works in rand-LOCAL) and succeeds with probability 1 − 1/poly(n), then ε-cluster also
succeeds with probability 1− 1/poly(n).

We first describe the algorithm (Algorithm 2) and then prove it satisfies the properties of
Theorem 4.10. Note that, in the description of Algorithm 2 in all three Lines 6,7 and 8 the
neighborhoods are always taken with respect to G.

Algorithm 2 Bootstrapping cluster

Require: G = (V,E), 0 < ε ≤ 1
Require: Clustering algorithm cluster as in Theorem 4.10

1: R← 4/ε
2: C′ ← empty clustering
3: for 2 log(1/ε) times do
4: Run cluster on G2R+1, producing a clustering C
5: for each cluster C ∈ C in parallel do
6: Find j∗ ∈ [R] such that |Nj∗(C) \ Nj∗−1(C)| is minimized
7: Mark all nodes in Nj∗(C) \ Nj∗−1(C) for deletion
8: Add Nj∗−1(C) as a cluster to C′

9: end for
10: Let U be the set of nodes not marked for deletion or that did not join a cluster of C′

11: G← G[U]
12: end for
13: Each node outputs whether it is part of a cluster of C′ or not

At a high level, Algorithm 2 works in multiple iterations, in each of which we first invoke
cluster. For each new cluster C that is computed, we delete some boundary around this cluster
and separate it from the rest of the graph. We then add C to our final clustering. Since cluster
clusters at least half of the nodes, the size of our graph is halved in each iteration; hence after
O(2 log 1/ε) iterations we are left with only an ε fraction of nodes.

The main challenge lies in the choice of the boundaries and preventing too many nodes from
being deleted. To solve this we appeal to the computational power of the LOCAL model: For each
cluster C, we inspect the (4/ε)-hop neighborhood of C and find j∗ such that the number of nodes
at distance exactly j∗ from C (i.e., |Nj∗(C) \ Nj∗−1(C)|) is minimized. As we will show, there is
always a choice of j∗ such that the number of nodes we delete is not too large.

We now turn to showing that Algorithm 2 satisfies the properties in Theorem 4.10. To give an
overview, we need to prove the following:

18

1. The clusters created have diameter O(g(n)/ε) and are non-adjacent (Lemma 4.11).

2. At least a 1− ε fraction of the nodes get clustered (Lemma 4.12).

3. Algorithm 2 runs in O((f(n) + g(n)) · ε−1 log(1/ε)) rounds (Lemma 4.13).

4. If cluster is randomized and has success probability 1− 1/poly(n), then Algorithm 2 also
succeeds with probability 1− 1/poly(n) (Lemma 4.14).

We address these claims now one by one.

Lemma 4.11. The clusters created by Algorithm 2 have diameter O(g(n)/ε) and are non-adjacent.

Proof. We start by analyzing a single iteration of the for loop on Line 3 and show that a cluster
with diameter O(g(n)/ε) is created. Afterwards we prove that, once a good cluster is created, it is
preserved by later iterations.

Algorithm 2 runs the algorithm cluster of Theorem 4.8 on the power graph G2R+1. Let Ci, Cj

be two clusters created by cluster. For any nodes u ∈ Ci and v ∈ Cj with i ̸= j, we have
distG′(u, v) ≥ 2, which implies distG(u, v) ≥ 2R + 2. Let Si ∈ S and Sj ∈ S be the clusters that
are fixed by Line 8 in the iterations of Ci and Cj , respectively. We observe that Si (resp., Sj) only
contains nodes at distance at most R− 1 from Ci (resp., Cj). Hence it follows that, for any u′ ∈ Si

and v′ ∈ Sj , we have distG(u′, v′) > 2R+ 2− 2(R− 1) ≥ 4.
In addition, cluster guarantees that the diameter of the clusters is at most g(n) in G2R+1.

Therefore, for u, v ∈ Ci,

distG(u, v) ≤ (2R+ 1) distG′(u, v) ≤ (2R+ 1)g(n).

When creating a fixed cluster in Line 8 we increase the diameter by at most 2j∗ ≤ 2R− 2 hops. As
a result, the diameter of any fixed cluster is bounded above by

(2R+ 1)g(n) + 2R− 2 = O(R · g(n)) = O(g(n)/ε) .

Since the entire one-hop-neighborhood of every cluster is deleted, in the next iterations all of the
new clusters will also have at least one deleted node between themselves and any other previously
created cluster. Also no nodes of previously fixed clusters are ever considered for another cluster or
deleted. Hence the subsequent iterations do not interfere with the previous ones.

Lemma 4.12. Algorithm 2 deletes at most an ε fraction of nodes during its execution. All nodes
that are not deleted eventually join a cluster.

Proof. Without loss of generality, we assume ε ≤ 1/2, as otherwise a single execution of cluster
already gives the result. We upper-bound the number of deleted nodes using an inductive argument.

Let S be the set of all clusters following a single execution of the for loop on Line 3. In
addition, for a cluster C ∈ S, let del(C) denote the set of nodes marked for deletion by C (during
the execution of the for loop on Line 5). Observe that, for any two distinct clusters C1 ̸= C2,
we have that del(C1) ̸= del(C2). This is due to the fact that distG(C1, C2) ≥ 4R + 2 and that
distG(v, Ci) ≤ j∗ ≤ R − 1 for any v ∈ del(Ci). Also, by an averaging argument, for any cluster
C ∈ S,

|del(C)| ≤ 1
R

⋃
1≤j≤R

|Nj(C) \ Nj−1(C)| = |NR(C) \ C|
R

.

19

This means we can upper-bound the total number of deleted nodes by

∑
C∈S

|NR(C) \ C|
R

≤ n

R
= εn

4 .

By Theorem 4.8, at least half of the remaining nodes in G are clustered in each iteration of
the for loop on Line 3. Arguing as before, we get that the number of remaining nodes is halved
with each execution of the loop. This means that, during the execution of the loop, the number of
deleted nodes is at most

2 log(1/ε)∑
i=1

εn

4 · 2i−1 ≤
εn

2 .

In turn, due to the aforementioned progress guarantee, the 2 log(1/ε) repetitions of the loop ensure
at most a 2−2 log(1/ε) = ε2 fraction of nodes are left standing at the end and are then deleted in the
final step of Algorithm 2. As a result, using that ε ≤ 1/2, the total number of deleted nodes is at
most

εn

2 + ε2n ≤ εn.

Lemma 4.13. Algorithm 2 terminates after O
(
(f(n) + g(n)) · ε−1 log(1/ε)

)
rounds.

Proof. We analyze the runtime of a single iteration of the for loop on Line 3. When ran on G2R+1,
cluster takes O(f(n)) time, so for each round of cluster we spend O(R) = O(1/ε) rounds to
simulate its execution on G. Hence we need O(f(n)/ε) rounds in total to run cluster on G.
cluster then outputs clusters of diameter O(g(n)) on G2R+1, which correspond to clusters of
diameter O(R · g(n)) = O(g(n)/ε) on G. Next we collect the entire R-neighborhood of a cluster
C in some leader node, compute j∗, and then broadcast j∗ to all nodes inside of Nj∗(C). This
all requires O(g(n)/ε+R) = O(g(n)/ε) rounds. Hence a single iteration of the for loop on Line 3
costs O((f(n) + g(n))/ε) rounds in total. The final deletion procedure does not cost any additional
rounds since each node knows at the end whether it has joined a cluster or not. Since we repeat the
loop O(log(1/ε)) times, the claim follows.

Lemma 4.14. Let cluster have success probability 1−1/poly(n) in rand-LOCAL. Then Algorithm 2
also succeeds with probability 1− 1/poly(n).

Proof. Let c > 0 be such that cluster succeeds with probability at least 1 − 1/nc. In addition,
let us assume ε > 1/n as otherwise the claim is trivial. The observation to make is that, if all
executions of cluster by Algorithm 2 are correct, then the result of Algorithm 2 is also correct.
Since there are 2 log(1/ε) executions of cluster in total, this means that, for any 0 < c̃ < c (and,
in particular, for any fixed choice of such a c̃) and large enough n, the probability that Algorithm 2
succeeds is at least (

1− 1
nc

)2 log(1/ε)
≥ 1− 2 log(1/ε)

nc
> 1− 2 logn

nc
> 1− 1

nc̃
.

This concludes the analysis of Algorithm 2, from which Theorem 4.10 follows.

4.2.2 Fast network decomposition from fast clustering

Finally we show how a clustering algorithm as in Theorem 4.10 implies a network decomposition
algorithm, thereby giving a proof of Theorem 4.7.

20

Lemma 4.15. Let an algorithm ε-cluster as in Theorem 4.10 be given where ε = (g(n)/n)1/α.
Given any α ∈ N+ and a graph G = (V,E), Algorithm 3 computes an (α,O(n1/αg(n)))-network
decomposition of G in

d(n) = O
((

n

g(n)

)1/α

(f(n) + g(n)) log n

g(n)

)

rounds. Algorithm 3 works in det-LOCAL or rand-LOCAL, depending on which model cluster itself
is based on. In addition, if ε-cluster is randomized and succeeds with probability 1 − 1/poly(n),
then Algorithm 3 also succeeds with probability 1− 1/poly(n).

The strategy followed by Algorithm 3 is very much straightforward: First apply the clustering al-
gorithm α−1 times. The remaining graph contains then at most εα−1n = O(g(n)/ε) = O

(
n1/αg(n)

)
many nodes. At this point we can just put all remaining connected components into their own
clusters, which will trivially have diameter at most O(g(n)/ε).

Algorithm 3 (α,O(n1/α))-network decomposition from clustering
Require: G = (V,E), α ∈ N+
Require: Clustering algorithm ε-cluster from Theorem 4.10

1: U ← V
2: for 1 ≤ i ≤ α− 1 do
3: Run ε-cluster on G[U], producing a clustering Ci

4: Color every cluster C ∈ Ci with the cluster color µ(C) = i
5: U ← U \

⋃
C∈Ci

C
6: end for
7: Form a clustering Cα of G[U] by having each connected component form its own cluster
8: Color every cluster C ∈ Cα with the cluster color µ(C) = α
9: Each node v ∈ C outputs its cluster color µ(C)

Proof. Clearly Algorithm 3 produces clusters with the correct diameter: ε-cluster produces
clusters with diameter O(g(n)/ε) = O

(
n1/αg(n)

)
and there are only εα−1n = O(g(n)/ε) nodes to

be clustered in Line 7. As for µ being a proper cluster coloring, notice that ε-cluster already
guarantees the clusters formed in clustering Ci are non-adjacent; this is also guaranteed in the
clustering created in Line 7. Regarding the round complexity, we have α− 1 many invocations of
ε-cluster and then at most εα−1n many nodes to cluster in Line 7. Hence using that the running
time of each invocation of ε-cluster is O

(
(f(n) + g(n)) · ε−1 log(1/ε)

)
(by Theorem 4.10), we can

upper-bound the round complexity by

O
(
α(f(n) + g(n)) log(1/ε)

ε
+ εα−1n

)
= O

((
n

g(n)

)1/α

(f(n) + g(n)) log n

g(n)

)
.

Together, Theorems 4.8 and 4.10 give the ε-cluster for Lemma 4.15 and we obtain a network
decomposition algorithm as in Theorem 4.7. As already discussed above, combining this with the
coloring algorithm of Theorem 4.3, we obtain our main result Theorem 1.1.

21

5 New lower bounds in the non-signaling model

5.1 Framework

In this section we define the framework in which our technique is developed. We start with the
notion of labeling problem.

Definition 5.1 (Labeling problem). Let Σin and Σout two sets of input and output labels, respectively.
A labeling problem P is a mapping (G,λin) 7→ {λ(out,i)}i∈I , with I being a discrete set of indices,
that assigns to every graph G with any input labeling λin : V (G) → Σin a set of permissible
output vectors λ(out,i) : V (G)→ Σout that might depend on (G,λin). The mapping must be closed
under graph isomorphism, i.e., if φ : V (G) → V (G′) is an isomorphism between G and G′, and
λ(out,i) ∈ P((G′, λin)), then λ(out,i) ◦ φ ∈ P((G,λin ◦ φ)).

A labeling problem can be thought as defined for any input graph of any amount of nodes. If
the set of permissible output vectors is empty for some input (G,λin), we say that the problem
is not solvable on the input (G,λin): accordingly, the problem is solvable on the input (G,λin) if
P(G,λin) ̸= ∅.

One observation on the generality of definition of labeling problem follows: one can actually
consider problems that require to output labels on edges. This variation of Definition 5.1 does not
affect in any way the applicability and the generality of the result we present in Section 5, namely,
our lower bound technique.

We actually focus on labeling problems where, for any input graph, an output vector λout is
permissible if and only if the restrictions of the problem on any local neighborhoods can be solved
and there exist compatible local permissible output vectors whose combination provides λout. This
concept is grasped by the notion of locally verifiable labeling (LVL) problems, the generalization of
locally checkable labeling (LCL) problems to unbounded degree graphs, first introduced by Naor and
Stockmeyer [60]. For any function f : A→ B and any subset A′ ⊆ A, let us denote the restriction
of f to A′ by f ↾A′ . Furthermore, we define a centered graph to be a pair (H, vH) where H is a
graph and vH ∈ V (H) is a vertex of H that we name the center of H. The radius of a centered
graph is the maximum distance from vH to any other node in H.

