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Abstract
The randomized online-LOCAL model captures a number of models of computing; it is at least as
strong as all of these models:

the classical LOCAL model of distributed graph algorithms,
the quantum version of the LOCAL model,
finitely dependent distributions [e.g. Holroyd 2016],
any model that does not violate physical causality [Gavoille, Kosowski, Markiewicz, DICS 2009],
the SLOCAL model [Ghaffari, Kuhn, Maus, STOC 2017], and
the dynamic-LOCAL and online-LOCAL models [Akbari et al., ICALP 2023].

In general, the online-LOCAL model can be much stronger than the LOCAL model. For example,
there are locally checkable labeling problems (LCLs) that can be solved with logarithmic locality in
the online-LOCAL model but that require polynomial locality in the LOCAL model.

However, in this work we show that in trees, many classes of LCL problems have the same
locality in deterministic LOCAL and randomized online-LOCAL (and as a corollary across all the
above-mentioned models). In particular, these classes of problems do not admit any distributed
quantum advantage.

We present a near-complete classification for the case of rooted regular trees. We also fully classify
the super-logarithmic region in unrooted regular trees. Finally, we show that in general trees (rooted
or unrooted, possibly irregular, possibly with input labels) problems that are global in deterministic
LOCAL remain global also in the randomized online-LOCAL model.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Distributed algorithms, quantum-LOCAL model, randomized online-LOCAL
model, locally checkable labeling problems, trees

1 Introduction

The randomized online-LOCAL model was recently introduced in [1]; this is a model of
computing that is at least as strong as many other models that have been widely studied in
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Figure 1 Landscape of models, based on [1]. In this work we show that for many families of
LCL problems, the two extreme models—deterministic LOCAL and randomized online-LOCAL—are
equally strong, and hence the same holds for all intermediate models in this diagram.

the theory of distributed computing, as well as a number of emerging models; see Figure 1.
In particular, different variants of the quantum-LOCAL and SLOCAL models are sandwiched
between the classical deterministic LOCAL model and the randomized online-LOCAL model.

While the randomized online-LOCAL model is in general much stronger than the de-
terministic LOCAL model, in this work we show that in trees, for many families of local
problems these two models (and hence all models in between) are asymptotically equally
strong. Figure 3 summarizes the relations that we have thanks to this work; for comparison,
Figure 2 shows the state of the art before this work.

1.1 Models
We will define all relevant models formally in Section 3, but for now the following brief
definitions suffice:

In the deterministic LOCAL model, an algorithm A with locality T works as follows: The
adversary chooses a graph G and an assignment of polynomially-sized unique identifiers.
Algorithm A is applied to all nodes simultaneously in parallel. When we apply A to node
v, algorithm A gets to see the radius-T neighborhood of v and, using this information, it
has to choose the output label of node v.
In the randomized online-LOCAL model, an algorithm A with locality T works as
follows: The adversary chooses a graph G and a processing order σ. Then the adversary
presents nodes sequentially following the order σ. Whenever a node v is presented,
algorithm A gets to see the radius-T neighborhood of v and, using this information as
well as all information it has seen previously and a global source of random bits, it has
to choose the output label of node v.

This means that randomized online-LOCAL is stronger than deterministic LOCAL in at least
three different ways: (1) we have access to shared randomness, (2) the sequential processing
order can be used to break symmetry, and (3) there is global memory thanks to which we
can remember everything we have seen so far. A reader familiar with the SLOCAL model can
interpret it as randomized SLOCAL augmented with global memory. Note that the adversary
is oblivious; it cannot adapt G and σ based on the actions of A.



A. Dhar et al. 3

Θ
(n
1/
2 )

Θ
(n
1/
3 )

Θ
(lo
g
n)

Θ
(lo
g
∗ n
)

Θ
(1
)

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

Θ
(n
)

. . .Θ
(lo
g
log
log
n)

Θ
(lo
g
log
n)

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

randomized LOCAL

SLOCAL

dynamic LOCAL

quantum LOCAL

non-signaling

online-LOCAL

. . .

. . .

. . .

. . .

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

deterministic

LOCAL

randomized

online-LOCAL

Rooted Trees

Unrooted Regular Trees

Unrooted Trees

Rooted Regular Trees

there are LCL problems in this

complexity class

a gap: no LCL problems in this range there are LCL problems somewhere in

this range

— — —

Figure 2 Landscape of LCL problems in trees before this work—compare with Figure 3 to see
the impact of our new contributions.
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Figure 3 Landscape of LCL problems in trees after this work—compare with Figure 2 that shows
the state of the art before this work.
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In general, online-LOCAL (with or without randomness) is much stronger than the classical
LOCAL model (with or without randomness). For example, leader election is trivial in online-
LOCAL, even with locality T = 0 (the first node that the adversary presents is marked as the
leader). However, what is much more interesting is whether online-LOCAL has advantage
over LOCAL for problems defined using local constraints, such as graph coloring.

1.2 Prior Work on LCL Problems
We will study here locally checkable labeling problems (LCLs) [19]; these are problems that
can be specified by giving a finite set of valid local neighborhoods. By prior work, we know
a number of LCL problems that can separate the models in Figure 1, for example:

Sinkless orientation has locality Θ(logn) in deterministic LOCAL, locality Θ(log logn) in
randomized LOCAL, and locality Θ(log log logn) in randomized SLOCAL [7, 8, 10,12,14].
One can construct an (artificial) LCL problem that shows that having access to shared
randomness helps exponentially in comparison with private randomness, and this also
gives a separation between e.g. randomized LOCAL and randomized online-LOCAL [6].
In 2-dimensional grids, 3-coloring has polynomial locality in e.g. randomized SLOCAL
and non-signaling models, while it can be solved with logarithmic locality in deterministic
online-LOCAL [2].
In paths, 3-coloring requires Θ(log∗ n) locality in randomized LOCAL [17,18], while it can
be solved with O(1) locality in the bounded-dependence model [16].

However, we do not have any such separations in rooted trees outside the O(log∗ n) region.
Moreover, in general unrooted trees, all separations are in the sub-logarithmic region. In this
work we give a justification for this phenomenon.

1.3 Contributions
We study in this work LCL problems in the following three main settings, all familiar from
prior work:
1. LCL problems in trees in general,
2. LCL problems in unrooted regular trees (there are no inputs and we only care about

nodes with exactly d neighbors),
3. LCL problems in rooted regular trees (there are no inputs, edges are oriented, and we

only care about nodes with exactly 1 successor and d predecessors).
In all these settings, it is known that any LCL problem falls in one of the following complexity
classes in the deterministic LOCAL model: the locality is O(1), Θ(log∗ n), Θ(logn), or Θ(n1/k)
for some k = 1, 2, 3, . . . [3,4,9,11,15]. Furthermore, in the case of rooted regular trees, we can
(relatively efficiently) also decide in which of these classes any given LCL problem belongs
to [3].

In this work we show that in many of these complexity classes, deterministic LOCAL and
randomized online-LOCAL are asymptotically equally strong. Our main contributions
are:
1. In general trees, the localities in randomized online-LOCAL and deterministic LOCAL are

asymptotically equal in the region ω(
√
n).

2. In unrooted regular trees, the localities in randomized online-LOCAL and deterministic
LOCAL are asymptotically equal in the region ω(logn).

3. In rooted regular trees, the localities in randomized online-LOCAL and deterministic
LOCAL are asymptotically equal in the region ω(log∗ n).
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By prior work, the relation between deterministic LOCAL and randomized online-LOCAL was
well-understood in the o(log log logn) region for rooted (not necessarily regular) trees [1]; see
Figure 2 in the appendix for the state of the art before this work. Putting together prior
results and new results, the landscape shown in Figure 3 emerges.

