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Abstract—We present a simple 3-approximation algorithm for The performance of a local algorithm is measured by
minimum-weight dominating set and minimum-weight vertex comparing the size (or the weight, in the weighted version
cover in unit-disk graphs and quasi unit-disk graphs in which —f the proplem) of its output to that of the optimal solution.

each node knows its coordinates. The algorithm is local: the S ificallv. th t imati tioof th |
output of a node depends solely on the input within its constant- pecifically, the (worst-casegpproximation ratioof the al-

radius neighbourhood. The local horizon of the algorithm is small, gorithm is the supremum, over all problem instances, of the

both in the worst case and on average. ratio of the size of the solution produced by the algorithm to
the size of the optimal solution. Note that since the prolslem
|. INTRODUCTION that we consider are NP-hard, even in a centralised setting

only approximate solutions can be found in polynomial time
Data propagation in wireless and ad-hoc sensor networkfless P= NP).

is subject to link failures, interference, and delays. Itkew
gathering full information about a large-scale network imeo
place an unrealistic task, especially in a dynamic settihgrw A. Prior Work
the nodes may sporadically join and leave the network. This ) L
calls for designing algorithms whose output at each node ofS/"utia [3] presents a local, factor5 approximation al-

the network depends only on the local neighbourhood of ﬂggrlthm for dominating set in un't'd'SI.( grgphs. szzowmz
node — the so called “local” algorithms. et al. [4] present a local factdy approximation. Wiese and

Formally, an algorithm idocal if there is a constant such Kranakis [5] present a local approximation scheme, thaais,

that the decision of any node is a function the inputs at nodlggal (1 + ¢)-approximation algorithm for any > 0.

within - or fewer edges (hops) from the node: the constat There is a trivi'al, Io.cal_, factott 2 app_roximation. algorithm
called thelocal horizon(or locality distance) of the algorithm. for vertex cover in unit-disk graphs: pick all vertices [¢]].
In other words, a local algorithm is equal to a constant-tim&i€se and Kranakis [7] present a local approximation scheme
algorithm in Linial's [1] and Naor and Stockmeyer's [2] mdde In the context of the dominating set problem, Wiese and
we allow only » communication steps, but message size lsranakis [5] raise the question of what is the smallest lo-
unbounded and local computation is free. Unlike Linial ang@l horizonr with which we are able to achieve a given
Naor and Stockmeyer, we assume that each node knows@pProximation ratio. Thes-approximation algorithm [4] has
coordinates. local horizonr = 11. The local horizon of the approximation
We work in theunit-disk graphmodel where there is an Scheme [S] depends on the desired approximation ratio; for
edge (communication link) between two nodes whenever tR¥ample, to obtain a-approximation;” = 46814 is sufficient.
nodes are within distancé from each other. We consider There is related work on local algorithms beyond unit-
finding a minimum-weight dominating set and a minimun#lisk graphs as well. Kuhn and Wattenhofer [8] present a
weight vertex cover in unit-disk graphs. dominating sets a randomised local algorithm for bounded-degree graphs; the
subset of nodes such that every node is either in the set oglgorithm finds a dominating set with expected size at most
connected to one of the nodes in the setvektex covelis a & nontrivial constant factor times the optimum. Wiese and
subset of nodes such that every edge is incident to at least ##anakis [7] suggest to study local algorithms for vertexero
node in the cover. Finding dominating sets or vertex covérs and related problems in quasi unit-disk graphs [9].
small size allows one to group nodes or links of the network We emphasise that our definition of local algorithms re-
into “clusters”, with only one node in a cluster responsiblquires a strictly constant local horizon For example, the
for communication with the nodes in the cluster. This leads approximation scheme by Kuhn et al. [10] is not local in this
energy conservation and interference reduction. strict sense.