Definition 5.2 (Locally verifiable labeling problem). Let t ∈ N. Let Σin and Σout two sets of input
and output labels, respectively, and P a labeling problem. P is locally verifiable with checking radius
t if there exists a (possibly infinite) family S = {((H, vH), λ̄in, λ̄out)i}i∈I of tuples, where (H, vH) is a
centered graph of radius at most t, λ̄in : V (H)→ Σin is an input labeling for H, λ̄out : V (H)→ Σout
is an output labeling for H (which can depend on λ̄in) with the following property

• for any input (G,λin) to P, an output vector λout : V (G)→ Σout is permissible (i.e., λout ∈
P((G,λin))) if and only if, for each node v ∈ V (G), the tuple ((G[Nt(v)]), λin ↾Nt(v), λout ↾Nt(v))
belongs to S.

We remark that the notion of an (LVL) problem is a graph problem, and does not depend on
the specific model of computation we consider (hence, the problem cannot depend on, e.g., node
identifiers). Next definition introduces the concept of outcome of an algorithm.

Definition 5.3 (Outcome). Let Σin and Σout be two sets of input and output labels, respectively.
An outcome O is a mapping (G, x) 7→ {(λ(out,i), pi)}i∈I , with I being a discrete set of indices,
assigning to every input graph G with any input data x = (id : V (G)→ [|V |c], λin : V (G)→ Σin), a
discrete probability distribution {pi}i∈I over (not necessarily permissible) output vectors λ(out,i) :
V (G)→ Σout such that:

22

1. for all i ∈ I, pi > 0;

2. ∑i∈I pi = 1;

3. pi represents the probability of obtaining λ(out,i) as the output vector of the distributed system.

Let T ≥ 0 be any integer. We say that an outcome O on some graph family F has locality T if
there exists a distributed algorithm in the LOCAL model which, for any input (G, x) where G ∈ F ,
produces the same probability distribution over output vectors as O after T rounds of computation.
Notice that T can be a function of the size of the input graph.

An algorithm can be thought of producing an output distribution on every input: whenever
the computations of a node in a given round are defined, the algorithm proceeds normally; if at
some round some computation is undefined for a node, the node outputs some “garbage label”,
say ⊥: we remark that we can assume Σout always contains such a garbage label without loss of
generalization. Hence, an outcome can be always thought of as being defined on the family of all
graphs and all valid inputs: for this reason, we will omit specifying the graph family on which the
outcome is defined.

We say that an outcome O over some graph family F solves problem P over F with probability
p if, for every G ∈ F and any input data x = (id, λin), it holds that∑

(λ(out,i),pi)∈O((G,x)) :
λ(out,i)∈P((G,λin))

pi ≥ p.

When p = 1, we will just say that O solves problem P over the graph family F .
We now define the complexity class L[T]. A problem P over some graph family F belongs to

the class L[T] (respectively, L[T, p], for some p ∈ [0, 1]) if there exists a distributed algorithm in
the LOCAL model which produces an outcome O with locality at most T which solves problem
P on F (respectively, solves problem P with probability p). In such case we write (P,F) ∈ L[T]
(respectively, (P,F) ∈ L[T, p]).

The next computational model tries to capture the fundamental properties of any physical
computational model (in which one can run either deterministic, random, or quantum algorithms)
that respects causality. The defining property of such a model is that, for any two (labeled) graphs
(G1, x1) and (G2, x2) that share some identical subgraph (H, y), every node u in H must exhibit
identical behavior in G1 and G2 as long as its local view, that is, the set of nodes up to distance T
away from u together with input data and port numbering, is fully contained in H. As the port
numbering can be computed with one round of communication through a fixed procedure (e.g.,
assigning port numbers 1, 2, . . . ,deg(v) based on neighbor identifiers in ascending order) and we
care about asymptotic bounds, we will omit port numbering from the definition of local view.

The model we consider has been introduced by Arfaoui and Fraigniaud [6] and is equivalent to
the φ-LOCAL model by Gavoille et al. [33]; however, as in [6], we explicitly require the outcome
to be defined for every possible graph: in fact, as argued for distributed algorithms before, every
physical procedure producing outcomes for graphs should produce some outcome on any input
(possibly, by using some garbage label as before).1

In order to proceed, we first define the non-signaling property of an outcome. Let T ≥ 0
be an integer, and I a set of indices. For any set of nodes V , subset S ⊆ V , and for any input
(G = (V,E), x), we define its T -local view as the set

VT (G, x, S) = {(u, x(u)) | ∃ u ∈ V, v ∈ S such that distG(u, v) ≤ T} ,
1We remark that in [33] it is ambiguous whether the outcome is defined over any possible input graph. Anyway,

such ambiguity does not affect the validity of the proofs.

23

where distG(u, v) is the distance in G. Furthermore, for any subset of nodes S ⊆ V and any output
distribution {(λ(out,i), pi)}i∈I , we define the marginal distribution of {(λ(out,i), pi)}i∈I on set S as
the unique output distribution {(λ̄(out,i), p̄i)}i∈I acting on S which satisfies the condition

p̄j =
∑

i : λ̄(out,j)=λ(out,i)[S]

pi,

where λ(out,i)[S] is the restriction of output λ(out,i) to the processes in S.

Definition 5.4 (Non-signaling outcome). An outcome O : (G, x) 7→ {(λ(out,i), pi)}i∈I is non-
signaling beyond distance T if for all set of nodes V and all subsets S ⊆ V , for any pair of
inputs (G1 = (V,E1), x1), (G2 = (V,E2), x2) such that VT (G1, x1, S) = VT (G2, x2, S), the output
distributions corresponding to these inputs have identical marginal distributions on the set S. Notice
that T can depend on the input labeled graph.

Definition 5.4 is also the more general definition for the locality of an outcome: an outcome O
has locality T if it is non-signaling beyond distance T .

The NS-LOCAL model. The non-signaling LOCAL (NS-LOCAL) model is a computational model
that produces non-signaling outcomes. Let p ∈ [0, 1]. The complexity class NS[T, p] is defined by
all pairs (P,F) where P is a problem and F is a graph family such that there exists an outcome O
that is non-signaling beyond distance T which solves P over F with probability at least p. If p = 1,
we just say that (P,F) ∈ NS[T].

As every (deterministic or randomized) algorithm running in time at most T in the LOCAL
model produces an outcome which has locality T , we can provide lower bounds for the LOCAL
model by proving them in the NS-LOCAL model. For the sake of readability, we assume that every
outcome O that has locality T can be produced by a hypothetical non-signaling LOCAL algorithm A
with running time T . This is just an artifact of the text and does not affect in any way the validity
of our proofs.

We now present a lower bound technique that works for LVL problems in NS-LOCAL.

5.2 Lower bound technique

We first introduce the notion of subgraph cover.

Definition 5.5. A subgraph cover of a graph G is a family of subgraphs {Gi}i∈I such that Gi ⊆ G
for all i ∈ I and ∪i∈IGi = G.

5.2.1 Indistinguishability argument in the classical LOCAL model

Our technique is an extension of the indistinguishability argument already exploited to prove lower
bounds in the LOCAL model [26, 32, 45]. Let P be an LVL problem over some graph family F .
The indistinguishability argument basically says that the output of a node v running a T -round
algorithm A cannot distinguish between inputs that differ only outside its T -view. Hence, A cannot
solve the problem. However, in the aforementioned works, all the different inputs considered to
“confuse” the nodes were solvable instances. Another approach, the one that we consider in this
work, was introduced by Linial [49] to prove a lower bound for c-coloring trees: it uses graphs
outside the input graph family (on which the problem is impossible to be solved) which is locally
everywhere a solvable instance. Linial used a high-girth graph G (which locally looks like a tree but
lies outside the input graph family) that has chromatic number bigger than c. This immediately

24

yields a lower bound that is some constant fraction of girth(G). In this sense, the approach is purely
existential graph-theoretic at heart.

We generalize this latter method all the way up to the NS-LOCAL model, and we also present
a technique to boost the failing probability of any outcome. As our argument presents some
technicalities, we proceed step by step and present it first for the det-LOCAL model, then for
rand-LOCAL, and finally for NS-LOCAL.

The argument for the det-LOCAL model goes roughly as follows.

Indistinguishability argument: det-LOCAL model. Suppose we have an LVL problem P , with
checking radius t > 0, that is solvable over some graph family F , and assume we have a det-LOCAL
algorithm A that solves P over F and has running time T (n) ≥ t > 0, n being the size of the input
graph. We remark that T might also depend on other parameters of the input graph, such as the
maximum degree. However, we omit such dependencies for the sake of readability. Let us fix the size
n of the input graph. Suppose there exists a graph Gn /∈ F such that P is not solvable over Gn, and
let us run A for T (n) rounds over Gn (Gn does not have necessarily size n—we force outputs after
time T (n) if the protocol did not produce any or if, at any time, at any node the computational
procedure is not well-defined). As P is not solvable over Gn, we know that there is a node v ∈ V (Gn)
such that Gn[Nt(v)] contains some non-admissible output for P. Let us denominate Gn[Nt(v)] the
bad neighbor. Assume now that there exists a graph Hn ∈ F of size n which contains a subgraph
H̃n such that Hn[NT (n)(H̃n)] is isomorphic to Gn[NT (n)(Nt(v))], and assume Hn[NT (n)(H̃n)] and
Gn[NT (n)(Nt(v))] are given exactly the same identifiers and input labels. As H̃n and Gn[Nt(v)] look
identical, A must have produced the same non-admissible output over H̃n in time T (n), which is a
contradiction.

This argument can be extended to the rand-LOCAL model with some care: while in the det-LOCAL
model the local failure is deterministic and takes necessarily place in all graphs that locally look
like the bad neighbor, this is not the case for rand-LOCAL. We now show how to deal with random
outputs.

Indistinguishability argument: rand-LOCAL model. We keep the same hypothesis (except
that now A is a rand-LOCAL algorithm) and, in addition, we ask that the graph Gn /∈ F , over which
P is not solvable, admits a subgraph cover {G(i)

n }I∈I with the following properties:

(1) For each v ∈ Gn, there exists iv ∈ I such that Nt(v) ∈ G(iv)
n ;

(2) For each i ∈ I, there exists a graph H(i)
n ∈ F of size n which contains a subgraph H̃(i)

n such that
H̃

(i)
n is isomorphic to G(i)

n , and H
(i)
n [NT (n)(H̃

(i)
n)] is isomorphic to Gn[NT (n)(G

(i)
n)].

Again, we run A on Gn, and we know that Gn will contain at least one t-neighborhood that has a
non-admissible output vector. As {G(i)

n }I∈I is a subgraph cover, there exists i⋆ ∈ I such that the
probability of A failing over G(i⋆)

n is at least 1/|I|. We denominate G(i⋆)
n the bad subgraph. Hence,

assuming H(i)
n [NT (n)(H̃

(i)
n)] and Gn[NT (n)(G

(i)
n)] are given the same identifiers and input labels, A

fails on H
(i⋆)
n with probability at least 1/|I|. We observe that property (2) is sufficient but not

necessary to the technique: it is sufficient to ensure the existence of the graph H
(i)
n for i = i⋆.

Nevertheless, in many practical scenarios actually determining i⋆ is hard, while it is easier to ensure
(2) for many graph families.

This result is useful when |I| is not too large: however, in many cases, it is not possible to find
subgraph covers with few elements; furthermore, one may want a failure probability that is higher

25

than a constant value. Luckily, other properties of the rand-LOCAL model come to our aid and
sometimes allow to boost the failing probability. Let N ∈ N+. The idea is to replicate N times the
T (n)-neighborhood of the bad subgraph (making sure we still obtain a graph that belongs to the
graph family under consideration) and exploit the independence of the outcome generated by A
over subsets of the nodes that are “far enough”. More formally, assume that NT (n)(G

(i)
n) has size at

most ⌊n/N⌋ for each i ∈ I. Let us replace property (2) as follows:

(2) For each choice of indices xN = (x1, . . . , xN) ∈ [|I|]N , there exists a graph HxN ∈ F of size n
which contains a subgraph H̃xN such that H̃xN is isomorphic to the disjoint union ⊔N

j=1G
(xj)
n ,

and HxN [NT (n)(H̃xN)] is isomorphic to the disjoint union ⊔N
j=1Gn[NT (n)(G

(xj)
n)].

By independence, the probability that A solves P over HxN is now (1− 1/|I|)N (assuming again
the same identifiers and input labels are given to HxN [NT (n)(H̃xN)] and ⊔N

j=1Gn[NT (n)(G
(xj)
n)]).

In both arguments for the det-LOCAL and the rand-LOCAL model, we denominate the graph Gn

as the cheating graph, because it allows us to “trick” the distributed algorithm, since nodes cannot
distinguish between different inputs if they have the same local view.

5.2.2 Indistinguishability argument in the NS-LOCAL model

The argument outlined in Section 5.2.1 cannot be directly applied to the NS-LOCAL model for two
reasons:

1. Independence is not guaranteed between far away subsets of nodes (e.g., there could be some
shared resources).

2. We cannot consider an outcome over two graphs G,H of different sizes and require it to
have the same output distribution over two subgraphs G′ ⊆ G,H ′ ⊆ H that have the same
local neighborhood due to the no-cloning principle [25, 55, 66] (in fact, the properties of a
non-signaling outcome hold only for graphs of the same size; see Definition 5.4).

However, we overcome these issues and show that:

1. The dependencies actually go “in the right direction”, i.e., the bound on the failing probability
does not decrease w.r.t. the bound we showed in the rand-LOCAL model;

2. We can restrict ourselves to graphs of same sizes in many cases, as we show in the applications
of our lower bound technique (Sections 5.3–5.5).