1.4 Roadmap
We give an overview of key ideas in Section 2. We formally define LCL problems and the
models of computing in Section 3, and then we are ready to analyze the sub-logarithmic
region in rooted regular trees in Section 4. Then in Section 5 we introduce machinery
related to the notion of depth from prior work, and equipped with that we can analyze the
super-logarithmic region in rooted and unrooted regular trees in Sections 6 and 7. Finally,
we analyze the case of general trees in Section 8.

2 Key Ideas, Technical Overview, and Comparison with Prior Work

We keep the discussion at a high level but invite the interested reader to consult the formal
definitions on Section 3 as needed.

Our results heavily build on prior work that has studied LCL problems in deterministic
and randomized LOCAL models. In essence, our goal is to extend its scope across the entire
landscape of models in Figure 1.

For example, by prior work we know that any LCL problem Π in trees has locality either
O(
√
n) or Ω(n) in the deterministic LOCAL model [5]. Results of this type are known as

gap results. For our purposes, it will be helpful to interpret such a gap result as a speedup
theorem that allows us to speed up deterministic LOCAL algorithms:

If one can solve Π with locality o(n) in deterministic LOCAL, then one can solve
the same problem Π with locality O(

√
n) in deterministic LOCAL.

In essence our objective is to strengthen the statement as follows:

If one can solve Π with locality o(n) in randomized online-LOCAL, then one can
solve the same problem Π with locality O(

√
n) in deterministic LOCAL.

The critical implication would be that a faster randomized online-LOCAL algorithm results
not only in a faster randomized online-LOCAL algorithm, but also in a faster deterministic
LOCAL algorithm—we could not only reduce locality “for free” but even switch to a weaker
model. As a consequence, the complexity class Θ(n) would contain the same problems across
all models—since Ω(n) in randomized online-LOCAL trivially implies Ω(n) in deterministic
LOCAL (which is a weaker model), the above would give us that o(n) in randomized online-
LOCAL implies o(n) in deterministic LOCAL.

If we could prove a similar statement for every gap result for LCLs in trees, we would
then have a similar implication for each complexity class: the complexities across all models
in Figure 1 would be the same for every LCL problem in trees. Alas, such a statement cannot
be true in full generality (as we discussed above, there are some known separations between
the models), but in this work we take major steps in many cases where that seems to be
the case. To understand how we achieve this, it is useful to make a distinction between two
flavors of prior work: classification-style and speedup-style arguments; we will make use of
both in this work.
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2.1 Classification Arguments for Regular Trees
First, we have prior work that is based on the idea of classification of LCLs, see e.g. [3]. The
high-level strategy is as follows:
1. Define some property P so that, for any given LCL Π, we can decide whether Π has

property P .
2. Show that, if Π can be solved with locality o(n) in deterministic LOCAL, then this

implies that Π must have property P .
3. Show that any problem with property P can be solved with locality O(

√
n) in deter-

ministic LOCAL.
Such a strategy not only shows that there is a gap in the complexity landscape, but it also
usually gives an efficient strategy for determining what is the complexity of a given LCL (as
we will need to check some set of properties P1, P2, . . . and see which of them holds for a
given Π in order to determine where we are in the complexity landscape). For such results
our key idea is to modify the second step as follows:
2’. Show that, if Π can be solved with locality o(n) in randomized online-LOCAL, then

this implies that Π must have property P .
Note that we do not need to change the third step; as soon as we establish property P ,
the preexisting deterministic LOCAL algorithm kicks in. This is, in essence what we do in
Sections 4, 6, and 7: we take the prior classification from [3] for rooted and unrooted regular
trees and show that it can be extended to cover the entire range of models all the way from
deterministic LOCAL to randomized online-LOCAL.

Log-star certificates. One key property that we make use of is so-called certificates of
O(log∗ n) solvability, introduced in [4]. In Section 4 we show that the existence of an o(logn)-
locality randomized online-LOCAL algorithm implies that the LCL problem has a certificate
of O(log∗ n) solvability, which (as the name suggests) implies that the problem can be solved
with O(log∗ n) locality in both the CONGEST and LOCAL models. This then extends to an
O(1) upper bound in SLOCAL model [13] and in deterministic online-LOCAL [2], which then
directly implies the same upper bound also for randomized online-LOCAL model. This way
we can establish the following result:

▶ Theorem 2.1. Let Π be an LCL problem on rooted regular trees. If Π can be solved with
o(logn) locality in randomized online-LOCAL, then it can be solved in LOCAL with O(log∗ n)
locality. Consequently, Π can be solved with O(1) locality in SLOCAL (and thus also with the
same locality in online-LOCAL, even deterministically).

Depth. Another key property that we make use of is the depth of an LCL (see Section 5):
to every LCL problem Π on regular trees there is an associated quantity dΠ called its depth
that depends only on the description of Π and which allows us to classify its complexity in
the deterministic LOCAL model [3]. We show that depth also captures the complexity in
randomized online-LOCAL. In Section 6 we first analyze the case of rooted regular trees and
show the following:

▶ Theorem 2.2. Let Π be an LCL problem on rooted regular trees with finite depth k = dΠ > 0.
Then any algorithm A solving Π in randomized online-LOCAL must have locality Ω(n1/k).

The high-level strategy is as follows: assuming we have an algorithm with locality o(n1/k),
if it does not fail, then its existence would imply dΠ > k, which is a contradiction. In
Section 7 we prove an analogous statement for unrooted regular trees:
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▶ Theorem 2.3. Let Π be an LCL problem on unrooted regular trees with finite depth
k = dΠ > 0. Then any randomized online-LOCAL algorithm for Π has locality Ω(n1/k).

Putting things together. Combining the new results with results from prior work [3,4, 9,
11, 15], we extend the characterization of LCLs in both unrooted and rooted regular trees all
the way up to randomized online-LOCAL:

▶ Corollary 2.4. Let Π be an LCL problem on unrooted regular trees. Then the following
holds:

If dΠ = 0, the problem is unsolvable.
If 0 < dΠ <∞, then Π has locality Θ(n1/k) in both LOCAL and randomized online-LOCAL.
If dΠ =∞, then Π can be solved in CONGEST (and hence also in online-LOCAL, even
deterministically) with locality O(logn).

▶ Corollary 2.5. If Π is a solvable LCL problem in rooted regular trees, then it belongs to
one of the following four classes:
1. O(1) in both deterministic LOCAL and randomized online-LOCAL
2. Θ(log∗ n) in deterministic LOCAL and O(1) in randomized online-LOCAL
3. Θ(logn) in both deterministic LOCAL and randomized online-LOCAL
4. Θ(n1/k) in both deterministic LOCAL and randomized online-LOCAL where k = dΠ > 0

Comparison with prior work. There is prior work [2] that took first steps towards classifying
LCL problems in rooted regular trees; the main differences are as follows:
1. We extend the classification all the way to randomized online-LOCAL, while [2] only

discusses deterministic online-LOCAL. While this may at first seem like a technicality,
Figure 1 highlights the importance of this distinction: randomized online-LOCAL captures
all models in this diagram. This includes in particular the quantum-LOCAL model and
the non-signaling model. Note it is currently open if deterministic online-LOCAL captures
either of these models.

2. We build on the classification of [3], while [2] builds on the (much simpler and weaker)
classification of [4]. This has two direct implications:
a. We can extend our work to unrooted trees, whereas the results in [2] only apply to

rooted trees.
b. We get an exact classification also for complexities Θ(n1/k). Meanwhile [2] essentially

only shows that, if the complexity is Θ(n1/k) in deterministic LOCAL, then it is Θ(n1/ℓ)
in online-LOCAL for some ℓ ≤ k; hence it leaves open the possibility that these problems
could be solved much faster (i.e., ℓ≫ k) in online-LOCAL.

