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Abstract—We present a simple 3-approximation algorithm for
minimum-weight dominating set and minimum-weight vertex
cover in unit-disk graphs and quasi unit-disk graphs in which
each node knows its coordinates. The algorithm is local: the
output of a node depends solely on the input within its constant-
radius neighbourhood. The local horizon of the algorithm is small,
both in the worst case and on average.

I. I NTRODUCTION

Data propagation in wireless and ad-hoc sensor networks
is subject to link failures, interference, and delays. It makes
gathering full information about a large-scale network in one
place an unrealistic task, especially in a dynamic setting when
the nodes may sporadically join and leave the network. This
calls for designing algorithms whose output at each node of
the network depends only on the local neighbourhood of the
node — the so called “local” algorithms.

Formally, an algorithm islocal if there is a constantr such
that the decision of any node is a function the inputs at nodes
within r or fewer edges (hops) from the node; the constantr is
called thelocal horizon(or locality distance) of the algorithm.
In other words, a local algorithm is equal to a constant-time
algorithm in Linial’s [1] and Naor and Stockmeyer’s [2] model:
we allow only r communication steps, but message size is
unbounded and local computation is free. Unlike Linial and
Naor and Stockmeyer, we assume that each node knows its
coordinates.

We work in theunit-disk graphmodel where there is an
edge (communication link) between two nodes whenever the
nodes are within distance1 from each other. We consider
finding a minimum-weight dominating set and a minimum-
weight vertex cover in unit-disk graphs. Adominating setis a
subset of nodes such that every node is either in the set or is
connected to one of the nodes in the set. Avertex coveris a
subset of nodes such that every edge is incident to at least one
node in the cover. Finding dominating sets or vertex covers of
small size allows one to group nodes or links of the network
into “clusters”, with only one node in a cluster responsible
for communication with the nodes in the cluster. This leads to
energy conservation and interference reduction.

The performance of a local algorithm is measured by
comparing the size (or the weight, in the weighted version
of the problem) of its output to that of the optimal solution.
Specifically, the (worst-case)approximation ratioof the al-
gorithm is the supremum, over all problem instances, of the
ratio of the size of the solution produced by the algorithm to
the size of the optimal solution. Note that since the problems
that we consider are NP-hard, even in a centralised setting
only approximate solutions can be found in polynomial time
(unless P= NP).

A. Prior Work

Urrutia [3] presents a local, factor15 approximation al-
gorithm for dominating set in unit-disk graphs. Czyzowicz
et al. [4] present a local factor5 approximation. Wiese and
Kranakis [5] present a local approximation scheme, that is,a
local (1 + ǫ)-approximation algorithm for anyǫ > 0.

There is a trivial, local, factor12 approximation algorithm
for vertex cover in unit-disk graphs: pick all vertices [6],[7].
Wiese and Kranakis [7] present a local approximation scheme.

In the context of the dominating set problem, Wiese and
Kranakis [5] raise the question of what is the smallest lo-
cal horizon r with which we are able to achieve a given
approximation ratio. The5-approximation algorithm [4] has
local horizonr = 11. The local horizon of the approximation
scheme [5] depends on the desired approximation ratio; for
example, to obtain a3-approximation,r = 46814 is sufficient.

There is related work on local algorithms beyond unit-
disk graphs as well. Kuhn and Wattenhofer [8] present a
randomised local algorithm for bounded-degree graphs; the
algorithm finds a dominating set with expected size at most
a nontrivial constant factor times the optimum. Wiese and
Kranakis [7] suggest to study local algorithms for vertex cover
and related problems in quasi unit-disk graphs [9].

We emphasise that our definition of local algorithms re-
quires a strictly constant local horizonr. For example, the
approximation scheme by Kuhn et al. [10] is not local in this
strict sense.



B. Contributions

We present a simple, local, factor3 approximation algorithm
for minimum-weight dominating set and minimum-weight
vertex cover in unit-disk graphs. The local horizon isr = 83.
The algorithm also works in quasi unit-disk graphs for which
we obtain the same approximation factor3, at the cost of
having a larger local horizon.

In addition to minimum-weight dominating set and vertex
cover, the same idea can be applied to various other covering
problems.