Some technicalities are required to obtain 1. This section is devoted to the formal proof of our
lower bound technique in the NS-LOCAL model. The technique applies to LVL problems restricted
to graph families meeting some specific properties.

Definition 5.6 (Cheating graph). Let P be any LVL problem with checking radius t ∈ N that
is solvable over some graph family F . Suppose that, for some integer n ∈ N, there exists a triple
(k,N, T) ∈ N3 (that can depend on n and, possibly, other parameters defining the graph family F),
with T ≥ t, and a graph Gn of size at most ⌊n/N⌋, such that the following properties are met:

(i) P is not solvable on Gn;

(ii) Gn has a subgraph cover {G(1)
n , . . . G

(k)
n } such that

(a) for each v ∈ V (Gn), there exists j ∈ [k] such that Nt(v) ⊆ V (G(j)
n);

26

(b) for each choice of indices xN = (x1, . . . , xN) ∈ [k]N , there exists a graph HxN ∈ F of
size n which contains a subgraph H̃xN such that H̃xN is isomorphic to the disjoint union⊔N

j=1G
(xj)
n , and HxN [NT (H̃xN)] is isomorphic to the disjoint union ⊔N

j=1Gn[NT (G(xj)
n)].

Then we say that Gn is an (n, k,N, T)-cheating graph for the pair (P,F) or, more generally, that F
admits an (n, k,N, T)-cheating graph for P.

Remark 1. Being P an LVL problem, Definition 5.6.(ii).(b) implies that P is solvable on Gn[NT (G(i)
n)]

for i = 1, . . . , k.
We now present our general lower bound theorem.

Theorem 5.7. Let P be an LVL problem with checking radius t, and F be a graph family that
admits an (n, k,N, T)-cheating graph for P. Suppose O is an outcome over F in NS-LOCAL with
locality T ≥ t. Then, there exists a graph H ∈ F on n vertices such that the probability of O solving
P on H is at most (1 − 1/k)N . Furthermore, H can be chosen among the graphs in the family
{HxN }xN ∈[k]N given by Definition 5.6.(ii).(b).

Proof. Let Gn be a (n, k,N, T)-cheating graph for (P,F). We know that Gn has size at most ⌊n/N⌋
and satisfies the properties listed in Definition 5.6. Now, consider a new graph that consists of N
disjoint copies Gn,1, . . . , Gn,N of Gn, and n− |V (Gn)| isolated nodes.

For each i = 1, . . . , N , consider the subgraph cover {G(j)
n,i}j∈[k] for Gn,i given by Definition 5.6.

Let O be any outcome having locality T and solving problem P over F .
As P is not solvable on Gn,i, then the failing probability of O over Gn,i is 1, for each i = 1, . . . , N .

Consider one of the Gn,i and notice that, if O produces a permissible vector output on Gn,i[NT (G(j)
n,i)]

for each j ∈ [k] at the same time, then, by definition of LVL problem, we have a global permissible
vector output on Gn,i (which does not exist). Hence, by Definition 5.6.(ii).(a), there must exist
j ∈ [k] and v ∈ V (G(j)

n,i) such that Nt(v) ⊆ V (G(j)
n,i) and the output vector on Nt(v) is not permissible:

in such a case, we say that G(j)
n,i contains a bad node.

We now prove that there exists a sequence of indices xN = (x1, . . . , xN) ∈ [k]N such that O
produces a bad node in ⊔N

j=1G
(xj)
n,j with probability at least 1− (1− 1/k)N . If we had independence

between “far away” parts of the graphs (as in the rand-LOCAL model), this thesis would be trivial
(see Section 5.2.1). However, in the NS-LOCAL model non-trivial dependencies are possible (e.g.,
pre-shared quantum state).

We here present a shorter proof by induction on N , as we already gave a somewhat “constructive”
intuition in Section 2.2. Assume N = 1: as O fails on Gn,1 with probability 1, and the latter
is covered by {G(j)

n,1}kj=1, then there exists an index x1 ∈ [k] such that the probability that G(x1)
n,1

contains a bad node is at least 1/k. Now, assume N > 1 and the claim to be true for N − 1. Let
E(j)

i be the event that O produces a bad node in G
(j)
n,i (we remark that P is solvable on G

(j)
n,i by

Remark 1): the inductive hypothesis can be rewritten as Pr
[
∪N

i=1E
(xi)
i

]
= 1− (1− 1/k)N−1 + y for

some y ≥ 0. Assume Pr
[
∪N−1

i=1 E
(xi)
i

]
< 1 otherwise the thesis is trivial.

Let us denote the complement of any event A by Ā. As O fails on Gn,N with probability 1, we
know that

1 = Pr
[
∪k

j=1E
(j)
N

]
= Pr

[
∪k

j=1E
(j)
N

⋃
(∪N−1

i=1 E
(xi)
i)

]
.

27

By the law of total probability, we get that

1 = Pr
[
(∪k

j=1E
(j)
N)

⋃
(∪N−1

i=1 E
(xi)
i)

]
= Pr

[
∪k

j=1E
(j)
N

∣∣∣ ∩N−1
i=1 Ē

(xi)
i

]
Pr
[
∩N−1

i=1 Ē
(xi)
i

]
+ Pr

[
∪N−1

i=1 E
(xi)
i

]
.

Hence, Pr
[
∪k

j=1E
(j)
N

∣∣∣ ∩N−1
i=1 Ē

(xi)
i

]
= 1; by the union bound, it follows there exists xN ∈ [k] with

Pr
[
E(xN)

N

∣∣∣ ∩N−1
i=1 Ē

(xi)
i

]
≥ 1/k.

Then, by the inclusion-exclusion principle and the law of total probability,

Pr
[
∪N

i=1E
(xi)
i

]
= Pr

[
E(xN)

N

]
+ Pr

[
∪N−1

i=1 E
(xi)
i

]
− Pr

[
E(xN)

N

⋂
(∪N−1

i=1 E
(xi)
i)

]
= Pr

[
E(xN)

N

⋂
(∩N−1

i=1 Ē
(xi)
i)

]
+ Pr

[
∪N−1

i=1 E
(xi)
i

]
= Pr

[
∪k

j=1E
(j)
N

∣∣∣ ∩N−1
i=1 Ē

(xi)
i

]
Pr
[
∩N−1

i=1 Ē
(xi)
i

]
+ Pr

[
∪N−1

i=1 E
(xi)
i

]
≥ 1
k
·
[(

1− 1
k

)N−1
− y

]
+ 1−

(
1− 1

k

)N−1
+ y

= 1−
(

1− 1
k

)N

+ y

(
1− 1

k

)
≥ 1−

(
1− 1

k

)N

,

proving the claim.
By Definition 5.6.(ii).(b), there exists a graph HxN ∈ F over the same set of n nodes that contains

a subgraph H̃xN with HxN [NT (H̃xN)] being the same graph as ⊔N
i=1Gn,i[NT (G(xi)

n,i)]. Consider the
same identifiers and input labels over HxN [NT (H̃xN)] and ⊔N

i=1Gn,i[NT (G(xi)
n,i)]: by the definition of

NS-LOCAL, the probability that O fails on H̃xN ⊆ HxN is the same as that on ⊔N
j=1G

(xj)
n,j , yielding

the thesis.

As long as one can find a cheating graph for a pair (P,F), where P is an LVL problem and
F an input graph family, the lower bound technique can be applied. In Sections 5.3–5.5, all the
analysis that is carried out serves to show that there exists such a cheating graph for, respectively,
c-coloring χ-chromatic graphs, 3-coloring grids, and c-coloring trees.

5.3 Lower bound for c-coloring χ-chromatic graphs

The goal of this section is to prove Theorem 1.3 by showing that the family of χ-chromatic graphs
admits cheating graphs for the c-coloring problem (Definition 5.6). We restate the theorem for the
sake of readability.

Theorem 1.3. Let χ ≥ 2, c ≥ χ be integers, and let α = ⌊ c−1
χ−1⌋. Let ε ∈ (0, α−1

α) be a real value,
and let n ∈ N with

n ≥
⌈

log ε−1

log(1 + 1
α)

⌉
· (6χ+ 1)α+1 − 1

6 .

Suppose A is an NS-LOCAL algorithm for c-coloring graphs in the family F of χ-chromatic graphs
of n nodes with success probability q > ε. Then the running time of A is at least

T = Ω
(

1
χ1+ 1

α

·
(

n

log ε−1

) 1
α

)
.

28

We base our analysis on [16, Theorem 1.2], a result that has gone relatively unnoticed and lies
at the intersection between graph theory, combinatorics, and topology, which ensures the existence
of a graph with high chromatic number which, locally, is χ-chromatic. The first half of the sections
aims at constructing such graph, and the second half is devoted to the proof that this graph admits
a (small enough) subgraph cover that satisfies the properties of Definition 5.6.

Preliminaries. We first define some graph operations. For any two graphs G,H, we define the
intersection graph G ∩H as a graph whose vertex set is the set V (G) ∩ V (H), and whose edge set
is the set E(G) ∩E(H). Similarly, we define the union graph G ∪H as a graph whose vertex set is
the set V (G) ∪ V (H), and whose edge set is the set E(G) ∪E(H). We define the difference graph
G \H as the subgraph of G induced by V (G) \ V (H). The T -local chromatic number of a graph G,
denoted by LXT (G), is the minimum c ∈ N such that the graph induced by the T -neighborhood of
any node is c-colorable. More formally

LXT (G) = min {c ∈ N | ∀u ∈ V, G[Nt(u)] is c-colorable} .

Given two graphs G and H, a function f : V (G)→ V (H) is a homomorphism from G to H if, for
any {u, v} ∈ E(G), {f(u), f(v)} ∈ E(H). A homomorphism from G to Kc, the c-clique, is equivalent
to saying that G is c-colorable. Notice that the composition of homomorphisms is a homomorphism:
hence, if G is homomorphic to H, then X (H) ≥ X (G). Furthermore, we define the tensor product
of graphs G and H as a graph G × H whose vertex set is V (G) × V (H), and whose edge set is
determined by the following: for any (g, h), (g′, h′) ∈ V (G ×H), {(g, h), (g′, h′)} ∈ E(G ×H) iff
gg′ ∈ E(G) and hh′ ∈ E(H) (see Fig. 2 for an example).

We hereby state [16, Theorem 1.2].

Theorem 5.8 ([16]). Let χ ≥ 2, r ≥ 2, and k ≥ 1 be integers. There exists a graph Gk = (V,E)
such that LXr(Gk) = χ and X (Gk) ≥ k(χ− 1) + 1 with

|V | = (2rχ+ 1)k − 1
2r .

Remark 2. [16, Theorem 1.2] has been stated for χ ≥ 3 since the result for χ = 2 was already known
from a different construction provided by [62] (a proof translated in English was reproduced by
[37]). Nevertheless, the proof of [16, Theorem 1.2] also holds for the case χ = 2.
Remark 3. Theorem 5.8 holds even for r ≥ 1, as explicitly mentioned at the end of [16, Section 4],
slightly changing the proof.

We will discuss the tightness and the related works of this result already in Section 5.3.2. We
proceed proving Theorem 1.3. The idea of the whole proof is to show that the graph from Theorem 5.8
provides a cheating graph for the c-coloring graphs problem and the family of χ-chromatic graphs.

We now construct the graph from Theorem 5.8.

The r-join of graphs. Given two graphs G and H, we aim to define the r-join operation G ⋆r H,
for any r ≥ 0. The vertex set V (G ⋆r H) is defined by V (G ⋆r H) = V (G) ∪ V (G) × V (H) ×
{1, . . . , r} ∪ V (H). Let

E1,r(G ⋆r H) =
{
{(g, h, i), (g′, h′, j)}

∣∣ g, g′ ∈ V (G), h, h′ ∈ V (H), gg′ ∈ E(G), hh′ ∈ E(H), |i− j| ≤ 1
}
.

Furthermore, let

E0(G ⋆r H) = E(G) ∪
{
{g, (g′, h′, 1)}

∣∣ g, g′ ∈ V (G), h′ ∈ V (H), gg′ ∈ E(G)
}

29

K2

K3

K2 ×K3

u1 u2 u3

v1

v2

v1u1 v1u2 v1u3

v2u1 v2u2 v2u3

Figure 2: Tensor product K2 ×K3.

and
Er+1(G ⋆r H) = E(H) ∪

{
{(g, h, t), h′}

∣∣ g ∈ V (G), h, h′ ∈ V (H), hh′ ∈ E(H)
}
.

Then, the edge set E(G⋆r H) is defined by E(G⋆r H) = E0(G⋆r H)∪E1,r(G⋆r H)∪Er+1(G⋆r H).
An intuitive visualization of this graph follows: take a sequence of r + 2 disjoint copies (G×

H)0, (G×H)1, . . . , (G×H)r+1 of the tensor product G×H (an example of a tensor product graph
is given in Fig. 2). Clearly, for any 0 ≤ i ≤ r, there is an isomorphism fi : (G×H)i → (G×H)i+1.
Then, any two nodes (g, h) ∈ (G × H)i and (g′, h′) ∈ (G × H)i+1 are connected if and only if
{fi((g, h)), (g′, h′)} ∈ E((G×H)i+1), or, equivalently, {(g, h), f−1

i ((g′, h′))} ∈ E((G×H)i). Finally,
“collapse” (G×H)0 into G and (G×H)r+1 into H by merging nodes (merging multiple edges and
deleting self-loops).