2.2 Speedup Arguments for General Trees
Second, we have also prior work based on speedup simulation arguments, see e.g. [5]. The
high-level strategy there is as follows:

Assume we are given some algorithm A that solves Π with locality o(n) in determin-
istic LOCAL. Then we can construct a new algorithm A′ that uses A as a black box
to solve Π with locality O(

√
n) in deterministic LOCAL.

Unlike classification-style arguments, this does not (directly) yield an algorithm for deter-
mining the complexity of a given LCL problem. In essence, this can be seen as a black-box
simulation of A. For speedup-style arguments, the key idea for us to proceed is as follows:
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Assume we are given some algorithm A that solves Π with locality o(n) in randomized
online-LOCAL. Then we can construct a new algorithm A′ that uses A as a black
box to solve Π with locality O(

√
n). Moreover, we can simulate A′ efficiently in the

deterministic LOCAL model.

Here a key challenge is that we need to explicitly change models; while in general deterministic
LOCAL is not strong enough to simulate randomized online-LOCAL, we show that in this case
such a simulation is possible. This is, in essence, what we do in Section 8: we start with the
argument from [5] and show that sublinear-locality randomized online-LOCAL algorithms not
only admit speedup inside randomized online-LOCAL, but also a simulation in deterministic
LOCAL. Formally, we prove:

▶ Theorem 2.6. Suppose Π is an LCL problem that can be solved with o(n) locality in
the online-LOCAL model (with or without randomness) in unrooted trees. Then Π can be
solved in unrooted trees in online-LOCAL with O(

√
n) locality (with or without randomness,

respectively).

3 Preliminaries

We denote the set of natural numbers, including zero, by N. For positive numbers integers,
excluding zero, we use N+. For a set or multiset X and k ∈ N+, we write

((
X
k

))
for the set of

multisets over X of cardinality k.
In this work we are concerned exclusively with simple graphs. Unless stated otherwise, n

always denotes the number of nodes in the graph. An algorithm solving some graph problem
is said to succeed with high probability if, for all graphs except finitely many, it fails with
probability at most 1/n.

3.1 Locally Checkable Labeling Problems
In this section we define locally checkable labeling (LCL) problems as well as some of
their key analytical concepts. We first recall the most general definition due to Naor and
Stockmeyer [19].

▶ Definition 3.1 (LCL problem in general graphs). A locally checkable labeling (LCL) problem
Π = (Σin,Σout, C, r) is defined as follows:

Σin and Σout are finite, non-empty sets of input and output labels, respectively.
r ∈ N+ is the checkability radius.
C is the set of constraints, namely a finite set of graphs where:

Each graph H ∈ C is centered at some node v.
The distance of v from all other nodes in H is at most r.
Each node u ∈ H is labeled with a pair (i(u), o(u)) ∈ Σin × Σout.

For a graph G = (V,E) whose vertices are labeled according to Σin, a (node) labeling of a
graph G = (V,E) is a solution to Π if it labels every node v ∈ V with a label from Σout such
that the r-neighborhood of v in G is identical to some graph of C (when we place v at the
center of the respective graph in C). Every node for which this requirement holds is said to
be correctly labeled. If the nodes of G are labeled with a solution, then G itself is correctly
labeled.

We use this definition to refer to problems in the case of general, that is, not necessarily
regular trees. For regular trees, we use two other formalisms, one for the case of rooted and
one for that of unrooted trees. These are simpler to work with and require checking only
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labels in the immediate vicinity of a node or half-edge. We note there is precedent in the
literature for taking this approach (see, e.g., [3]).

▶ Definition 3.2 (LCL problem on regular rooted trees). An LCL problem on regular rooted
trees is a tuple Π = (∆,Σ,V) where:

∆ ∈ N+ and Σ is a finite, non-empty set.
The (node) constraints form a set V of pairs (σ, S) where σ ∈ Σ and S ⊆

((Σ
∆

))
.

For a rooted tree T = (V,E) with nodes having degree in {1,∆}, a solution to Π is
a labeling ℓ : V → Σ such that, for each node v with ∆ children u1, . . . , u∆, we have
(ℓ(v), {ℓ(u1), . . . , ℓ(u∆)}) ∈ V. Again, this requirement allows us to speak of correctly
labeled nodes and thus also correctly labeled trees.

Under this formalism, leaves may be labeled arbitrarily. When Π is clear from the context,
we refer to the elements of

((Σ
∆

))
as node configurations.

Meanwhile, in the case of unrooted trees, we work with LCL problems where the labels
are placed on (instead of nodes) and are subject to node and edge constraints.

▶ Definition 3.3 (LCL problem on regular unrooted trees). An LCL problem on unrooted
trees is a tuple Π = (∆,Σ,V, E) where:

∆ ∈ N+ and Σ is a finite, non-empty set.
The node constraints form a set V ⊆

((Σ
∆

))
.

The edge constraints form a set E ⊆
((Σ

2
))

.
For an unrooted tree T = (V,E) with nodes having degree in {1,∆}, a solution to Π is a
labeling of half-edges, that is, a map ℓ : V × E → Σ such that the following holds:

For every node v ∈ V with degree ∆ that is incident to the edges e1, . . . , e∆, we have
{ℓ(v, e1), . . . , ℓ(v, e∆)} ∈ V.
For every edge e = {u, v} ∈ E, {ℓ(u, e), ℓ(v, e)} ∈ E.

As before, if T is labeled with a solution, then it is correctly labeled. In light of these two
types of requirements, it is also natural to speak of correctly labeled nodes and edges.

In the same vein as the preceding definition, leaves are unconstrained and may be labeled
arbitrarily. As before, if such an LCL problem Π on regular unrooted trees is clear from the
context, we refer to the elements of

((Σ
∆

))
as node configurations and to those of

((Σ
2
))

as edge
configurations.

3.2 Models of Distributed Computing
Next we formally define the LOCAL model and its extensions.

▶ Definition 3.4 (Deterministic LOCAL model). The deterministic LOCAL model of distributed
computing runs on a graph G = (V,E) resembling a computer network, with each node v ∈ V
representing a computer, and each edge representing a connection channel. Each node is
labeled with a unique identifier. All nodes run the same distributed algorithm in parallel.
Initially, a node is only aware of its own identifier and degree. Computation proceeds in
synchronous rounds, and in each round a node can send and receive a message to and from
each neighbor and update its state. Eventually each node must stop and announce its local
output (its part of the solution, e.g. in graph coloring its own color). The running time,
round complexity, or locality of the algorithm is the (worst-case) number of rounds T (n)
until the algorithm stops in any n-node graph.



A. Dhar et al. 11

▶ Definition 3.5 (Randomized LOCAL model). The randomized LOCAL model is defined
identically to the (deterministic) LOCAL model, with the addition that each node has access
to a private, infinite stream of random bits. Additionally, a randomized LOCAL algorithm is
required to succeed with high probability.

▶ Definition 3.6 (Deterministic online-LOCAL model [2]). In the (deterministic) online-LOCAL
model, an adversary chooses a sequence of nodes, σ = (v1, v2, . . . , vn), and reveals the nodes
to the algorithm one at a time. The algorithm processes each node sequentially. Given an
online-LOCAL algorithm with locality T (n), when a node vi is revealed, the algorithm must
choose an output for vi based on the subgraph induced by the radius-T (n) neighborhoods of
v1, v2, . . . , vi. In other words, the algorithm retains global memory.

▶ Definition 3.7 (Randomized online-LOCAL model [1]). In the randomized online-LOCAL
model, an adversary first commits to a sequence of nodes, σ = (v1, v2, . . . , vn), and reveals
the nodes to the algorithm one at a time, as in the online-LOCAL model. The algorithm
runs on each vi and retains global memory, as in the online-LOCAL model. Additionally,
the algorithm has access to an infinite stream of random bits unbeknownst to the adversary;
that is, the adversary cannot change the order they present the remaining nodes based on the
intermediate output of the algorithm. As in the randomized LOCAL, the algorithm is required
to succeed with high probability.