B. Contributions oo S R S

We present a simple, local, fact®approximation algorithm /11— — 1

for minimum-weight dominating set and minimum-weight —{3—13— 11

vertex cover in unit-disk graphs. The local horizonris= 83. 122 il

The algorithm also works in quasi unit-disk graphs for which ™ 11— 1¥ 1

we obtain the same approximation fact®r at the cost of 1313 o A [

having a larger local horizon. o | 22— =170
In addition to minimum-weight dominating set and vertese Iggigi* z | i o

cover, the same idea can be applied to various other coveriﬁrg P A SN L

problems. o o ! ‘
As with other local algorithms, a local change in network 2 units 4 units

topology affects our solution only locally — within at most
83 hops. In particular, if a dominator node leaves the network,
the nodes that were uniquely dominated by the dominator cﬁﬁi
resolve the problem in their (common) local neighbourhaod i
constant time (under the assumption that local computation
are free). Consider the graph induced by the nodes within an extended
The approximation factor of and the local horizom = 83  rectangle, as shown in Figure 1c. The obtained subgraph may
of our algorithm are due to the partitioning of the plane inteonsist of several connected components. The diametechf ea
2 x 4 rectangles of three colours, with same colour rectanglesnnected component is limited by a constant because the
sufficiently separated. Making the rectangles smaller @oushortest path between two nodes cannot be arbitrarily Ibitg i
require more colours to ensure separation, leading to aehiglies inside an extended rectangle (see Section V). Therdfer
approximation factor. On the other hand, making the red&ng connected component fits inside the radiuaeighbourhood
larger would result in a larger local horizon (while we wouldhf each of its nodes, if is chosen to be large enough.
still need3 colours, i.e., the approximation factor would not  Step 2, formulate the subproblem&ach connected com-
improve). ponent constitutes a subproblem which is solved locally by
its nodes. The nodes find a minimum-weight subset which

dominates all nodes inside the origirak 4 rectangle. Nodes

We present an algorithm for approximating the minimumtside the2 x 4 rectangle but inside the extended rectangle
weight dominating set. The input of a node consists of ign participate in dominating other nodes but do not need to
identifier, its coordinates, and the list of its neighbolEach pe gominated themselves.
node must decide, based only on input available withintallo  \we can assume that each node gathers full information
horizons, whether it participates in the solution. We priw&  apout its connected component and then applies a detetiminis
the constructed solution is a feasible dominating set asd Higorithm to compute the solution. Thus, all nodes of a

weight is at mosB times the optimum. connected component agree on which nodes constitute the
The algorithm divides the problem into subproblems basggka| solution.

on the locations of the nodes and solves the subproblems opti  gtep 3, combine the local solutionghe algorithm’s out-

mally. The algorithm’s solution is the union of the subpexil put is the set of nodes which have, at least once, particpate
solutions. in a local solution. This is a feasible dominating set: eaotien

~ Step 1, construct a plane subdivisioBivide the plane pejongs to exactly one x 4 rectangle and is thus dominated
into rectangles as shown in Figure la. The rectangles:Zarebdy a subproblem solution.

units wide andt units high. We can choose that the upper an
left borders (including the upper right corner) are part of a . MINIMUM -WEIGHT VERTEX COVER
rectangle but the lower and right borders (including thedow We apply the same idea for approximating the minimum-
left corner) are not. Each node knows its coordinates, sarit cweight vertex cover. Again, each node must decide, based on
calculate in which rectangle it is. local information, whether it participates in the solution

Each rectangle is assigned a colour (1, 2, or 3) as shown. Step 1, construct a plane subdivisiohe plane sub-
The colours are chosen so that rectangles having the sasiésion, extended rectangles, and connected componeats a
colour are not next to each other. constructed the same way as in Section Il

Then we construct “extended rectangles”, obtained from the Step 2, formulate the subproblemBach connected com-
2 x 4 rectangles by adding points whose distance from timwnent constitutes a subproblem which is solved locallyt®y i
rectangle is at most (see Figure 1b). Extended rectanglesodes. The nodes find a minimum-weight subset which covers
are round-corner rectangles of sizex 6. The extensions of all edges that have at least one endpoint inside the original
two rectangles with the same colour do not overlap. Eachtpoih x 4 rectangle. Edges whose both endpoints are inside the
in the plane belongs to at mo3textended rectangles, one forextended rectangle but not inside the original rectangée ar
each colour. not considered.