This join operation in graphs is some kind of “discrete” variant of the join operation between
two topological spaces (see [16] or [56]).

We define two projection operators for the join of graphs.

Definition 5.9. Let prG : G ⋆r H \ H → G and prH : G ⋆r H \ G → H be defined as follows:
prG((g, h, i)) = g and prH((g, h, i)) = h for (g, h, i) ∈ V (G)× V (H)× {1, . . . , r}, while prG ↾G and
prH ↾H are the identity maps on G and H, respectively.

Remark 4. The two projections are homomorphisms, implying that the chromatic number of
G⋆r H \H is the same as that of G, and the chromatic number of G⋆r H \G is the same as that of
H.

The join of two connected graphs results in a connected graph.

Lemma 5.10. Let r ≥ 1, and let G and H be two connected graphs with at least two nodes each.
Then, G ⋆r H is connected.

Proof. Consider any node u in G ⋆r H which does not belong to G ∪ H. Then u = (g, h, i) for
g ∈ V (G), h ∈ V (H), and i ∈ [r]. There exist g′ ∈ V (G) and h′ ∈ V (H) such that gg′ ∈ E(G) and
hh′ ∈ E(H). We now construct two paths v0v1 . . . vi and wr+1wr . . . wi that connect G and H to
vi = wi = u, respectively. Suppose i is odd. Then, set v0 = g′, vj = (g, h, j) for any odd j, and
vj = (g′, h′, j) for any even j. We have that vj is connected to vj+1 for any 0 ≤ j ≤ i−1, and vi = u.
Similarly, set wr+1 = h′, wj = (g, h, j) for any odd j, and wj = (g′, h′, j) for any even j. We have
that wj is connected to wj−1 for any i+ 1 ≤ j ≤ r + 1, and wi = u. Suppose i is even. Then, set
v0 = g, vj = (g′, h′, j) for any odd j, and vj = (g, h, j) for any even j. We have that vj is connected

30

K
(1)
2

K
(2)
2

K
(1)
2 ×K

(2)
2 × {1}

u1 u2

v1

v2

v1u11 v1u21

v2u11 v2u21

K
(1)
2 ×K

(2)
3 × {2}

K
(1)
2 ⋆2 K

(2)
2

v1u12 v1u22

v2u12 v2u22

(a) The 2-join of K(1)
2 and K(2)

3 , with all the connections. Full lines represent edges within the tensor product
graphs plus the starting and ending graph. Dotted lines represent edges among these graphs. K(1)

2 ×K
(2)
2 ×{1}

and K
(1)
2 ×K(2)

2 × {2} are two copies of the tensor product K(1)
2 ×K(2)

2 .

K
(1)
3

K
(2)
3

K
(1)
3 ×K

(2)
3 × {1}

K
(1)
3 ⋆2 K

(2)
3

K
(1)
3 ×K

(2)
3 × {2}

(b) Representation of the 2-join of two copies K(1)
3 and K(2)

3 of K3. Here, for the sake of visibility, only some
edges are represented. The yellow node in K(1)

3 is connected to all nodes in the yellow area of K(1)
3 ×K

(2)
3 ×{1};

similarly, the green node in K
(2)
3 is connected to all nodes in the green area of K(1)

3 ×K(1)
3 × {2}. The blue

nodes of K(1)
3 ×K(2)

3 × {1, 2} are connected to all nodes in the blue areas of K(1)
3 ×K(2)

3 × {1, 2}. Other
connections can be deduced by symmetry.

Figure 3: Examples for the 2-join of graphs.

31

to vj+1 for any 0 ≤ j ≤ i − 1, and vi = u. Similarly, set wr+1 = h, wj = (g′, h′, j) for any odd j,
and wj = (g, h, j) for any even j. We have that wj is connected to wj−1 for any i+ 1 ≤ j ≤ r + 1,
and wi = u.

We are ready to define the graph from Theorem 5.8 which we will prove to be a cheating graph
for the family of χ-chromatic graphs.

Definition 5.11 (The construction). Let χ ≥ 2, r ≥ 2, and k ≥ 1. Consider a sequence
K

(1)
χ , . . . ,K

(k)
a of k disjoint copies of Kχ. We construct the graph recursively. Let G1 = K

(1)
χ be

the clique with χ nodes. Then, for k ≥ 2, Gk = Gk−1 ⋆2r K
(k)
χ . [16] proved that LXr(Gk) = χ,

X (Gk) ≥ k(χ− 1) + 1, and

|V (Gk)| = (2rχ+ 1)k − 1
2r .

See Fig. 3 for some examples (notice that r = 1 in the examples: as observed in Remark 3, the
result still holds in this case).

Further discussion on Gk is deferred to Section 5.3.1. In order to continue, we state the following
lemma for an induced subgraph, whose proof is trivial.

Lemma 5.12. Let T ∈ N. Let G be a connected graph, and H ⊆ G be a connected subgraph of G.
Then, G[NT (H)] is connected.

For a graph G and any node v ∈ V (G), we define by distG(v,H) = minu∈V (H) {distG(u, v)} the
distance between v and any subgraph H ⊆ G. We write dist(v,H) when the underlying graph G is
clear from the context. We now prove some key-properties of Gk which allow us to show that Gk is
a cheating graph.

Lemma 5.13. Let χ ≥ 2, r ≥ 3, and k ≥ 2 be integers. Define T = ⌊2r
3 ⌋. Let Gk be the graph

defined in Definition 5.11 built with copies of Kχ. There exists a subgraph cover {G(i)
k }i∈[k] of Gk

such that the following statements hold:

(i) The chromatic number of Gk[NT (G(i)
k)] is χ for all i ∈ [k];

(ii) G
(i)
k is connected for all i ∈ [k];

(iii) for each v ∈ V (Gk), there exists i ∈ [k] such that N1(v) ⊆ V (G(i)
k);

(iv) Gk[NT (G(i)
k)] contains at least one node at distance T from G

(i)
k for all i ∈ [k].

Proof. We prove the thesis by induction on k. Remember that G2 is obtained by the 2r-join of two
disjoint copies K(1)

χ , K(2)
χ of Kχ. Assume K(1)

χ is connected to the first copy of K(1)
χ ×K(2)

χ , and
K

(2)
χ to the last. Let

V
(1)

2 = V (K(1)
χ) ∪ V (K(1)

χ)× V (K(2)
χ)× {1, . . . , T + 2} ;

V
(2)

2 = V (K(2)
χ) ∪ V (K(1)

χ)× V (K(2)
χ)× {T + 1, . . . , 2r} .

Consider the graphs G(1)
2 = G2[V (1)

2] and G(2)
2 = G2[V (2)

2]. The cover property and properties (i)-(iii)
are straightforward. Clearly, G2 = ∪i∈[2] G

(i)
2 . Furthermore, X (G2[NT (G(1)

2)]) = X (G2[NT (G(2)
2)]) =

χ as the projections pr
K

(1)
χ

[NT (G(1)
2)], pr

K
(2)
χ

[NT (G(2)
2)] are homomorphisms. Moreover, it is easily

32

verifiable that G(1)
2 and G(2)

2 are connected graphs: Observe that G(1)
2 = (K(1)

χ ⋆2rK
(2)
χ)[NT +2(K(1)

χ)].
As both K

(1)
χ (by the inductive hypothesis) and K

(2)
χ are connected, Lemma 5.10 implies their

join is connected. Then, Lemma 5.12 implies G(1)
2 is connected. The same applies for G(2)

2 by
observing that G(2)

k = (K(1)
χ ⋆2r K

(2)
χ)[N2r−T (K(2)

χ)]. As for property (iv), consider any two nodes
u ∈ V (K(1)

χ) × V (K(2)
χ) × {2T + 2} and v ∈ V (K(1)

χ) × V (K(2)
χ) × {1}. Clearly, u ∈ G2[NT (G(1)

2)]
and has distance T from G

(1)
2 , while v ∈ G2[NT (G(2)

2)] and has distance T from G
(2)
2 .

Let k ≥ 3 and assume the thesis is true for Gk−1. We now construct the subgraph cover of
Gk = Gk−1 ⋆2r Kχ. For i = 1, . . . , k − 1, we define G(i)

k by

G
(i)
k = G

(i)
k−1 ∪

(
Gk[NT +2(G(i)

k−1)] ∩ Gk[V (G(i)
k−1)× V (K(k)

χ)× {1, . . . , T + 2}]
)

Then, we define
G

(k)
k = Gk[V (Gk−1)× V (K(k)

χ)× {T + 1, . . . , 2r}] ∪K(k)
χ .

We now prove that the family {G(i)
k }i∈[k] respects properties (i)-(iv).

Subgraph covering. Any node v ∈ (V (Gk−1) ∪ V (K(k)
χ)) belongs either to (∪i∈[k−1]G

(i)
k) (by

observing that the latter contains V (Gk−1) and by using the inductive the hypothesis on the
subgraph covering) or to G

(k)
k (which contains V (K(k)

χ) by construction). Consider any node
v ∈ V (Gk) \ (V (Gk−1) ∪ V (K(k)

χ)). Then v = (v1, v2, j) for v1 ∈ V (Gk−1), v2 ∈ V (K(k)
χ), and

j ∈ [2r]. By the inductive hypothesis, there exists i ∈ [k − 1] such that v1 ∈ G
(i)
k−1. Then,

(v1, v2, j) ∈ V (G(i)
k−1) × V (K(k)

χ) × {j}. As G(i)
k−1 and K

(k)
χ contain no isolated nodes (inductive

hypothesis (ii)), there exist u1 ∈ V (G(i)
k−1) adjacent to v1 and u2 ∈ V (K(k)

χ) adjacent to v2. The path
w0w1 . . . wj defined by w0 = u1, wk = (v1, v2, k) for 1 ≤ k ≤ j odd, wk = (u1, u2, k) for 2 ≤ k ≤ j
even connects u1 to v if j is odd. The path w0w1 . . . wj defined by w0 = v1, wk = (u1, u2, k) for
1 ≤ k ≤ j odd, wk = (v1, v2, k) for 2 ≤ k ≤ j even connects v1 to v if j is even. Hence, v ∈ Nj(G(i)

k−1).
If 1 ≤ j ≤ T + 2, then u ∈ V (G(i)

k). If, instead, T + 2 ≤ j ≤ 2r, then u ∈ V (G(k)
k).

Now consider any two nodes u, v which are connected in Gk. If u, v ∈ V (Gk−1) or u, v ∈ V (K(k)
χ)

we have that {u, v} ∈ E(∪i∈[k−1]G
(i)
k) or {u, v} ∈ E(G(k)

k), respectively. Suppose u ∈ V (Gk−1) but
v /∈ V (Gk−1). Then, v = (v1, v2, 1) for some v1 ∈ V (Gk−1) and some v2 ∈ V (K(k)

χ). As u and v
are connected, it means that uv1 is an edge in Gk−1. By the inductive hypothesis on the subgraph
covering, there exists i ∈ [k − 1] such that uv1 ∈ G

(i)
k−1. Hence, uv ∈ E(G(i)

k). If u ∈ V (K(k)
χ)

but v /∈ V (K(k)
χ), uv ∈ E(G(k)

k). Suppose now that u, v /∈ V (Gk−1) ∪ V (K(k)
χ). Then, there exist

u1, v1 ∈ V (Gk−1), u2, v2 ∈ V (K(k)
χ), and ju, jj ∈ [2r] with |ju − jv| ≤ 1 such that u = (u1, u2, ju)

and v = (v1, v2, jv). Furthermore, as uv is an edge of Gk, it holds that u1u2 is an edge in Gk−1,
and v1v2 is an edge in K

(k)
χ . From the inductive hypothesis on the subgraph covering, there exists

i ∈ [k−1] such that G(i)
k−1 contains u1u2. We have that u, v ∈ V (Gk[V (G(i)

k−1)× V (K(k)
χ)× {ju, jv}]).

Let j = max(ju, jv) Then, uv ∈ E(Gk[Nj(G(i)
k−1)]). Hence, if j ≤ T + 2, uv ∈ E(G(i)

k). If, instead,
T + 1 ≤ j ≤ 2r, uv ∈ E(G(k)

k).

Property (i). Consider G(i)
k for i < k. The function fi = prGk−1 ↾NT (G(i)

k
) is a homomorphism from

Gk[NT (G(i)
k)] to Gk−1[NT (G(i)

k−1)]. As Gk−1[NT (G(i)
k−1)] is χ-colorable by the inductive hypothesis

(i), so it is Gk[NT (G(i)
k)]. Since Gk[NT (G(i)

k)] contains K(i)
χ as a subgraph, χ colors are also necessary.

33

Similarly, consider Gk[NT (G(k)
k)]. Then, fk = pr

K
(k)
χ

↾[NT (G(k)
k

)] is a homomorphism from

Gk[NT (G(k)
k)] to K

(k)
χ . Hence, Gk[NT (G(k)

k)] is χ-colorable. As Gk[NT (G(k)
k)] contains K(k)

χ , its
chromatic number is χ.

Property (ii). Fix i ∈ [k − 1]. Observe that G(i)
k = G

(i)
k−1 ⋆2r K

(k)
χ [NT +1(G(i)

k−1)]. As both
G

(i)
k−1 (by the inductive hypothesis (ii)) and K

(k)
χ are connected, their join is connected. Then,

Lemma 5.12 implies that G(i)
k is connected. The same applies for G(k)

k by observing that G(i)
k =

G
(i)
k−1 ⋆2r K

(k)
χ [N2r−T (K(k)

χ)].