4 Sub-logarithmic Gap for LCLs in Rooted Regular Trees

In this section, we show that there are no LCL problems on rooted trees with locality in the
range ω(1)—o(logn) in the randomized online-LOCAL model. Moreover, the problems that
are solvable with locality O(1) in randomized online-LOCAL are exactly the same problems
that are solvable with locality O(log∗ n) in the LOCAL model.

▶ Theorem 2.1. Let Π be an LCL problem on rooted regular trees. If Π can be solved with
o(logn) locality in randomized online-LOCAL, then it can be solved in LOCAL with O(log∗ n)
locality. Consequently, Π can be solved with O(1) locality in SLOCAL (and thus also with the
same locality in online-LOCAL, even deterministically).

We show this by showing that a locality-o(logn) randomized online-LOCAL algorithm
solving LCL problem Π implies the existence of a coprime certificate for O(log∗ n) solvability
(see Definition 4.6) that then implies that Π is solvable with locality O(log∗ n) in the LOCAL
model [4], and hence with locality O(1) in the randomized online-LOCAL model.

Throughout this section, we consider an LCL problem Π = (∆,Σ,V) and a randomized
online-LOCAL algorithm A that solves Π with locality T (n) = o(logn) with high probability.
We start by constructing a family of input instances. We then argue that A solving these
instances must produce a canonical labeling regardless of the randomness. Finally, we show
how we can use this canonical labeling to construct the coprime certificate for O(log∗ n)
solvability.

4.1 Construction of Input Instances
Let d be a depth parameter that we fix later, and let ∆ be the number of children of internal
nodes. We now construct the input instance as follows:

▶ Definition 4.1 (Family of input instances). We construct the family of input instances as
follows:
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1. Construct (|Σ|+1) chunks of trees, each containing ∆d+1 complete rooted trees of height 2d.
Give the trees in each chunk an ordering. Let M be the set of nodes in these trees at
distance d from the root; we call these nodes middle nodes.

2. Choose a bit b, and choose a node u which is at depth d in any of the trees created in the
previous phase. Choose a chunk C such that node u is not contained in chunk C.

3. The subtree rooted at u has ∆d leaf descendants.
If b = 0: Identify the roots of the first ∆d trees of chunk C with the leaf descendants of
u in a consistent order (see bottom-left of Figure 4).

If b = 1: Make the roots of the first ∆d+1 trees of chunk C the children of the leaf
descendants of u in a consistent order (see bottom-right Figure 4).

Observe that trees constructed in this way have n = (|Σ| + 1) ·∆d+1 · ∆2d+1−1
∆−1 nodes.

Moreover, choosing (b, u, C) uniquely fixes the construction. Let P be the set of choices for
(b, u, C).

▶ Observation 4.2. The number of instances is less than the number of nodes in each
instance. In particular, |P| = 2|Σ|(|Σ|+ 1)∆2d+1 < n.

We can now fix depth parameter d such that d > log∆(2|Σ|) and d > T (n). Recall that
T (n) = o(logn), and hence such d exists.

4.2 Randomness of the Algorithm

Throughout this discussion, we let PrR(·) denote the probability of an event when the
randomness is over some source R for which the probability is being defined.

For each instance (b, u, C), we fix the order middle nodes M such that it is consistent across
all instances. We then reveal these middle nodes to A in this order. Let S ∈ Σ = Σ∆2d+1(|Σ|+1)

be the random sequence of labels generated by A for the middle nodes M . Since the locality
of A is T (n) < d, the algorithm does not get to see the roots or the leaves of these height-2d
trees. In particular, the algorithm does not get to know which instance (b, u, C) we have
chosen. Hence S must be independent of the choice of (b, u, C).

▶ Observation 4.3. For every choice σ ∈ Σ of labeling middle nodes M , and every instance
(b, u, C) ∈ P, we must have

Pr
S

(S = σ) = Pr
S

(S = σ | (b, u, C))

where PrS(S = σ) denotes the probability that A produces output σ for nodes M , and
PrS(S = σ | (b, u, C)) denotes the same given that the input instance was (b, u, C).

Note that while the output S for nodes M is independent of (b, u, C), the output that A
produces for the rest of the nodes of the input may be dependent of (b, u, C). We denote
this random variable by A+(b, u, C).

We now analyze the failure probability of A to show that there exists a fixed labeling σ∗
for middle nodes M such that the labeling is still completable for each input instance (b, u, C).
Let F denote the event that algorithm A fails to solve the problem. As, by assumption, A
succeeds with high probability, we must have that PrS,A+(b,u,C)(F) ≤ 1

n for all choices of
(b, u, C) ∈ P. We can now pick a labeling of the middle nodes that minimizes the average
failure probability:
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u

T1 T2 T3 T4

T5 T6 T7 T8

T9 T10 T11 T12

C =

{T5, T6, T7, T8}

2d

|Γ| + 1

δd+1

u

T1
T2 T3 T4

T5

T6 T7

T8

T9 T10 T11 T12

2d

u

T1 T2 T3 T4

T5 T6

T7 T8

T9 T10 T11
T12

2d

The instance (0, u, C) The instance (1, u, C)

b = 0 b = 1

Figure 4 Visualization of two trees in the family of input instances. At the top we have |Σ| + 1
chunks of complete trees of depth 2d, each containing ∆d+1 trees. The green trees in the middle row
represent the chosen chunk C. On the bottom-left, we have b = 0, in which case we identify the
roots of the first ∆d trees of C with the leaf descendants of node u. On the bottom-right, we have
b = 1, in which case we make all trees in chunk C the children of the leaf descendants of node u.
See Definition 4.1 for full construction.

▶ Definition 4.4. Let σ∗ be defined as follows:

σ∗ ∈ arg min
σ∈Σ,PrS(S=σ)>0

∑
(b,u,C)∈P

Pr
A+(b,u,C)

(F | (b, u, C), S = σ)

where ties are broken deterministically.

This definition ensures the following: Give that the algorithm labels nodes M with σ∗,
the total probability of failure over all instances (b, u, C) is minimized. In some sense, σ∗ is
the best labeling for M when the algorithm know nothing about the instance. Note that σ∗
is a concrete element of Σ and hence does not depend on the randomness of the algorithm.
We can formalize this idea:

▶ Lemma 4.5. Regardless of the instance (b, u, C) ∈ P, if the labeling S of nodes M is σ∗,
there exists a valid way to label the remaining nodes of the instance.
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Proof. We start by noting that

1
n
≥ Pr

S,A+(b,u,C)
(F)

since A works correctly with high probability. We can now expand the probability to be
conditional over the initial labeling S:

Pr
S,A+(b,u,C)

(F) =
∑
σ∈Σ

Pr
A+(b,u,C)

(F | (b, u, C), S = σ) Pr
S

(S = σ | (b, u, C)).

Next, we apply Observation 4.3 to get

1
n
≥

∑
σ∈Σ

Pr
A+(b,u,C)

(F | (b, u, C), S = σ) Pr
S

(S = σ),

and then we sum over all choices of (b, u, C) on both sides to get

|P|
n

=
∑

(b,u,C)∈P

1
n
≥

∑
(b,u,C)∈P

∑
σ∈Σ

Pr
A+(b,u,C)

(F | (b, u, C), S = σ) Pr
S

(S = σ)

Exchanging the order of summation and noting that σ∗ minimizes∑
(b,u,C)∈P

Pr
A+(b,u,C)

(F | (b, u, C), S = σ),

we get

|P|
n
≥

∑
(b,u,C)∈P

Pr
A+(b,u,C)

(F | (b, u, C), S = σ∗)

Recalling that |P|
n < 1 by Observation 4.2 and that all probabilities are non-negative numbers,

we complete our calculation:

1 > Pr
A+(b,u,C)

(F | (b, u, C), S = σ∗) for each (b, u, C) ∈ P.