1. (a) Plane subdivision. (b) Extended rectanglesGfejph induced by
es within an extended rectangle, and its connected canpGh

II. MINIMUM-WEIGHT DOMINATING SET



Step 3, combine the local solutionghe algorithm’s solu- - 1.0
tion is the set of nodes which have, at least once, partieipat
in a local solution. The produced set is a feasible vertexecov
the endpoints of an edge lie inside one or w4 rectangles - 0.8

and the edge is covered in the subproblem solutions related t
those rectangles.
15 —
IV. APPROXIMATION GUARANTEE

meter

The approximation ratios for minimum-weight dominating.2
set and minimum-weight vertex cover are analysed the same 0 |
way. Consider a minimum-weight solutidn and letw(D) be
its weight. For each subproblem, intersection of the/3etnd
the extended rectangle provides a feasible solution. Ebtegn 5
rectangles of colour 1 do not overlap; therefore the totagive
of the optimal solutions of subproblems of colour 1 is at most
w(D). The same applies to subproblems of colour 2 and colour ¢
3. The algorithm’s solution is the union of the subproblem \ \ \ \ T
solutions and has weight at masi (D). 0 50 100 150 200

fraction of connected graphs

nodes
V. LOCAL HORIZON

| it-disk hs. the di t f ted Fﬁ% 2. Diameter of a connected component (solid lines, leift;eke thick
nunit-aisk grapns, the diameter of a connected COMPONGHL iq 1he average and the thin lines indicate 98 region), and the fraction

inside an extended rectangle is limited by a constant. To sg@etworks that consist of one connected component (daghedright axis).
this, consider two arbitrary nodes, and v, and the shortest
path between them. Take every second node on the path. Draw

disks of radius1/2 centred on these nodes. The disks are VI. RUNNING TIME
pairwise-disjoint, since otherwise the path would not be th Qur algorithm is local, in the strict sense that the output
shortest one. of a node depends solely on the input within its constant-

The centres of the disks lie inside 4ax 6 round-corner radius neighbourhood. In bounded-degree graphs, a loeal al
rectangle, and thus the disks themselves lie inside>a7 gorithm is a linear-time centralised algorithm as well: rthe
round-corner rectangle. The total area of the disks may rigta constant upper bound on the number of nodes in the
exceed the area of the rectangle. This means that no miyeal neighbourhood of each node, and therefore each local
than42 disks can be packed inside the rectangle, which impliggmputation can be performed in constant time. This is not
that the shortest path betweerandv can consist of at most the case if the degree of the graph is unbounded; a local
84 nodes (includingu and v), and hence the diameter of aalgorithm is not necessarily a polynomial-time centralise

connected component is at ma&st algorithm. Our simple local algorithm does not make obsylet
We conducted simulations to estimate the diameter in th&r example, Amiihl et al.’s [11] polynomial-time algorithm
average case as well. For each valuewet 1,2,...,200, we for approximating minimum-weight dominating set in unit-

ran 50000 experiments. In each experiment, we created a unlisk graphs.

disk graph by placing: nodes uniformly at random within  Nevertheless, if we focus amweighteddominating set and

a 4 x 6 rectangle. Then we computed the diameter of theertex cover, each subproblem in our algorithm can be solved
graph, taking the maximum over all connected componerits.polynomial time [12]. The nodes in the subproblem all lie
The results are reported in Figure 2. The thick solid line iwithin a constant-area region in the plane. For example, by a
the average value; the thin solid lines indicate the regi@h w packing argument, the cardinality of an independent setahas
99% of the values; and grey vertical bars show the full rangeonstant upper bound. A maximal independent set is a feasibl
of the values that we observed in the experiments. We newiminating set, and thus a minimum-size (but not minimum-
observed the diameter to be larger th2h As the number weight) dominating set can be found by a polynomial-time
of points grows, the diameter approactgsthe diameter of brute-force algorithm.

the rectangle. As a further confirmation of this, we reG0 In Sections Il and Ill, we assumed that each node solves
experiments for each value af = 1100,1200,...,10000; in the subproblem for its connected component. We can avoid
each of these cases, the diameter ®as redundant work at the expense of more communication as fol-

The dashed line in Figure 2 shows the fraction of graphs thatvs. Nodes in the connected component choose a leader. The
consisted of one connected component. Naturally all grapleader computes the optimal solution, and informs all nodes
are connected in the case= 1, and almost all graphs areof whether they patrticipate in the local solution. Gathgrin
connected for large values of, but for intermediate values,information and sending the results requires transferdata
most networks consist of several connected components. over the distance of at mo&t hops.



VII. QUASI UNIT-DISKk GRAPHS

Our approach can be applied dequasi unit-disk graphs [9]
for any 0 < d < 1. The two properties of unit-disk graphs
utilised by the algorithm are that (i) no edges longer than €
exist and (ii) the diameter of a connected component insidp]
an extended rectangle is limited. For a smallwe need a
larger local horizon, but we can still achieve the approxiora
ratio 3.
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