Property (iii). Consider any node v ∈ V (Gk−1) ∪ V (Gk−1) × V (K(k)
χ) × {1, . . . , T + 1}. Let

v′ = prGk−1(v). By the inductive hypothesis (iii), the set of nodes N1(v′) ∩ V (Gk−1) is contained
in some G(i)

k−1 for i ∈ [k − 1]. By definition of G(i)
k , it follows that N1(v) ⊆ V (G(i)

k). Now, consider
any node v ∈ V (K(k)

χ) ∪ V (Gk−1)× V (K(k)
χ)× {T + 2, · · · 2r}. By definition of G(k)

k , we have that
N1(v) ⊆ G(k)

k .

Property (iv). Fix 1 ≤ i ̸= j ≤ k − 1. By the inductive hypothesis (iv), there exists a node
u ∈ V (Gk−1[NT (G(i)

k−1)]) from G
(i)
k−1. By definition of G(i)

k , we have that u has distance T from G
(i)
k .

Furthermore, observe that any node in V (Gk−1)× V (K(k)
χ)× 1 has distance T from Gk

k, concluding
the proof.

Remark 5. We highlight that the subgraph cover from Lemma 5.13 is not unique: other families of
graphs could be used obtaining a shorter and simpler proof at the expense of a higher number of
graphs in the family (e.g., a number of subgraphs that is exponential in k). The latter would result
in a worse bound on T in the next corollary.

We are now ready to show that the family of χ-chromatic graphs admits a cheating graph for
the c-coloring graphs problem.

Corollary 5.14. Let χ ≥ 2, c ≥ χ be integers, and k = ⌊ c−1
χ−1⌋. Consider F to be the family of all

connected χ-chromatic graphs, and P to be the problem of c-coloring graphs. For every N ≥ 1 and
n ≥ ((6χ+ 1)k+1 − 1)N/6, there exists a value T with

T = Θ
(

1
χ1+ 1

k

(
n

N

) 1
k

)

such that F admits an (n, k + 1, N, T)-cheating graph for P.

Proof. There exists a unique integer r ≥ 3 such that

(2rχ+ 1)k+1 − 1
2r ≤ n

N
<

(2rχ+ 2χ+ 1)k+1 − 1
2r + 2 .

We claim that the graph Gk+1 defined in Definition 5.11 by iterating 2r-join operations is
an (n, k + 1, N, T)-cheating graph for (P,F). Clearly, P is not solvable on Gk+1, while property
Definition 5.6.(ii).(a) follows by Lemma 5.13.(iii) (since coloring is an LVL problem with checking
radius t = 1).

34

We now prove that Definition 5.6.(ii).(b) holds as well. Consider N copies Gk+1,1.Gk+1,N of
the graph Gk+1. For each j ∈ [N], Lemma 5.13 gives us a subgraph cover {G(i)

k+1,j}i∈[k+1] of Gk,j

with properties Lemma 5.13.(i) and (iv) verified for T = ⌊2r
3 ⌋. Notice that

T = Θ
(

1
χ1+ 1

k

(
n

N

) 1
k

)
.

For any choice of indices xN = (x1, . . . , xN) ∈ [k + 1]N , we now show that there exists a
connected graph HxN ∈ F on n nodes that admits a subgraph H̃xN such that

(1) HxN [NT (H̃xN)] is isomorphic to ⊔j∈[N]Gk+1,j [NT (G(xj)
k+1,j)];

(2) X (HxN) = χ.

The vertex set V (HxN) is V (⊔j∈[N]Gk+1,j) together with n − N · (2rχ+1)k+1−1
2r ≤ n

N extra nodes.
We take HxN to be the disjoint union of Gk+1,j [NT (G(xj)

k+1,j)] for all j ∈ [N] where, for each
j ∈ [N − 1] we add an edge between a node vj ∈ Gk+1,j [NT (G(xj)

k+1,j)] and a node vj+1 ∈
Gk+1,j+1[NT (G(xj+1)

k+1,j+1)] such that dist(vj , G
(xj)
k+1,j) = T and dist(vj+1, G

(xj+1)
k+1,j+1) = T (such nodes

exist because of Lemma 5.13.(iv)). All remaining nodes form a path of which one endpoint is
connected to any node in Gk+1,N [NT (G(xN)

k+1,N)] at distance T from G
(xN)
k+1,N . Property (1) follows

by construction. As for property (2), we observe that the chromatic number of HxN is still χ as
each component NT (G(xj)

k+1,j) is χ-chromatic by Lemma 5.13.(i), and χ ≥ 2. Furthermore, HxN is
connected by Lemma 5.13.(ii) combined with Lemma 5.12 and observing that connected disjoint
connected components through paths.

The proof of our main lower bound now follows easily.

Proof of Theorem 1.3. Let k = α and

N =

 log 1
ε

log
(
1 + 1

k

)
.

By Corollary 5.14, F admits an (n, k + 1, N, T)-cheating graph for the c-coloring graphs problem
for any n ≥ ((6χ+ 1)k+1 − 1)N/6 and for some

T = Θ

 1
χ1+ 1

k

·
(
n log(1 + 1

k)
log 1

ε

) 1
k

 .
Theorem 5.7 implies that there is a connected graph H ∈ F on n nodes such that the probability
that any outcome O with locality T is c-coloring H is at most (1− 1/(k + 1))N . We remind the
reader that the graph can be chosen as in Definition 5.6.(ii).(b), and Corollary 5.14 implies that
such graph is connected. By definition of k and N , this probability is at most ε. By observing that
log 1

k (1 + 1
k) = Θ(1), we get the thesis.

35

5.3.1 Notes on the graph Gk

This section is dedicated to the reader that is interested in the topological elements underlying
the construction of the graph Gk in [16]. Familiarity with the notion of topological space, join of
topological spaces, homotopy equivalence, abstract simplicial complex, and geometric realization
of an abstract simplicial complex is required. Every graph G can be associated with an abstract
simplicial complex NC(G) called the neighborhood complex, defined as follows:

NC(G) := {A ⊆ V (G) | ∃v ∈ V (G) such that ∀u ∈ A, v ∈ N (u)} ,

that is, NC(G) consists in all subsets A ⊆ V of nodes that have a common neighbor. Let us
denote the geometric realization of NC(G) by ∥NC(G)∥ (the geometric realization is unique up to
homeomorphisms). We say that a non-empty topological space X is m-connected if each continuous
map π : Si−1 → X extends to a continuous map π̄ : Di → X for each i = 1, . . . ,m, where
Si−1 =

{
x ∈ Ri

∣∣ ∥x∥2 = 1
}

is the (i− 1)-dimensional sphere, and Di =
{
x ∈ Ri

∣∣ ∥x∥2 ≤ 1
}

is the
i-dimensional disk.

Lovász [51] proved the following theorem.

Theorem 5.15 ([51]). Let G be any graph such that NC(G) is non-empty. If ∥NC(G)∥ is m-
connected, then X (G) ≥ m+ 3.

Lovász’s result provides a clear and effective tool to bound from below the chromatic number
of a graph. Bogdanov [16] linked the r-join operation between graphs to the join operation of
topological spaces, proving the following lemma.

Lemma 5.16 ([16]). Let G,H be any two graphs, and r ∈ N+. Then, ∥NC(G ⋆r H)∥ ≃ ∥NC(G)∥⋆
∥NC(H)∥, where ≃ means homotopy equivalent and the latter ⋆ operator represents the join operation
between topological spaces.

Note that, for any three topological spaces A, A′, and B, if A ≃ A′, then A ⋆ B ≃ A′ ⋆ B [56].
Theorem 5.15 and Lemma 5.16 can be combined to construct graphs of high chromatic number. E.g.,
if G = K

(1)
χ and H = K

(2)
χ , that is, two disjoint copies of the complete graph of χ nodes, we know

that ∥NC(G)∥ ≃ ∥NC(H)∥ ≃ Sχ−2, hence ∥NC(G ⋆r H)∥ ≃ Sχ−2 ⋆ Sχ−2 ≃ S2χ−3. As S2χ−3 is
(2χ− 4)-connected, then X (G ⋆r H) ≥ 2χ− 1. By applying recursively the above procedure, one
can understand why the graph Gk from Definition 5.11 has chromatic number bounded from below
by k(χ− 1) + 1.

As for the properties of the local chromatic number, Bogdanov [16] also showed the following
simple result, which can be proved by using the projections prG and prH , that immediately gives
the desired result.

Lemma 5.17 ([16]). Let G,H be two graphs. For every r ∈ N+ it holds that

LXr(G ⋆2r H) = min{LXr(G),LXr(H)}.

5.3.2 On highly chromatic graphs with small local chromatic number

In this section we present previous works studying the relation between the chromatic number and
the local chromatic number of a graph. We remind to the reader that the local chromatic number
LXr(G) of radius r of a graph G is the maximum number of colors required to color any r-ball in G.
We remark that, in this paper, we depart from the standard definition of local chromatic number in
the literature that started with [29], which is not useful for our purposes. For positive integers c, χ, r,

36

define fχ(c, r) to be the maximal integer n such that every graph G of n nodes with LXr(G) ≤ χ is
c-colorable. The first bounds on fχ(c, r) held for specific values of χ, especially χ ∈ {2, 3} [14, 28,
62] (for a summary of the progress of such results we defer the reader to [3, 17]). We only describe
the results that consider a generic χ, as they are more directly related to our work. Kierstead et al.
[44] proved that, for each k ∈ N,

fχ(k(χ− 1) + 1, r) ≥ ⌊r/(2k)⌋k, (1)

i.e., any graph G having LXr(G) ≤ χ and |V | ≤ ⌊r/(2k)⌋k has chromatic number at most k(χ−1)+1.
Thirty years later, Bogdanov [16] proved that this result is basically tight when k, χ are fixed: it
showed that, for each k ≥ 2,

fχ(k(χ− 1), r) ≤ (2rχ+ 1)k − 1
2r , (2)

i.e., there exists a graph Gk with LXr(Gk) = χ, X (Gk) ≥ k(χ − 1) + 1, and |V (Gk)| = (2rχ)k−1
2r :

such result is built upon a lemma by Lovász [51]. The two above results show an interesting
phenomenon. For constant positive integers χ and c, the minimum number of vertices of a graph G
with LXr(G) ≤ χ and χ(G) = c is roughly r

⌊ c−1
χ−1 ⌋, that is, it jumps to the powers of r where the

exponents are the values c congruent to 1 modulo χ− 1.
The estimate by Kierstead et al. [44] breaks when k ≳ r. Bogdanov [17] and Alon and Ben-

Eliezer [3] investigated and provided better lower bounds to fχ(c, r) when c ≳ (χ− 1)r; Alon and
Ben-Eliezer [3] estimated also upper bounds to fχ(c, r) which are roughly tight for fixed r. We do
not discuss such results in details as they are not useful for our purposes: we are interested in the
asymptotic relation between the locality radius r and the number of nodes n given the local and
global chromatic number. Such case is covered by Eq. (2): in particular, we used the example graph
that was built in [16] as our baseline for the lower bound proof.

We remark that our result for the specific case χ = 2 could also be achieved through other
graphs that were studied in the literature, e.g., the generalized Mycielski graph (studied by Stiebitz
[62], see [37] for an English version of the proof).

5.4 No quantum advantage for 3-coloring grids

In this section we prove that 3-coloring n1 × n2 grids of requires time Ω(min(n1, n2)) rounds in the
NS-LOCAL model, by using the same graph-theoretical lower bound argument of Section 5.

For any two integers a ≤ b, we denote the set {a, a+ 1, . . . , b} by [a : b].

Definition 5.18 (KB-gadget). Consider a graph Hn1,n2 = (V (Hn1,n2), E(Hn1,n2)) of (n1 +1)(n2 +1)
nodes, where we label the nodes by using coordinates from the set [0 : n1] × [0 : n2]; two nodes
(i, j) and (i′, j′) are connected by an edge if |i− i′|+ |j − j′| = 1, i.e., their Manhattan distance is
1. Now, define the following equivalence relation for nodes: (i, 0) ∼V (n1 − i, n2) for i = 0, . . . , n1,
and (0, j) ∼V (n1, j) for j = 0, . . . , n2. Now define a new graph Gn1,n2 = (V (Gn1,n2), E(Gn1,n2))
where V (Gn1,n2) = V (Hn1,n2)/∼V and E(Gn1,n2) is characterized as follows: Take any two nodes
u, v ∈ V (Gn1,n2). Such nodes are equivalence classes for ∼V . If there exists u′ ∈ u ⊆ V (Hn1,n2), v′ ∈
u ⊆ V (Hn1,n2) such that u′v′ ∈ E(Hn1,n2), then uv ∈ E(Gn1,n2) (see Fig. 4). We name Gn1,n2 an
n1 × n2 Klein bottle gadget (KB-gadget).

Now, clearly, Gn1,n2 is everywhere locally grid-like; however, we claim that X (G) ≥ 4 if n1 is
odd.

37

(0, 0) (1, 0) (2, 0) (3, 0) = (0, 0)

(3, 1) = (0, 1)(2, 1)(1, 1)(0, 1)

(0, 2) (1, 2) (2, 2) (3, 2) = (0, 2)

(0, 3) = (0, 0) (1, 3) = (2, 0) (2, 3) = (1, 0) (3, 3) = (0, 0)

Figure 4: Representations of graphs Gn1,n2 and Hn1,n2 with n1 = n2 = 3. Nodes on the borders are
identified in Gn1,n2 as indicated by the same colors. Each face of the graph is oriented the same as
the oriented circle inside it.