Hence for each instance (b, u, C), the algorithm fails with a probability strictly less than 1.
In other words, it must succeed with non-zero probability, and hence a correct labeling must
also exist. ◀

4.3 Getting a Coprime Certificate as a Subset of All Such Instances
We are now ready to extract from algorithm A a coprime certificate for O(log∗ n) solvability.
The idea is to pick a subset of input instances P that—along with the labeling σ∗—form
the pairs of sequences of trees of the certificate. We defer the proof of why this implies the
existence of a locality-O(log∗ n) LOCAL algorithm to previous work [4].

▶ Definition 4.6 (Coprime certificate for O(log∗ n) solvability [4]). Let Π = (∆,Σ, C) be an LCL
problem. A certificate for O(log∗ n) solvability of Π consists of labels ΣT = {σ1, . . . , σt} ⊆ Σ,
a depth pair (d1, d2) and a pair of sequences T 1 and T 2 of t labeled trees such that
1. The depths d1 and d2 are coprime.
2. Each tree of T 1 (resp. T 2) is a complete ∆-ary tree of depth d1 ≥ 1 (resp. d2 ≥ 1).
3. Each tree is labeled by labels from Σ correctly according to problem Π.
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4. Let T̄ 1
i (resp. T̄ 2

i ) be the tree obtained by starting from T 1
i (resp. T 2

i ) and removing the
labels of all non-leaf nodes. It must hold that all trees T̄ 1

i (resp. T̄ 2
i ) are isomorphic,

preserving the labeling. All the labels of the leaves of T̄ 1
i (resp. T̄ 2

i ) must be from set ΣT .
5. The root of tree T 1

i (resp. T 2
i ) is labeled with label σi.

Let ΣT = {σ1, σ2, . . . , σt} ⊆ Σ be the set of labels appearing in σ∗, and let (u1, u2, . . . , ut)
be some middle nodes in the input instances such that node ui has label σi according to
σ∗. Note that there are |Σ|+ 1 chunks whereas t = |ΣT | < |Σ|+ 1. Therefore, we get the
following result by the pigeonhole principle:

▶ Observation 4.7. There must be a chunk C0 which does not contain any node in
{u1, . . . , ut}.

With these definitions of labels ΣT = (σ1, . . . , σt), chunk C0, and nodes (u1, . . . , ut), we
are ready to prove our main result:

▶ Theorem 4.8. For an LCL problem Π without inputs on rooted regular trees, if there is
a randomized online-LOCAL algorithm A with locality T (n) = o(logn), then there exists a
coprime certificate of O(log∗ n) solvability for Π, with ΣT as the subset of labels.

Proof. For each i ∈ {1, . . . , t}, consider the instance (0, ui, C0) with S = σ∗ and some valid
way to label the remaining nodes; such a labeling exists due to Lemma 4.5. The subtree
rooted at ui contains the first ∆d trees of the chunk C0. Let the depth-2d subgraph rooted
at ui be tree T 1

i . See Figure 5a for a visualization.
Note that for each i ∈ {1, . . . , t}, tree T 1

i has a root labeled with σi, and the leaves are
labeled with labels from set ΣT in an identical way. Hence T 1 form the first sequence of the
certificate.

Similarly, we consider (1, ui, C0) for all i ∈ {1, . . . , t}. This time we let the depth-(2d+ 1)
subtree rooted at ui be tree T 2

i . See Figure 5b for a visualization. The sequence T 2 forms
the second sequence of the certificate, again by similar arguments.

It is easy to check that ΣT , 2d and 2d + 1 and sequences T 1 and T 2 indeed form a
coprime certificate for O(log∗ n) solvability for problem Π. ◀

We can now proof the main result of this section:

▶ Theorem 2.1. Let Π be an LCL problem on rooted regular trees. If Π can be solved with
o(logn) locality in randomized online-LOCAL, then it can be solved in LOCAL with O(log∗ n)
locality. Consequently, Π can be solved with O(1) locality in SLOCAL (and thus also with the
same locality in online-LOCAL, even deterministically).

Proof. A locality-o(logn) randomized online-LOCAL algorithm for problem Π implies the
existence of certificate of O(log∗ n) solvability of Π by Theorem 4.8. This further implies
existence of LOCAL algorithm solving Π with locality O(log∗ n) [4], which in turn implies
the existence of SLOCAL algorithm solving Π with locality O(1) [13]. Since the randomized
online-LOCAL is stronger than the SLOCAL model [1], this implies the existence of a locality-
O(1) randomized online-LOCAL algorithm that solves Π. Therefore, there can be no LCL
problem on rooted regular trees where the optimal algorithm has a locality of T (n) which is
both o(logn) and ω(1). ◀

5 Definition of Depth

Before we continue, we recall notions pertaining to the analysis of LCL problems in the
regular trees case (for both rooted and unrooted trees). We stress the tools that we present
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ui

First δd trees of C0

T 1
i

(a) Trees T 1
i of depth 2d for certificate

from instance (0, ui, C0).

ui

Trees of the chunk C0

T 2
i

(b) Trees T 1
i of depth 2d + 1 for certificate from instance

(1, ui, C0).

Figure 5 Construction of trees of coprime certificate for O(log∗ n) solvability. The blue shaded
region represents the tree of the sequence and extends from the labeled middle node ui to the middle
nodes of the trees hanging from its leaf descendants.

here concern only the description of the problems and thus may be applied no matter what is
our computational model of interest. Most definitions are morally the same for both rooted
and unrooted trees (and, indeed, are even named the same), though the latter turns out to be
more convoluted. Hence we will always introduce the relevant concept first for rooted trees.
In fact, to obtain a clearer understanding of the concepts involved, an unfamiliar reader may
prefer to postpone the parts concerning unrooted trees to a reread of the text altogether.

Automata. The definitions of LCL problems we introduced above are useful in that they
allow us to associate an LCL problem Π with an automaton that encodes correct solutions
to Π. Conceptually speaking, the automaton describes the labels that we observe as we are
traversing a path in a correctly labeled tree. For rooted trees this is relatively straightforward
to specify; in the unrooted case we do not have a sense of direction and hence we must
encode that in the nodes by using two components, one specifying which label we see when
entering and the other which label we see when exiting the node. Alternatively, it may also
be instructive to imagine the automaton as describing paths on the line graph of the original
tree (i.e., we are traversing the tree edge by edge instead of node by node).

▶ Definition 5.1 (Automaton for an LCL on regular trees). Let Π be an LCL problem on
regular trees.

If Π = (∆,Σ,V) is a problem on rooted trees, then the automaton MΠ associated with Π
is the digraph with Σ as its set of nodes and where we have an edge (σ, σ′) if and only if
there is (σ, S) ∈ V such that σ′ ∈ S.
If Π = (∆,Σ,V, E) is a problem on unrooted trees, then the automaton MΠ associated
with Π is the digraph defined as follows:

The nodes of MΠ are the elements (x, y) ∈ Σ × Σ for which {x, y} ∈
((Σ

2
))

is a
sub-multiset of some node configuration in V.
There is an edge between (x1, x2) and (y1, y2) in MΠ if and only if {x2, y1} ∈ E.
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Preliminaries. For every LCL problem Π on regular trees, there is a fixed quantity dΠ that
depends only on the problem description and which essentially captures its complexity. This
quantity is called the depth of Π. The precise definition is rather involved, so here we attempt
to keep it brief and self-contained; for a more extensive treatment, see for instance [3]. As
mentioned before, the definitions for rooted and unrooted trees differ in the details but are
otherwise conceptually very similar to one other.