As with other local algorithms, a local change in network
topology affects our solution only locally — within at most
83 hops. In particular, if a dominator node leaves the network,
the nodes that were uniquely dominated by the dominator can
resolve the problem in their (common) local neighbourhood in
constant time (under the assumption that local computations
are free).

The approximation factor of3 and the local horizonr = 83
of our algorithm are due to the partitioning of the plane into
2× 4 rectangles of three colours, with same colour rectangles
sufficiently separated. Making the rectangles smaller would
require more colours to ensure separation, leading to a higher
approximation factor. On the other hand, making the rectangles
larger would result in a larger local horizon (while we would
still need3 colours, i.e., the approximation factor would not
improve).

II. M INIMUM -WEIGHT DOMINATING SET

We present an algorithm for approximating the minimum-
weight dominating set. The input of a node consists of its
identifier, its coordinates, and the list of its neighbours.Each
node must decide, based only on input available within its local
horizons, whether it participates in the solution. We provethat
the constructed solution is a feasible dominating set and its
weight is at most3 times the optimum.

The algorithm divides the problem into subproblems based
on the locations of the nodes and solves the subproblems opti-
mally. The algorithm’s solution is the union of the subproblem
solutions.

Step 1, construct a plane subdivision:Divide the plane
into rectangles as shown in Figure 1a. The rectangles are2
units wide and4 units high. We can choose that the upper and
left borders (including the upper right corner) are part of a
rectangle but the lower and right borders (including the lower
left corner) are not. Each node knows its coordinates, so it can
calculate in which rectangle it is.

Each rectangle is assigned a colour (1, 2, or 3) as shown.
The colours are chosen so that rectangles having the same
colour are not next to each other.

Then we construct “extended rectangles”, obtained from the
2 × 4 rectangles by adding points whose distance from the
rectangle is at most1 (see Figure 1b). Extended rectangles
are round-corner rectangles of size4 × 6. The extensions of
two rectangles with the same colour do not overlap. Each point
in the plane belongs to at most3 extended rectangles, one for
each colour.
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Fig. 1. (a) Plane subdivision. (b) Extended rectangles. (c)Graph induced by
nodes within an extended rectangle, and its connected component C.

Consider the graph induced by the nodes within an extended
rectangle, as shown in Figure 1c. The obtained subgraph may
consist of several connected components. The diameter of each
connected component is limited by a constant because the
shortest path between two nodes cannot be arbitrarily long if it
lies inside an extended rectangle (see Section V). Therefore the
connected component fits inside the radiusr neighbourhood
of each of its nodes, ifr is chosen to be large enough.

Step 2, formulate the subproblems:Each connected com-
ponent constitutes a subproblem which is solved locally by
its nodes. The nodes find a minimum-weight subset which
dominates all nodes inside the original2×4 rectangle. Nodes
outside the2 × 4 rectangle but inside the extended rectangle
can participate in dominating other nodes but do not need to
be dominated themselves.

We can assume that each node gathers full information
about its connected component and then applies a deterministic
algorithm to compute the solution. Thus, all nodes of a
connected component agree on which nodes constitute the
local solution.

Step 3, combine the local solutions:The algorithm’s out-
put is the set of nodes which have, at least once, participated
in a local solution. This is a feasible dominating set: each node
belongs to exactly one2 × 4 rectangle and is thus dominated
by a subproblem solution.

III. M INIMUM -WEIGHT VERTEX COVER

We apply the same idea for approximating the minimum-
weight vertex cover. Again, each node must decide, based on
local information, whether it participates in the solution.

Step 1, construct a plane subdivision:The plane sub-
division, extended rectangles, and connected components are
constructed the same way as in Section II.

Step 2, formulate the subproblems:Each connected com-
ponent constitutes a subproblem which is solved locally by its
nodes. The nodes find a minimum-weight subset which covers
all edges that have at least one endpoint inside the original
2 × 4 rectangle. Edges whose both endpoints are inside the
extended rectangle but not inside the original rectangle are
not considered.



Step 3, combine the local solutions:The algorithm’s solu-
tion is the set of nodes which have, at least once, participated
in a local solution. The produced set is a feasible vertex cover:
the endpoints of an edge lie inside one or two2×4 rectangles
and the edge is covered in the subproblem solutions related to
those rectangles.