Quadrangulation of the Klein bottle. To establish the truth of our claim, we make use of results
on the chromatic number of quadrangulations of surfaces [5, 58, 59]. Following the preliminaries of
[59], by surface we mean a compact connected 2 manifold without boundary. A quadrangulation of
a surface is a graph without self-loops on that surface with all faces being quadrilaterals. For our
purpose, we can restrict to the class of simple graphs. Let G be a quadrangulation of a surface S.
An orientation of a face of G is a closed walk along its boundaries. Given two oriented faces sharing
at least one boundary edge e, we say that the consistency of the orientation is not broken at e if we
traverse edge in opposite directions when considering the two orientations of the faces. Given an
arbitrary orientation of all faces we can count the edges that break consistency of the orientation of
the surface. Note that reversing the orientation of a face changes the status of its four edges, and
thus the parity of the number of edges breaking consistency does not change. We say that G is
even or odd depending on this parity. By the previous remark, the parity of the quadrangulation is
determined by any orientation of all faces and is invariant, i.e., it depends only on the graph G.

The following theorem was independently proved by [5, 58], but we report its formulation by
[59].

Theorem 5.19 ([59]). Let G be an odd quadrangulation of some surface S. Then, X (G) ≥ 4.

The Klein bottle can be defined as the quotient space of the square [0, 1]×[0, 1] over the equivalence
relation ∼ that identifies sides as follows: (x, 0) ∼ (x, 1) for x ∈ [0, 1], and (0, y) ∼ (1, 1 − y) for
y ∈ [0, 1].

Lemma 5.20. Let n2 ≥ 2. For any odd integer n1 ≥ 3, X (Gn1,n2) ≥ 4 and X (Gn2,n1) ≥ 4.

Proof. Notice that Gn2,n1 is isomorphic to Gn1,n2 , hence we focus on the latter. It is easy to see
that Gn1,n2 is a quadrangulation of the Klein-bottle. Indeed, Hn1,n2 is a quadrangulation of the
square [0, 1] × [0, 1]: it suffices to map the nodes (i, j) into (i/n1, j/n2), for all i, j. As Gn1,n2 is
obtained by node identification through the relation ∼V , which acts on the border of the square,
we have a quadrangulation of the Klein-bottle. Let’s orient the faces of Gn1,n2 as in Fig. 4. Even

38

though in Hn1,n2 the orientation is even as consistency is never broken, through simple observations,
one can verify that Gn1,n2 is an odd quadrangulation if and only if n is odd, as the orientation
consistency is broken only at edges belonging to the set {{(i, 0), (i+ 1, 0)} | 0 ≤ i ≤ n1 − 1}. Then
Theorem 5.19 gives the thesis.

It suffices to construct a suitable subgraph cover for Gn1,n2 which shows that the family of
grid graphs admits cheating graphs for the 3-coloring problem. First, let us denote by Qn1,n2 any
subgraph of the infinite two-dimensional lattice that is isomorphic to an (n1 + 5)/2× (n2 + 5)/2
grid, and by QT

n1,n2 the graph induced by its T -neighborhood in the lattice.

Lemma 5.21. Let 5 ≤ n1, n2 be odd integers, and let Gn1,n2 be the graph defined in Definition 5.18.
Let T = ⌊min(n1,n2)−5

4 ⌋. There exists a subgraph cover {G(i)
n1,n2}i∈[4] of Gn1,n2 such that the following

statements hold:

(i) The chromatic number of Gn1,n2 [NT (G(i)
n1,n2)] is 2 for i ∈ [4];

(ii) Gn1,n2 [NT (G(i)
n1,n2)] is isomorphic to QT

n1,n2;

(iii) For each v ∈ V (Gn1,n2), there exists i ∈ [4] such that N1(v) ⊆ V (G(i)
n1,n2).

Proof. Observe that claim (ii) implies claim (i): hence, we prove claim (ii). Consider the graph
Hn1,n2 used to construct the KB-gadget in Definition 5.18. Let V1 be the set of nodes (i, j) of Hn1,n2

respecting the following property

V1 : i ∈
[
0 : n1 + 1

2

]
∪ [n1 − 1 : n1], j ∈

[
0 : n2 + 1

2

]
or i ∈ [0 : 1] ∪

[
n1 − 1

2 : n1

]
, j ∈ [n2 − 1 : n2].

Similarly, we define V2, V3, V4 by the following properties

V2 : i ∈ [0 : 1] ∪
[
n1 − 1

2 : n1

]
, j ∈

[
0 : n2 − 1

2

]
or i ∈

[
0 : n1 + 1

2

]
∪ [n1 − 1 : n1], j ∈ [n2 − 1 : n2];

V3 : i ∈
[
0 : n1 + 1

2

]
∪ [n1 − 1 : n1], j ∈ [0 : 1] or i ∈ [0 : 1] ∪

[
n1 − 1

2 : n1

]
, j ∈

[
n2 − 1

2 : n2

]
;

V4 : i ∈ [0 : 1] ∪
[
n1 − 1

2 : n1

]
, j ∈ [0 : 1] or i ∈

[
0 : n1 + 1

2

]
∪ [n1 − 1 : n1], j ∈

[
n2 − 1

2 : n2

]
.

For an example of V1, V2 see Fig. 5. Then, define Si to be subset of V (Gn1,n2) induced by Vi after
applying the equivalence relation ∼V in V (Hn1,n2), and G

(i)
n1,n2 = Gn1,n2 [Si]. Notice that G(i)

n1,n2 is
isomorphic to Qn1,n2 for each i ∈ [4]. Furthermore, the T -view of G(i)

n1,n2 identifies in Hn1,n2 four
graphs that do not intersect, implying claim (ii). Claim (iii) is trivial.

Remark 6. The strange shape of the subgraph cover is needed for property (iii). However, the
analysis carries on by considering “simpler” subgraph covers which don’t meet property (iii) as
a valid coloring can be checked by looking at single edges, not necessarily entire neighborhoods.
Nevertheless, we choose to use the general result for LVLs (Theorem 5.7).

Lemma 5.21 implies that the family of grid graphs admits cheating graphs for the 3-coloring
graphs problem.

Corollary 5.22. Let N ≥ 1, n1, n2 ≥ 5N , and F be the family of all grids of size n1 × n2. There
exist a T = T (n1, n2), with

T = Θ
(1
N
·min(n1, n2)

)
,

such that F admits an (n1 · n2, 4, N, T)-cheating graph for the 3-coloring graph problem.

39

j

i0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(a) V1 (marked in yellow).

j

i0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

(b) V2 (marked in blue).

Figure 5: Two elements of the subgraph cover of the KB-gadget for n1 = n2 = 7. Nodes with
identical colors are identified. V3 and V4 can be obtained by symmetries.

40

Proof. Let M1 = ⌊n1
N ⌋ if ⌊n1

N ⌋ is odd, otherwise M1 = ⌊n1
N ⌋ − 1. Similarly, let M2 = ⌊n2

N ⌋ if ⌊n2
N ⌋

is odd, otherwise M2 = ⌊n2
N ⌋ − 1. Consider the graph GM1,M2 and the subgraph cover given by

Lemma 5.21. Property (i) of Definition 5.6 is clearly satisfied as X (GM1,M2) ≥ 4. Property (ii).(a)
is implied by Lemma 5.21 as the checking radius of the coloring problem is t = 1. Consider
now a vertex v ∈ V (GM1,M2). Let us now prove property (ii).(b). Consider the subgraph family
{G(i)

M1,M2
}i∈[4] given by Lemma 5.21: then, T = ⌊1

4 · (min(M1,M2) − 5)⌋. Consider any choice of
indices xN ∈ [4]N . Notice that GM1,M2 [NT (G(i)

M1,M2
)] is isomorphic to QT

M1,M2
which is, in turn,

isomorphic to a proper subgraph of an M1 ×M2-grid. Hence, it is always possible to construct an
n1 × n2 grid which respects property (ii).(b) of Definition 5.6. The thesis follows by observing that
T ≥ 1

4N ·min(n1, n2)− 3.

Theorem 1.4. Let ε ∈ (0, 3
4) and N = ⌈log(ε−1)/ log(4

3)⌉. Let n1, n2 ∈ N with ⌊n1
N ⌋ ≥ 5 and ⌊n2

N ⌋ ≥
5. Suppose A is an NS-LOCAL algorithm that 3-colors n1 × n2 grids with probability q > ε. Then,
the running time of A is at least

T = Ω
(min(n1, n2)

log ε−1

)
.

Proof. By Corollary 5.22, there exists a T = Θ
(

1
N ·min(n1, n2)

)
such that the family F of n×m

grids admits an (n1 ·n2, 4, N, T)-cheating graph for the problem of 3-coloring graphs. Suppose there
is an outcome O with locality T that 3-colors n1×n2 grids. By Theorem 5.7 and the choice of N ,the
probability of O solving the problem on an n1×n2-grid is at most ε. Hence, T = Ω

(
min(n1,n2)

log 1
ε

)
.

5.5 No quantum advantage for c-coloring trees

Linial [49] showed that c-coloring trees requires time Ω(logc n) in the classical setting. In this section
we prove that the problem has roughly the same complexity in the NS-LOCAL model, by combining
our lower bound technique (Theorem 5.7) and the same graph-theoretical argument used in [49].

For any graph G, we define the girth of G to be the length of the shortest cycle contained in
G; if G contains no cycle, then its girth is infinite. We denote the girth of a graph G by girth(G).
By diam(G) we denote the diameter of the graph G, i.e., the quantity maxu,v∈V (G) distG(u, v). The
argument followed by Linial uses the following graph-theoretical result.

Lemma 5.23 (Ramanujan graphs, [52]). Let p, q be two primes that are congruent to 1 modulo
4. If p (mod q) is a perfect square, there exists a d-regular graph G on n = q(q2 − 1) nodes with
d = p+ 1, which satisfies the following properties:

1. girth(G) > 2 logp q;

2. diam(G) ≤ 2(logp n+ logp 2) + 1;

3. X (G) ≥ 1
2
√
d.

We make use of a result in number theory.

Lemma 5.24 (Dirichlet’s theorem on arithmetic progressions). Let a, d two coprime positive integers.
There are infinitely many primes p of the form p = dm+ a for some integer m ≥ 0.

We use the above result to prove the following.

Corollary 5.25. The following statements hold:

41

1. There exists a constant λ such that, for each n ≥ 1, there is a prime p ∈ [n + 1 : (1 + λ)n]
such that p ≡ 1 (mod 4);

2. If p is a prime such that p ≡ 1 (mod 4), there exist infinitely many primes q such that q ≡ 1
(mod 4) and p (mod q) is a non-zero perfect square;

Proof. For the first result, we follow the same approach of [64]. Let a ∈ N, b ∈ N+. Consider the
arithmetic progression defined by sn = a+ bn, for n ≥ 1. Let

πa,b(x) = |{p | p ≤ x, p is prime, p ≡ a (mod b)}|.

By the prime number theorem for arithmetic progression, we know that

lim
n→+∞

πa,b(n)
n

φ(b) log n

= 1,

where φ(x) is the Euler’s totient function. Let now

ρa,b(n) = |{k ≤ n | sk is prime}|.

It holds that ρa,b(n) = πa,b(a+ bn)− πa,b(a). Then,

lim
n→+∞

ρa,b(n)
a+bn

φ(b) log(a+bn) − πa,b(a)
= lim

n→+∞

ρa,b(n)
bn

φ(b) log(bn)
= 1.

Let λ > 0 be any constant: then,

lim
x→+∞

ρa,b((1 + λ)x)− ρa,b(x) = +∞.

Define nλ to be the smallest natural number such that ρa,b((1 + λ)n)− ρa,b(n) > 0 for all n ≥ nλ.
Notice that the function λ 7→ nλ is monotone non-increasing and tends to (actually, reaches) 1 as λ
tends to +∞: by choosing λ large enough, one obtains nλ = 1. Hence, there is a value λ = λ(a, b)
such that, for each n ≥ 1, there is a prime p ∈ [n+ 1 : (1 + λ)n] that is congruent to a modulo b.
Setting a = 1, b = 4 yields the thesis.

Let us focus on the second claim: we use the same approach as in [53]. By the law of quadratic
reciprocity [38, Theorem 98], p (mod q) is a perfect square if and only if q (mod p) is a perfect
square. Consider the arithmetic progression 1 + m(4p) for m ≥ 1. By Lemma 5.24,there exist
infinitely many m such that 1 + 4pm is a prime. Set q = 1 + 4pm. Now, q ≡ 1 (mod 4) and q ≡ 1
(mod p), which implies that p ≡ 1 (mod q).

Through Lemma 5.23 and Corollary 5.25, we can show that the family of trees admits a cheating
graph for the c-coloring problem.

Lemma 5.26. Let c ≥ 2 be an integer. For every N ≥ 1 and infinitely many n ∈ N, there exists a
value

T = Θ
(

logc

n

N

)
such that the family F of all trees of size n of height at most 2T + 3 admits an (n, k = n/N,N, T)-
cheating graph for the c-coloring problem.