Let us now fix an LCL problem Π on regular trees. The following is our roadmap in order
to define the depth dΠ:
1. First we define what is meant by taking the restriction of Π to a set of labels (in the

rooted case) or set of node configurations (in the unrooted case).
2. Next we define two operations trim and flexible-SCC that induce two different kinds of

restrictions that we may take.
3. By alternating between the two, we obtain so-called good sequences of problem restrictions.
4. Finally, dΠ is defined to be exactly the maximum length of such a good sequence.

Restrictions. In the case of rooted trees, a restriction is defined in terms of a subset of
labels; that is, we are simply considering the same problem but allowing only a subset of
labels to be used in the solution. In contrast, in unrooted trees, restrictions are defined by
a set of permissible pairs of labels and we allow only node configurations to be used where
every pair of labels present in the configuration is permissible.

▶ Definition 5.2 (Restriction of an LCL on regular trees). Let Π be an LCL on regular trees.
When Π = (∆,Σ,V) is a problem on rooted trees, the restriction of Π to a subset Σ′ ⊆ Σ
of labels is the problem Π ↾Σ′ = (∆,Σ′,V ′) where V ′ consists of all pairs (σ, S) ∈ V for
which σ ∈ Σ′ and S ⊆ Σ′.
If Π = (∆,Σ,V, E) is a problem on unrooted trees, then the restriction of Π to D ⊆

((Σ
2
))

is the problem Π ↾D = (∆,Σ,V ′, E) where V ′ ⊆ V is maximal such that
((

C
2
))
⊆ D holds

for every C ∈ V ′.

The trim operation. Next we define the trim operation, which restricts the set of labels
(or, in the case of unrooted trees, node configurations) to those that can be used at the root
of a complete tree of arbitrary depth. Although this sounds like a precise definition, we
stress that “complete tree” is in fact an ambiguous term in this context since it has different
meanings depending on which LCL formalism we are (i.e., rooted or unrooted trees). We
settle this matter upfront in a separate definition before turning to that of trim proper.

▶ Definition 5.3 (Complete regular tree). Let i ∈ N+. With Ti we denote the tree of depth i
where the root has degree ∆− 1 and every other inner vertex has degree ∆. Meanwhile, T ∗

i

denotes the tree of depth i where every inner vertex (including the root) has degree ∆.

Note that, technically, Ti is not regular. Nevertheless we can add a single parent node
of degree 1 to the root in order to make it so. (Since it has degree 1, this new node is
unconstrained.) We avoid doing so in order to be able to refer to the root of Ti more easily.

▶ Definition 5.4 (trim). Let Π be an LCL on regular trees of degree ∆.
If Π = (∆,Σ,V) is a problem on rooted trees, then trim(·) maps subsets of Σ again to
subsets of Σ. For Σ′ ⊆ Σ, trim(Σ′) is the set of all σ ∈ Σ′ for which, for every i ∈ N+,
there is a solution of Π to Ti such that:

The root is labeled with σ.
Every other vertex (including the leaves) is labeled with a label from Σ′.
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When Π = (∆,Σ,V, E) is a problem on unrooted trees, trim(·) maps subsets of V again to
subsets of V. Namely, for D ⊆ V, trim(D) is the set of node configurations C ∈ D for
which, for every i ∈ N+, there is a solution of Π to T ∗

i such that:
The root has C as its node configuration.
Every other vertex (except for the leaves, which are always unrestricted) has an element
of D as its node configuration.

Hence trim restricts the sets of labels (or node configurations, in the case of unrooted
trees) that can be placed at the root of the tree. Note that the rest of the tree does not need
to be labeled according to what ends up being placed in the trim set but only to the set Σ′

of labels (or set D of node configurations) that we started with.

The flexible-SCC operation. In contrast to the trim operation, which is defined on the
basis of labelings of the complete tree, flexible-SCC is computed solely by analyzing (the
graph of) the automaton MΠ associated with Π.

For concreteness, let us focus on the case of rooted trees. Given some subset Σ′ ⊆ Σ of
labels, we start by considering the restriction of Π to Σ′, in which case we obtain a restricted
LCL problem Π′ = Π ↾Σ′ . Notice the automatonMΠ′ associated with Π is contained inMΠ.
We are interested in the strongly connected components of MΠ′ and in particular those
whose nodes can be reached from one another in a flexible way. Flexibility here is meant in
the sense of the walk’s length, namely that one may reach any vertex from any other one in
any desired (large enough) number of steps. Conceptually, each such component of MΠ′

gives us a strategy for locally filling in labels for arbitrarily long paths using just the set
Λ ⊆ Σ′ of labels in the component.

This notion of flexibility is specified in the next definition.

▶ Definition 5.5 (Path-flexibility). Let Π be an LCL problem on regular trees (of either kind),
and let MΠ be the automaton associated with it. A subset U of vertices of MΠ is said to
be path-flexible if there is a constant K ∈ N+ such that, for any choice of vertices u, v ∈ U ,
there is a walk of length k ≥ K from u to v that only visits vertices in U .

With this notion we now define flexible-SCC. As already stressed several times, the
definition for unrooted trees is more involved since we have to manipulate multisets, but
morally it yields the same operation as in the rooted case.

▶ Definition 5.6 (flexible-SCC). Let Π be an LCL on regular trees.
If Π = (∆,Σ,V) is a problem on rooted trees, then flexible-SCC(·) maps subsets of Σ to
sets of subsets of Σ. Namely, for Σ′ ⊆ Σ, flexible-SCC(Σ′) is obtained as follows: First
take the restriction Π′ = Π ↾Σ′ of Π to Σ′ and construct the automaton MΠ′ associated
with it. Then flexible-SCC(Σ′) is the set of strongly connected components of MΠ′ that
are path-flexible.
When Π = (∆,Σ,V, E) is a problem on unrooted trees, flexible-SCC(·) maps subsets of V
to sets of elements of

((Σ
2
))

. For V ′ ⊆ V, flexible-SCC(V ′) is constructed as follows: First
determine the restriction Π′ = Π ↾V′ of Π to V ′ as well as the automaton MΠ′ associated
with it. Then flexible-SCC(V ′) is “morally” the set of strongly connected components of
MΠ′ that are path-flexible, but lifted back to a set over elements of

((Σ
2
))

(instead of
elements of Σ×Σ). Concretely we have that flexible-SCC(V ′) is the set that contains every
D ∈

((Σ
2
))

for which UD = {(x, y) ∈ V (MΠ) | {x, y} ∈ D} is a path-flexible component in
MΠ′ .



A. Dhar et al. 19

Good sequences and depth. With the above we may define so-called good sequences that
are obtained by applying the two operations trim and flexible-SCC alternatingly.

▶ Definition 5.7 (Good sequences). Let Π be an LCL problem on regular trees.
When Π = (∆,Σ,V) is a problem on rooted trees, a good sequence is a tuple s =
(ΣR

1 ,ΣC
1 , . . . ,ΣR

k) of subsets of Σ where:
ΣR

i = trim(ΣC
i−1), where ΣC

0 = Σ.
ΣC

i ∈ flexible-SCC(ΣR
i ) is a path-flexible component in the automaton MΠi

associated
with Πi = (∆,ΣR

i ,V).
When Π = (∆,Σ,V, E) is a problem on unrooted trees, a good sequence is a tuple
s = (V1,D1, . . . ,Vk) alternating elements of

((Σ
∆

))
and

((Σ
2
))

where:
Vi is obtained by the following procedure:

1. Restrict the problem Πi−1 = (∆,Σ,Vi−1, E) to Di (where V0 = V and D0 =
((Σ

2
))

)
to obtain a problem Π′

i−1 = Πi−1 ↾Di
with node constraints V ′

i−1.
2. Apply trim, that is, set Vi = trim(V ′

i−1).
Di ∈ flexible-SCC(Vi) is a path-flexible component in the automaton MΠi

associated
with Πi = (∆,Σ,Vi, E).