IV. A PPROXIMATION GUARANTEE

The approximation ratios for minimum-weight dominating
set and minimum-weight vertex cover are analysed the same
way. Consider a minimum-weight solutionD and letw(D) be
its weight. For each subproblem, intersection of the setD and
the extended rectangle provides a feasible solution. Extended
rectangles of colour 1 do not overlap; therefore the total weight
of the optimal solutions of subproblems of colour 1 is at most
w(D). The same applies to subproblems of colour 2 and colour
3. The algorithm’s solution is the union of the subproblem
solutions and has weight at most3w(D).

V. L OCAL HORIZON

In unit-disk graphs, the diameter of a connected component
inside an extended rectangle is limited by a constant. To see
this, consider two arbitrary nodes,u and v, and the shortest
path between them. Take every second node on the path. Draw
disks of radius1/2 centred on these nodes. The disks are
pairwise-disjoint, since otherwise the path would not be the
shortest one.

The centres of the disks lie inside a4 × 6 round-corner
rectangle, and thus the disks themselves lie inside a5 × 7
round-corner rectangle. The total area of the disks may not
exceed the area of the rectangle. This means that no more
than42 disks can be packed inside the rectangle, which implies
that the shortest path betweenu andv can consist of at most
84 nodes (includingu and v), and hence the diameter of a
connected component is at most83.

We conducted simulations to estimate the diameter in the
average case as well. For each value ofn = 1, 2, . . . , 200, we
ran 50000 experiments. In each experiment, we created a unit
disk graph by placingn nodes uniformly at random within
a 4 × 6 rectangle. Then we computed the diameter of the
graph, taking the maximum over all connected components.
The results are reported in Figure 2. The thick solid line is
the average value; the thin solid lines indicate the region with
99% of the values; and grey vertical bars show the full range
of the values that we observed in the experiments. We never
observed the diameter to be larger than25. As the number
of points grows, the diameter approaches8, the diameter of
the rectangle. As a further confirmation of this, we ran100
experiments for each value ofn = 1100, 1200, . . . , 10000; in
each of these cases, the diameter was8.

The dashed line in Figure 2 shows the fraction of graphs that
consisted of one connected component. Naturally all graphs
are connected in the casen = 1, and almost all graphs are
connected for large values ofn, but for intermediate values,
most networks consist of several connected components.
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Fig. 2. Diameter of a connected component (solid lines, left axis; the thick
line is the average and the thin lines indicate the99% region), and the fraction
of networks that consist of one connected component (dashed line, right axis).

VI. RUNNING TIME

Our algorithm is local, in the strict sense that the output
of a node depends solely on the input within its constant-
radius neighbourhood. In bounded-degree graphs, a local al-
gorithm is a linear-time centralised algorithm as well: there
is a constant upper bound on the number of nodes in the
local neighbourhood of each node, and therefore each local
computation can be performed in constant time. This is not
the case if the degree of the graph is unbounded; a local
algorithm is not necessarily a polynomial-time centralised
algorithm. Our simple local algorithm does not make obsolete,
for example, Amb̈uhl et al.’s [11] polynomial-time algorithm
for approximating minimum-weight dominating set in unit-
disk graphs.

Nevertheless, if we focus onunweighteddominating set and
vertex cover, each subproblem in our algorithm can be solved
in polynomial time [12]. The nodes in the subproblem all lie
within a constant-area region in the plane. For example, by a
packing argument, the cardinality of an independent set hasa
constant upper bound. A maximal independent set is a feasible
dominating set, and thus a minimum-size (but not minimum-
weight) dominating set can be found by a polynomial-time
brute-force algorithm.

In Sections II and III, we assumed that each node solves
the subproblem for its connected component. We can avoid
redundant work at the expense of more communication as fol-
lows. Nodes in the connected component choose a leader. The
leader computes the optimal solution, and informs all nodes
of whether they participate in the local solution. Gathering
information and sending the results requires transferringdata
over the distance of at most2r hops.



VII. QUASI UNIT-DISK GRAPHS

Our approach can be applied tod-quasi unit-disk graphs [9]
for any 0 < d ≤ 1. The two properties of unit-disk graphs
utilised by the algorithm are that (i) no edges longer than 1
exist and (ii) the diameter of a connected component inside
an extended rectangle is limited. For a smalld, we need a
larger local horizon, but we can still achieve the approximation
ratio 3.
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