42

Proof. Let p be the smallest prime congruent to 1 modulo 4 such that 1
2
√
p+ 1 > c. Lemma 5.23

and Corollary 5.25 imply that there are infinitely many q such that there is a (p + 1)-regular
graph Gp,q on q(q2 − 1)/2 nodes that respect properties Lemma 5.23.(1) to (3). Choose any q
that is at least p2 (notice that this choice is a proof’s artifact—smaller values of q work too).
Clearly, Gp,q is not c-colorable as X (Gp,q) ≥ 1

2
√
p+ 1 > c. Let d = p + 1, k = q(q2 − 1)/2.

The subgraph cover we consider is {Gp,q[N1(v)]}v∈V (Gp,q): we enumerate such subgraphs by G1 =
Gp,q[N1(v1)], . . . , Gk = Gp,q[N1(vk)]. Let T = ⌊logp q⌋−1: notice that T ∈ [1

3 logd(k)−1 : logd(k−1)].
As 2T + 2 < girth(Gp,q), then Gp,q[NT (Gi)] is a d-regular tree of height T + 1 and, hence, is 2-
colorable. Furthermore, if Gp,q[NT (Gi)] is rooted in vi, it has dT +1 ≥ k

1
3 leaves at distance T + 1

from vi. Let xN ∈ [k]N . Then, one can always take a tree HxN on n = kN nodes of height at most
2T + 3 such that it contains a subgraph whose T -neighborhood is isomorphic to the disjoint union
⊔i∈[N]Gp,q[NT (Gxi)]. Notice that k = n/N , hence T = Θ(logd n/N). The thesis follows by observing
that Corollary 5.25 implies p ≤ (1 + λ)c2 for some constant λ, hence c2 ≤ d = (1 + λ)c2.

Now we are ready to state our final result.

Theorem 1.5. Let c ≥ 2 be an integer, and ε ∈ (0, 1). Suppose A is an NS-LOCAL algorithm that
c-colors trees of size n ∈ N with probability q > ε. Then, for infinitely many n, as long as ε > e−n,
the running time of A is at least

T = Ω
(
logc n− logc log ε−1).

Proof. By contradiction, assume
T = Θ(logc k)

as given by Lemma 5.26, with n = Nk. Let N = k log 1
ε (hence, k ∼

√
n/ log ε−1). By Lemma 5.26

and Theorem 5.7, there exists a tree H on n nodes and height at most 2T + 3 such that the success
probability of any outcome O with locality T on H is at most(

1− 1
k

)N

≤ e− N
k ≤ ε.

Acknowledgments
We would like to thank Dennis Olivetti for pointing out the work by Bogdanov [16] on highly
chromatic graphs with small local chromatic number. We are grateful to Sebastian Brandt and
Michele Pernice for investigating and contributing to the understanding of topological properties of
some structures used in preliminary versions of our results. Furthermore, we thank Sameep Dahal
for helping dealing with dependencies arisen in the lower bound technique for the non-signaling
model, and we thank Darya Melnyk, Shreyas Pai, Chetan Gupta, Alkida Balliu, Amirreza Akbari,
Yannic Maus, and all participants of the Distributed Graph Algorithms Workshop (February 2023,
Freiburg, Germany) for the helpful discussions during the long development of this work. We
are also thankful to Armin Biere, Austin Buchanan, Bill Cook, Stefano Gualandi, and Bernardo
Subercaseaux for discussions and advice related to our computational investigations of local and
global chromatic numbers. We also thank Elie Wolfe, Harry Buhrman and Paolo Perinotti for
helpful discussions on the relation between the non-signaling LOCAL model and physical principles.
We made use of e.g. Plingeling [15], Treengeling [15], Gimsatul [31], MapleSAT [48], and PySAT [41]
in our computational experiments, and we also wish to acknowledge CSC – IT Center for Science,
Finland, for computational resources.

43

This work was supported in part by the Research Council of Finland, Grant 333837 and by
the German Research Foundation (DFG), Grant 491819048. François Le Gall was supported
by JSPS KAKENHI grants Nos. JP20H05966, JP20H04139 and MEXT Q-LEAP grant No. JP-
MXS0120319794. Augusto Modanese is supported by the Helsinki Institute of Information Tech-
nology (HIIT). Marc-Olivier Renou was supported by INRIA in the Action Exploratoire project
DEPARTURE. Xavier Coiteux-Roy was supported by a Postdoc.Mobility fellowship from the Swiss
National Science Foundation (SNSF).

References
[1] Pierre Aboulker, Marthe Bonamy, Nicolas Bousquet, and Louis Esperet. “Distributed Coloring

in Sparse Graphs with Fewer Colors.” In: The Electronic Journal of Combinatorics 26.4 (2019),
p. 4. doi: 10.37236/8395.

[2] Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka
Suomela. “Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms.” In:
50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July
10-14, 2023, Paderborn, Germany. Ed. by Kousha Etessami, Uriel Feige, and Gabriele Puppis.
Vol. 261. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 10:1–10:20. doi:
10.4230/LIPIcs.ICALP.2023.10.

[3] Noga Alon and Omri Ben-Eliezer. “Local and global colorability of graphs.” In: Discrete
Mathematics 339.2 (2016), pp. 428–442. doi: 10.1016/j.disc.2015.09.006.

[4] Joran van Apeldoorn and Tijn de Vos. “A Framework for Distributed Quantum Queries in the
CONGEST Model.” In: PODC ’22: ACM Symposium on Principles of Distributed Computing,
Salerno, Italy, July 25 - 29, 2022. Ed. by Alessia Milani and Philipp Woelfel. ACM, 2022,
pp. 109–119. doi: 10.1145/3519270.3538413.

[5] Dan Archdeacon, Joan P. Hutchinson, Atsuhiro Nakamoto, Seiya Negami, and Katsuhiro Ota.
“Chromatic numbers of quadrangulations on closed surfaces.” In: Journal of Graph Theory
37.2 (2001), pp. 100–114. doi: 10.1002/jgt.1005.

[6] Heger Arfaoui and Pierre Fraigniaud. “What can be computed without communications?” In:
SIGACT News 45.3 (2014), pp. 82–104. doi: 10.1145/2670418.2670440.

[7] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. “Network
Decomposition and Locality in Distributed Computation.” In: 30th Annual Symposium on
Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October
- 1 November 1989. IEEE Computer Society, 1989, pp. 364–369. doi: 10.1109/SFCS.1989.
63504.

[8] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. “Lower Bounds for Maximal Matchings and Maximal Independent Sets.” In: 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019. Ed. by David Zuckerman. IEEE Computer Society,
2019, pp. 481–497. doi: 10.1109/FOCS.2019.00037.

[9] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. “Almost Global Prob-
lems in the LOCAL Model.” In: 32nd International Symposium on Distributed Computing,
DISC 2018, New Orleans, LA, USA, October 15-19, 2018. Ed. by Ulrich Schmid and Josef
Widder. Vol. 121. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 9:1–9:16.
doi: 10.4230/LIPIcs.DISC.2018.9.

44

https://doi.org/10.37236/8395
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://doi.org/10.1016/j.disc.2015.09.006
https://doi.org/10.1145/3519270.3538413
https://doi.org/10.1002/jgt.1005
https://doi.org/10.1145/2670418.2670440
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/SFCS.1989.63504
https://doi.org/10.1109/FOCS.2019.00037
https://doi.org/10.4230/LIPIcs.DISC.2018.9

[10] Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela. “How much does
randomness help with locally checkable problems?” In: PODC ’20: ACM Symposium on
Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020. Ed. by Yuval
Emek and Christian Cachin. ACM, 2020, pp. 299–308. doi: 10.1145/3382734.3405715.

[11] Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and
Jukka Suomela. “New classes of distributed time complexity.” In: Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018. Ed. by Ilias Diakonikolas, David Kempe, and Monika Henzinger.
ACM, 2018, pp. 1307–1318. doi: 10.1145/3188745.3188860.

[12] Leonid Barenboim. “On the Locality of Some NP-Complete Problems.” In: Automata, Lan-
guages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July
9-13, 2012, Proceedings, Part II. Ed. by Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and
Roger Wattenhofer. Vol. 7392. Lecture Notes in Computer Science. Springer, 2012, pp. 403–415.
doi: 10.1007/978-3-642-31585-5_37.

[13] Leonid Barenboim, Michael Elkin, and Cyril Gavoille. “A fast network-decomposition algorithm
and its applications to constant-time distributed computation.” In: Theoretical Computer
Science 751 (2018), pp. 2–23. doi: 10.1016/j.tcs.2016.07.005.

[14] S. L. Berlov and I. I. Bogdanov. “On graphs with a large chromatic number that contain
no small odd cycles.” In: Journal of Mathematical Sciences 184.5 (2012), pp. 573–578. doi:
10.1007/s10958-012-0882-4.

[15] Armin Biere. “CaDiCaL, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Compe-
tition 2017.” In: Proc. of SAT Competition 2017 – Solver and Benchmark Descriptions. Ed. by
Tomáš Balyo, Marijn Heule, and Matti Järvisalo. Vol. B-2017-1. Department of Computer
Science Series of Publications B. University of Helsinki, 2017, pp. 14–15.

[16] Ilya I. Bogdanov. “Examples of topologically highly chromatic graphs with locally small
chromatic number.” In: CoRR abs/1311.2844 (2013). doi: 10.48550/arXiv.1311.2844.

[17] Ilya I. Bogdanov. “Number of vertices in graphs with locally small chromatic number and
large chromatic number.” In: CoRR abs/1401.8086 (2014). doi: 10.48550/arXiv.1401.8086.

[18] Sebastian Brandt. “An Automatic Speedup Theorem for Distributed Problems.” In: Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019. Ed. by Peter Robinson and Faith Ellen. ACM, 2019,
pp. 379–388. doi: 10.1145/3293611.3331611.

[19] Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel
Rybicki, Jukka Suomela, and Jara Uitto. “A lower bound for the distributed Lovász local
lemma.” In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016. Ed. by Daniel Wichs and Yishay
Mansour. ACM, 2016, pp. 479–488. doi: 10.1145/2897518.2897570.

[20] Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J.
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemyslaw Uznanski.
“LCL Problems on Grids.” In: Proceedings of the ACM Symposium on Principles of Distributed
Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017. Ed. by Elad Michael Schiller
and Alexander A. Schwarzmann. ACM, 2017, pp. 101–110. doi: 10.1145/3087801.3087833.

45

https://doi.org/10.1145/3382734.3405715
https://doi.org/10.1145/3188745.3188860
https://doi.org/10.1007/978-3-642-31585-5_37
https://doi.org/10.1016/j.tcs.2016.07.005
https://doi.org/10.1007/s10958-012-0882-4
https://doi.org/10.48550/arXiv.1311.2844
https://doi.org/10.48550/arXiv.1401.8086
https://doi.org/10.1145/3293611.3331611
https://doi.org/10.1145/2897518.2897570
https://doi.org/10.1145/3087801.3087833

[21] Keren Censor-Hillel, Orr Fischer, François Le Gall, Dean Leitersdorf, and Rotem Oshman.
“Quantum Distributed Algorithms for Detection of Cliques.” In: 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA,
USA. Ed. by Mark Braverman. Vol. 215. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 35:1–35:25. doi: 10.4230/LIPIcs.ITCS.2022.35.

[22] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. “An Exponential Separation between
Randomized and Deterministic Complexity in the LOCAL Model.” In: IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA. Ed. by Irit Dinur. IEEE Computer Society, 2016,
pp. 615–624. doi: 10.1109/FOCS.2016.72.

[23] Yi-Jun Chang and Zeyong Li. “The Complexity of Distributed Approximation of Packing
and Covering Integer Linear Programs.” In: Proceedings of the 2023 ACM Symposium on
Principles of Distributed Computing, PODC 2023, Orlando, FL, USA, June 19-23, 2023.
Ed. by Rotem Oshman, Alexandre Nolin, Magnús M. Halldórsson, and Alkida Balliu. ACM,
2023, pp. 32–43. doi: 10.1145/3583668.3594562.

[24] Yi-Jun Chang and Seth Pettie. “A Time Hierarchy Theorem for the LOCAL Model.” In: SIAM
Journal on Computing 48.1 (2019), pp. 33–69. doi: 10.1137/17M1157957.

[25] Giacomo Mauro D’Ariano, Giulio Chiribella, and Paolo Perinotti. Quantum Theory from First
Principles: An Informational Approach. Cambridge University Press, 2017. doi: 10.1017/
9781107338340.

[26] Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. “On the locality of distributed
sparse spanner construction.” In: Proceedings of the Twenty-Seventh Annual ACM Symposium
on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August 18-21, 2008.
Ed. by Rida A. Bazzi and Boaz Patt-Shamir. ACM, 2008, pp. 273–282. doi: 10.1145/1400751.
1400788.

[27] Michael Elkin, Hartmut Klauck, Danupon Nanongkai, and Gopal Pandurangan. “Can quantum
communication speed up distributed computation?” In: ACM Symposium on Principles of
Distributed Computing, PODC ’14, Paris, France, July 15-18, 2014. Ed. by Magnús M.
Halldórsson and Shlomi Dolev. ACM, 2014, pp. 166–175. doi: 10.1145/2611462.2611488.

[28] P. Erdös. “Graph Theory and Probability.” In: Canadian Journal of Mathematics 11 (1959),
pp. 34–38. doi: 10.4153/CJM-1959-003-9.

[29] Paul Erdös, Zoltán Füredi, András Hajnal, Péter Komjáth, Vojtech Rödl, and Ákos Seress.
“Coloring graphs with locally few colors.” In: Discrete Mathematics 59.1-2 (1986), pp. 21–34.
doi: 10.1016/0012-365X(86)90065-8.