In both cases we refer to k as the length of s.

Note that the step of performing trim (in both contexts) is deterministic, whereas picking
a path-flexible strongly connected component might be a non-deterministic one.

Finally the depth dΠ is defined as the length of the longest good sequence.

▶ Definition 5.8 (Depth). Let Π be an LCL problem on regular trees (of either kind). The
depth dΠ of Π is the largest integer k for which there is a good sequence for Π of length k.
If no good sequence exists, then dΠ = 0. If there is a good sequence of length k for every k,
then dΠ =∞.

6 Super-logarithmic Gap for LCLs on Rooted Regular Trees

In this section, we show that if an LCL problem on rooted regular trees has complexity
ω(logn), then its complexity is Ω(n1/k) for some k ∈ N+ in the randomized online-LOCAL
model. Moreover, this complexity coincides with the existing upper bounds in CONGEST
and LOCAL [3], providing a tight classification. Formally, we prove the following theorem,
restated for the reader’s convenience:

▶ Theorem 2.2. Let Π be an LCL problem on rooted regular trees with finite depth k = dΠ > 0.
Then any algorithm A solving Π in randomized online-LOCAL must have locality Ω(n1/k).

For the rest of this section, we consider Π = (∆,Σ,V) to be an LCL problem on rooted
trees with dΠ = k ∈ N+. We show that problem Π has locality Ω(n1/k) by constructing a
randomized input instance that no locality-o(n1/k) randomized online-LOCAL algorithm can
solve with high probability. We do this by adapting the previous construction by Balliu et
al. [3]. We augment this construction by providing a randomized processing order of nodes.
We then show that the labeling produces by the algorithm for a specific set of nodes must be
independent of the exact order. Finally, we prove by induction that either the algorithm
must fail with probability more than 1

n , or there exists a good sequence longer than dΠ.
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6.1 Lower-Bound Graph Construction
We start by setting constant β to be the smallest natural number such that for each subset
of labels Σ̃ ⊆ Σ and for each label σ ∈ Σ̃ \ trim(Σ̃), there exists no correct labeling of the
complete tree Tβ using only labels in Σ̃ and having root labeled with σ. We also let t be a
constant that we fix later. We now define the parts of the lower bound graph followed by the
main lower bound construction:

▶ Definition 6.1 (Lower bound graph part [3]). Let s = 4t+ 4.
Let GR,1 be the complete rooted tree Tβ. We say that all nodes of GR,1 are in layer (R, 1).
For each integer i ≥ 1, let G◦

C,i be the tree formed by an s-node directed path v1 ← v2 ←
· · · ← vs such that we append ∆− 1 copies of GR,i as the children of all nodes vi. We call
the path v1 ← v2 ← · · · ← vs the core path of G◦

C,i, and say that they are in layer (C, i).
Let GC,i be defined like G◦

C,i except that we append another copy of GR,i as a child of vs.
For each i ≥ 2, let GR,i be the tree formed by taking the complete rooted tree Tβ and
appending ∆ copies of GC,i−1 to each leaf of Tβ. All nodes of Tβ are said to be in
layer (R, i).

This construction is visualized in Figure 6.

▶ Definition 6.2 (Main lower bound graph [3]). We define our main lower bound graph G as
the rooted tree formed by the following construction:

Construct rooted trees G◦
C,1, G

◦
C,2, . . . , G

◦
C,k and GR,k+1.

Let Pi = vi
1 ← vi

2 ← · · · ← vi
s be the core path of G◦

C,i, and let r be the root of GR,k+1.
Add edges v1

s ← v2
1 , v

2
s ← v3

1 , . . . , v
k−1
s ← vk

1 and vk
s ← r.

This construction is visualized in Figure 7.

The nodes of the main lower bound graph G are partitioned into layers by the recursive
construction. We order these nodes into the following order:

(R, 1) ≺ (C, 1) ≺ (R, 2) ≺ (C, 2) ≺ · · · ≺ (R, k + 1)

Intuitively, nodes closer to leaves come before nodes closer to the center of the tree.
It is easy to see that each node in G has degree either 0 or ∆, and that the number of

nodes in G is n = O(tk). To show that Π requires locality Ω(n1/k) to solve, it suffices to
show that no randomized online-LOCAL algorithm can solve Π on G with locality t or less.

Next, we define a randomized order Z in which the adversary reveals nodes of G to the
randomized online-LOCAL algorithm:

▶ Definition 6.3 (Randomized adversarial sequence and nodes ui
0, u

i
1, . . . , u

i
ci

). A randomized
adversarial sequence Z is a random sequence of all nodes in G, sampled by the followed
process.
1. Start with an empty sequence Z.
2. For each i ∈ {1, . . . , k}, do the following:

a. Let Qi
0, Q

i
1, Q

i
2, . . . , Q

i
ci

be all core paths in layer (C, i), where Qi
0 is Pi, that is the core

path closest to the root.
b. For each l ∈ {1, . . . , ci}, do the following:

i. Let ri
l be the node in Qi

l that is closest to the root of G.
ii. Sample di

l from the set {2t+ 1, 2t+ 2} uniformly at random.
iii. Let ui

l be the node of Qi
l that is at the distance of di

l from ri
l .

c. Append a uniform random permutation of ui
0, u

i
1, . . . , u

i
ci

to Z.
3. Append all other nodes in any fixed order to Z.
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β

GR,1

GC,i

GR,i

GR,i

GR,i

GR,i

GR,i

GR,i

GR,i

GR,i GR,i

β

GR,i

GC,i−1 GC,i−1 GC,i−1 GC,i−1 GC,i−1 GC,i−1 GC,i−1 GC,i−1

s = 4t+ 4

Figure 6 Visualization of lower bound trees; see Definition 6.1. The tree on top-left shows the
structure of GR,1, the tree on top right shows GC,i for i ≥ 1, and the three at the bottom shows GR,i

for i ≥ 2.
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β

Q1
0 = P1

Qk−1
0 = Pk−1

Qk
0 = Pk

Qk
l

GR,k

GR,k

GR,k

GR,k

GR,k

GR,k

GR,k

GR,kGR,k

Tβ

Qk−1
l′

Tβ

Qk−1
l′′

GR,k
GR,k

GR,k
GR,k

GR,k
GR,k

GR,k

GR,k

rkl

uk
l

dkl

Figure 7 The figure shows the lower bound graph G. The orange triangles represent complete
trees Tβ . Each purple oval represents a core path Qk

l of some GC,k. Each blue pentagon represents
copies of GR,k. The zoom-in shows the structure of the internal connections of GR,k. The turquoise
chains are core paths Qk−1

l′ of GC,k−1 where each yellow pentagon represents copies of GR,k−1. The
topmost red oval represents the core path P1 (which is same as Q1

0) of the topmost copy of GC,1.
Near the zoom-in, the figure shows how uk

l is chosen in Qk
l from rk

l and dk
l . See Definitions 6.2

and 6.3 for more information.
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The randomized adversarial sequence Z therefore also defines the nodes ui
0, u

i
1, . . . , u

i
ci

.

Note that for either choice of di
l ∈ {2t+ 1, 2t+ 2}, the distance of ui

l from either end of
the core path it belongs to is at least 2t+1. This is the reason behind the choice of s = 4t+4.
In particular, this ensures that any locality-t randomized online-LOCAL algorithm A must
label nodes ui

l for i ∈ {1, 2, . . . , k} and l ∈ {0, 1, . . . , ci} independently of the adversarial
sequence Z:

▶ Lemma 6.4 (Independence lemma). For i ∈ {1, 2, . . . k}, the labelling of the nodes
ui

0, u
i
1, . . . , u

i
ci

produced by any randomized online-LOCAL algorithm A with locality t is
independent of the randomness of the randomized adversarial sequence Z.