[30] Manuela Fischer and Mohsen Ghaffari. “Sublogarithmic Distributed Algorithms for Lovász
Local Lemma, and the Complexity Hierarchy.” In: 31st International Symposium on Distributed
Computing, DISC 2017, October 16-20, 2017, Vienna, Austria. Ed. by Andréa W. Richa.
Vol. 91. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 18:1–18:16. doi:
10.4230/LIPIcs.DISC.2017.18.

[31] Mathias Fleury and Armin Biere. “Scalable Proof Producing Multi-Threaded SAT Solving
with Gimsatul through Sharing instead of Copying Clauses.” In: CoRR abs/2207.13577 (2022).
doi: 10.48550/arXiv.2207.13577.

[32] Cyril Gavoille, Ralf Klasing, Adrian Kosowski, Lukasz Kuszner, and Alfredo Navarra. “On
the complexity of distributed graph coloring with local minimality constraints.” In: Networks
54.1 (2009), pp. 12–19. doi: 10.1002/net.20293.

46

https://doi.org/10.4230/LIPIcs.ITCS.2022.35
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1145/3583668.3594562
https://doi.org/10.1137/17M1157957
https://doi.org/10.1017/9781107338340
https://doi.org/10.1017/9781107338340
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1145/2611462.2611488
https://doi.org/10.4153/CJM-1959-003-9
https://doi.org/10.1016/0012-365X(86)90065-8
https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.48550/arXiv.2207.13577
https://doi.org/10.1002/net.20293

[33] Cyril Gavoille, Adrian Kosowski, and Marcin Markiewicz. “What Can Be Observed Locally?”
In: Distributed Computing, 23rd International Symposium, DISC 2009, Elche, Spain, September
23-25, 2009. Proceedings. Ed. by Idit Keidar. Vol. 5805. Lecture Notes in Computer Science.
Springer, 2009, pp. 243–257. doi: 10.1007/978-3-642-04355-0_26.

[34] Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav Rozhon.
“Improved Distributed Network Decomposition, Hitting Sets, and Spanners, via Derandom-
ization.” In: Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023. Ed. by Nikhil Bansal and Viswanath Nagarajan.
SIAM, 2023, pp. 2532–2566. doi: 10.1137/1.9781611977554.ch97.

[35] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. “On Derandomizing Local Distributed
Algorithms.” In: 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018. Ed. by Mikkel Thorup. IEEE Computer Society, 2018,
pp. 662–673. doi: 10.1109/FOCS.2018.00069.

[36] Mohsen Ghaffari and Hsin-Hao Su. “Distributed Degree Splitting, Edge Coloring, and Orien-
tations.” In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. Ed. by Philip N.
Klein. SIAM, 2017, pp. 2505–2523. doi: 10.1137/1.9781611974782.166.

[37] András Gyárfás, Tommy Jensen, and Michael Stiebitz. “On graphs with strongly independent
color-classes.” In: Journal of Graph Theory 46.1 (2004), pp. 1–14. doi: 10.1002/jgt.10165.

[38] Godfrey H. Hardy, Edward M. Wright, and Joseph H. Silverman. An introduction to the
theory of numbers. Ed. by D. R. Heath-Brown. Sixth Edition. Oxford Mathematics. Oxford
University Press, 2008. isbn: 978-0-19-921986-5.

[39] Alexander E. Holroyd, Tom Hutchcroft, and Avi Levy. “Finitely dependent cycle coloring.” In:
Electronic Communications in Probability 23 (2018), pp. 1–12. doi: 10.1214/18-ECP118.

[40] Alexander E. Holroyd and Thomas M. Liggett. “Finitely dependent coloring.” In: Forum of
Mathematics, Pi 4, e9 (2016). doi: 10.1017/fmp.2016.7.

[41] Alexey Ignatiev, António Morgado, and João Marques-Silva. “PySAT: A Python Toolkit
for Prototyping with SAT Oracles.” In: Theory and Applications of Satisfiability Testing -
SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings. Ed. by Olaf Beyersdorff
and Christoph M. Wintersteiger. Vol. 10929. Lecture Notes in Computer Science. Springer,
2018, pp. 428–437. doi: 10.1007/978-3-319-94144-8_26.

[42] Taisuke Izumi and François Le Gall. “Quantum Distributed Algorithm for the All-Pairs
Shortest Path Problem in the CONGEST-CLIQUE Model.” In: Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada, July
29 - August 2, 2019. Ed. by Peter Robinson and Faith Ellen. ACM, 2019, pp. 84–93. doi:
10.1145/3293611.3331628.

[43] Taisuke Izumi, François Le Gall, and Frédéric Magniez. “Quantum Distributed Algorithm for
Triangle Finding in the CONGEST Model.” In: 37th International Symposium on Theoretical
Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France. Ed. by
Christophe Paul and Markus Bläser. Vol. 154. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2020, 23:1–23:13. doi: 10.4230/LIPIcs.STACS.2020.23.

[44] Henry A. Kierstead, Endre Szemerédi, and William T. Trotter. “On coloring graphs with
locally small chromatic number.” In: Combinatorica 4.2 (1984), pp. 183–185. doi: 10.1007/
BF02579219.

47

https://doi.org/10.1007/978-3-642-04355-0_26
https://doi.org/10.1137/1.9781611977554.ch97
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1137/1.9781611974782.166
https://doi.org/10.1002/jgt.10165
https://doi.org/10.1214/18-ECP118
https://doi.org/10.1017/fmp.2016.7
https://doi.org/10.1007/978-3-319-94144-8_26
https://doi.org/10.1145/3293611.3331628
https://doi.org/10.4230/LIPIcs.STACS.2020.23
https://doi.org/10.1007/BF02579219
https://doi.org/10.1007/BF02579219

[45] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. “What cannot be computed
locally!” In: Proceedings of the Twenty-Third Annual ACM Symposium on Principles of
Distributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004.
Ed. by Soma Chaudhuri and Shay Kutten. ACM, 2004, pp. 300–309. doi: 10.1145/1011767.
1011811.

[46] François Le Gall and Frédéric Magniez. “Sublinear-Time Quantum Computation of the
Diameter in CONGEST Networks.” In: Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC 2018, Egham, United Kingdom, July 23-27, 2018. Ed. by
Calvin Newport and Idit Keidar. ACM, 2018, pp. 337–346. doi: 10.1145/3212734.3212744.

[47] François Le Gall, Harumichi Nishimura, and Ansis Rosmanis. “Quantum Advantage for the
LOCAL Model in Distributed Computing.” In: 36th International Symposium on Theoretical
Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany. Ed. by
Rolf Niedermeier and Christophe Paul. Vol. 126. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019, 49:1–49:14. doi: 10.4230/LIPIcs.STACS.2019.49.

[48] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. “Learning Rate Based
Branching Heuristic for SAT Solvers.” In: Theory and Applications of Satisfiability Testing -
SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings.
Ed. by Nadia Creignou and Daniel Le Berre. Vol. 9710. Lecture Notes in Computer Science.
Springer, 2016, pp. 123–140. doi: 10.1007/978-3-319-40970-2_9.

[49] Nathan Linial. “Locality in Distributed Graph Algorithms.” In: SIAM Journal on Computing
21.1 (1992), pp. 193–201. doi: 10.1137/0221015.

[50] Nathan Linial and Michael E. Saks. “Low diameter graph decompositions.” In: Combinatorica
13.4 (1993), pp. 441–454. doi: 10.1007/BF01303516.

[51] László Lovász. “Kneser’s Conjecture, Chromatic Number, and Homotopy.” In: Journal of
Combinatorial Theory, Series A 25.3 (1978), pp. 319–324. doi: 10.1016/0097-3165(78)90022-
5.

[52] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. “Ramanujan graphs.” In: Combinatorica
8.3 (1988), pp. 261–277. doi: 10.1007/BF02126799.

[53] Arturo Magidin. Infinitely many primes q such that p is a quadratic residue modulo q.
Mathematics Stack Exchange. Mar. 6, 2023. url: https://math.stackexchange.com/
q/4653501.

[54] Frédéric Magniez and Ashwin Nayak. “Quantum Distributed Complexity of Set Disjointness
on a Line.” In: ACM Transactions on Computation Theory 14.1 (2022), 5:1–5:22. doi: 10.
1145/3512751.

[55] Ll. Masanes, A. Acin, and N. Gisin. “General properties of nonsignaling theories.” In: Physical
Review A 73.1, 012112 (2006). doi: 10.1103/PhysRevA.73.012112.

[56] Jiří Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combi-
natorics and Geometry. Springer, 2010. doi: 10.1007/978-3-540-76649-0.

[57] Gary L. Miller, Richard Peng, and Shen Chen Xu. “Parallel graph decompositions using
random shifts.” In: 25th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’13, Montreal, QC, Canada - July 23 - 25, 2013. Ed. by Guy E. Blelloch and Berthold
Vöcking. ACM, 2013, pp. 196–203. doi: 10.1145/2486159.2486180.

48

https://doi.org/10.1145/1011767.1011811
https://doi.org/10.1145/1011767.1011811
https://doi.org/10.1145/3212734.3212744
https://doi.org/10.4230/LIPIcs.STACS.2019.49
https://doi.org/10.1007/978-3-319-40970-2_9
https://doi.org/10.1137/0221015
https://doi.org/10.1007/BF01303516
https://doi.org/10.1016/0097-3165(78)90022-5
https://doi.org/10.1016/0097-3165(78)90022-5
https://doi.org/10.1007/BF02126799
https://math.stackexchange.com/q/4653501
https://math.stackexchange.com/q/4653501
https://doi.org/10.1145/3512751
https://doi.org/10.1145/3512751
https://doi.org/10.1103/PhysRevA.73.012112
https://doi.org/10.1007/978-3-540-76649-0
https://doi.org/10.1145/2486159.2486180

[58] Bojan Mohar and Paul D. Seymour. “Coloring Locally Bipartite Graphs on Surfaces.” In:
Journal of Combinatorial Theory, Series B 84.2 (2002), pp. 301–310. doi: 10.1006/jctb.
2001.2086.

[59] Bojan Mohar, Gábor Simonyi, and Gábor Tardos. “Local chromatic number of quadrangula-
tions of surfaces.” In: Combinatorica 33.4 (2013), pp. 467–495. doi: 10.1007/s00493-013-
2771-y.

[60] Moni Naor and Larry J. Stockmeyer. “What Can be Computed Locally?” In: SIAM Journal
on Computing 24.6 (1995), pp. 1259–1277. doi: 10.1137/S0097539793254571.

[61] Václav Rozhon and Mohsen Ghaffari. “Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization.” In: Proccedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020.
Ed. by Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy. ACM, 2020, pp. 350–363. doi: 10.1145/3357713.3384298.

[62] Michael Stiebitz. “Beiträge zur Theorie der färbungskritischen Graphen.” Habilitation. TH
Ilmenau, 1985.

[63] Jukka Suomela. Open problems related to locality in distributed graph algorithms. 2023. url:
https://jukkasuomela.fi/open/.

[64] Josué Tonelli-Cueto. Generalization of Bertrand’s Postulate. Mathematics Stack Exchange.
May 20, 2023. url: https://math.stackexchange.com/q/407073.

[65] ChengSheng Wang, Xudong Wu, and Penghui Yao. “Complexity of Eccentricities and All-Pairs
Shortest Paths in the Quantum CONGEST Model.” In: CoRR abs/2206.02766 (2022). doi:
10.48550/arXiv.2206.02766.

[66] W. K. Wootters and W. H. Zurek. “A single quantum cannot be cloned.” In: Nature
299.58865886 (1982), pp. 802–803. doi: 10.1038/299802a0.

[67] Xudong Wu and Penghui Yao. “Quantum Complexity of Weighted Diameter and Radius
in CONGEST Networks.” In: PODC ’22: ACM Symposium on Principles of Distributed
Computing, Salerno, Italy, July 25 - 29, 2022. Ed. by Alessia Milani and Philipp Woelfel.
ACM, 2022, pp. 120–130. doi: 10.1145/3519270.3538441.

49

https://doi.org/10.1006/jctb.2001.2086
https://doi.org/10.1006/jctb.2001.2086
https://doi.org/10.1007/s00493-013-2771-y
https://doi.org/10.1007/s00493-013-2771-y
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3357713.3384298
https://jukkasuomela.fi/open/
https://math.stackexchange.com/q/407073
https://doi.org/10.48550/arXiv.2206.02766
https://doi.org/10.1038/299802a0
https://doi.org/10.1145/3519270.3538441

	Introduction
	Main result
	Significance and motivation
	Contributions in more detail
	Classical upper bound (Section 4)
	Non-signaling model
	Non-signaling lower bounds (Section 5)

	Key new ideas and techniques
	Classical upper bound (Section 4)
	Non-signaling lower bounds (Section 5)
	Lower bound technique in more details

	Preliminaries
	New classical graph coloring algorithms
	The hiding trick
	Fast network decomposition
	Fast clustering
	Fast network decomposition from fast clustering

	New lower bounds in the non-signaling model
	Framework
	Lower bound technique
	Indistinguishability argument in the classical LOCAL model
	Indistinguishability argument in the NS-LOCAL model

	Lower bound for c-coloring 𝜒-chromatic graphs
	Remarks about the graph Gk
	On highly chromatic graphs with small local chromatic number

	No quantum advantage for 3-coloring grids
	No quantum advantage for c-coloring trees