Proof. For any i, the t-neighborhoods of ui
0, u

i
1, . . . , u

i
ci

are identical and disjoint. For i1 ̸= i2,
the t-neighborhoods of ui1

j1
and ui2

j2
are also disjoint as their lowest common ancestor is at a

distance of at least 2t from one of them. Therefore, for any ui
l, its t-neighborhood is unlabeled

for all randomized adversarial sequences Z. Since the t-neighborhoods of ui
0, u

i
1, . . . , u

i
ci

are
the identical, disjoint and unlabeled at the time of revealing, the output distribution of
ui

0, u
i
1, . . . , u

i
ci

produced by A is independent of the randomized adversarial sequence Z for
all i ∈ {1, 2, . . . k}. ◀

Next, we define a sequence of subsets of the nodes in G. This definition is very similar to
the subsets defined in previous works of Balliu et al. [3].

▶ Definition 6.5 (Subsets of nodes in G). We define the following subsets of nodes in G:
Define S′

R,1 as the set of nodes v in G such that the subgraph induced by v and its
descendants within radius-β is isomorphic to Tβ.
For 2 ≤ i ≤ k + 1, define S′

R,i as the set of nodes v in G such that the subgraph induced
by v and its descendants within radius-β is isomorphic to Tβ and contains only nodes in
set S′

C,i−1.
For 1 ≤ i ≤ k, define S′

C,i as the set of nodes v in G meeting one of the following
conditions.
v is in one of these layers: (R, i+ 1), (C, i+ 1), (R, i+ 2), . . . , (R, k + 1).
v ∈ Pi is either the node ui

0 or its descendant in layer (C, i).
v /∈ Pi is either the node ui

l or an ancestor of it in layer (C, i), for some l ̸= 0.

The intuition behind the definition is the following: S′
R,1 basically consists of all nodes of

the tree G apart from some layer (R, 1) nodes which are very close to leaves. S′
C,i contains

the nodes which are descendants of ui
0 but also an ancestor of some node ui

l. It is evident
from the definition that S′

C,i contains nodes only from layer (C, i) or above. And finally, S′
R,i

contains of only nodes in layer (R, i) or above. In particular, it contains the nodes, and their
immediate children, that are roots of subgraphs isomorphic to Tβ that are fully in layer (R, i).

We prove some basic properties of the sets in Definition 6.5. The proof is again similar to
that in the previous works of Balliu et al. [3], we restate it for the convenience of the reader:

▶ Lemma 6.6 (Subset containment). We have S′
R,1 ⊇ S′

C,1 ⊇ · · · ⊇ S′
R,k+1 ̸= ∅.

Proof. The claim that S′
C,i ⊇ S′

R,i+1 follows from the definition of S′
R,i+1 that v ∈ S′

C,i is
a necessary condition for v ∈ S′

R,i+1. To prove the claim that S′
R,i ⊇ S′

C,i, we recall that
v ∈ S′

C,i implies that v is in layer (C, i) or above. By the construction of G, the subgraph
induced by v and its descendants within the radius-β neighborhood of v is isomorphic to Tβ

and contains only nodes in layer (R, i) or above. Since all nodes in layer (R, i) or above are
in S′

C,i−1, we infer that v ∈ S′
C,i implies v ∈ S′

R,i.
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To see that S′
R,k+1 ̸= ∅, consider the node r, which is the root of GR,k+1. The subgraph

induced by r and its descendants within radius-β neighborhood of r is isomorphic to Tβ and
contains only nodes in layer (R, k+ 1). We know that all nodes in layer (R, k+ 1) are in S′

C,k,
so r ∈ S′

R,k+1. ◀

It is also evident that the children of the nodes in S′
C,i are also contained in S′

R,i, for all
i ∈ {1, 2, . . . , k}:

▶ Observation 6.7. If v is a child of some node in S′
C,i, then v ∈ S′

R,i, for all i ∈ {1, 2, . . . , k}.

Furthermore, due to the recursive structure of the input instance G, we get the following
result:

▶ Observation 6.8. For each i ∈ {1, 2, . . . , k}, for all v ∈ S′
C,i there exists a path P from

ui
l (for some l) to ui

0, such that P contains v. Moreover, all nodes of P , and their children,
belong to S′

R,i.

6.2 Running Algorithm on the Lower-Bound Graph
We are now ready to show that no locality-t randomized online-LOCAL algorithm can solve
problem Π on graph G and processing order Z with high probability. For contradiction,
we assume that such algorithm A exists. We then show that algorithm A fails to find a
proper labeling for lower bound graph G with randomized input sequence Z with probability
larger than 1

n . In particular, this shows that A does not work with high probability. Hence
the locality any randomized online-LOCAL algorithm solving Π must be strictly larger than
t = Ω(n1/k).

We start by proving the following result that holds for every valid output labelling:

▶ Lemma 6.9. Let L be a valid labeling of the nodes according to Π. For each i ∈ {1, 2, . . . , k},
let Σ̃L

i ⊆ Σ be any subset of labels such that for each node v ∈ S′
R,i, the corresponding label

L(v) is in Σ̃L
i . Let M be the automaton associated with the restricted problem Π ↾Σ̃L

i
. Then

for all nodes u′, u′′ ∈ S′
C,i such that u′ ← u′′ is an edge in G, edge L(u′) → L(u′′) exists

in M.

Note that the result talks about existence of the edge L(u′)→ L(u′′) in the automaton of the
restricted problem Π ↾Σ̃L

i
. The result would trivially hold for the automaton of the original

problem Π.

Proof. By Observation 6.8, there exists path P = (ui
0 = v0 ← v1 ← · · · ← vα = ui

l) for some
l containing node u′′, and hence also u′. Moreover, all nodes of P and their children belong
to set S′

R,i. This implies that the labels of all nodes of P , and labels of their children, belong
to set Σ̃L

i .
Let σ ∈ Σ̃L

i be the label of u′, and let σ1, σ2, . . . , σ∆ be the labels of its children. As the
children of u′ belong to S′

R,i, all σj belong to Σ̃L
i . Therefore (σ : σ1, . . . , σ∆) must be a valid

configuration in the restricted problem Π ↾Σ̃L
i

. This then implies that all σ → σ1, . . . , σ → σ∆
are edges in M. As the label of node u′′ is one of σ1, . . . , σ∆, edge σ = L(u′)→ L(u′′) = σj

belongs to M. ◀

We now restrict our attention to a particular run of algorithm A on the randomized
sequence Z on graph G. We start by defining the set of labels the algorithm uses to label
nodes ui

0, u
i
1, u

i
2, . . . , u

i
ci

(see Definition 6.3):
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▶ Definition 6.10. For i ∈ {1, 2, . . . k}, let Σ′
i ⊆ Σ be the set of labels used by A to label the

nodes ui
0, u

i
1, u

i
2, . . . , u

i
ci

.

Note that the set Σ′
i, i ∈ {1, 2, . . . , k} depends on a particular run of A, and can change with

different runs of A. Whenever we talk about Σ′
i, i ∈ {1, 2, . . . , k}, we consider a fixed run of

A and analyze it.
We now prove the following result on the structure of these sets of labels:

▶ Lemma 6.11. Let j be an integer in {0, 1, 2, . . . , k}, and let Σ′
1,Σ′

2, . . . ,Σ′
k be the sets of

nodes A used to label nodes ui
0, u

i
1, u

i
2, . . . , u

i
ci

. If there now exists sets Σ = Σ′′
0 ,Σ′′

1 ,Σ′′
2 , . . . ,Σ′′

j

satisfying Σ′′
i ∈ flexible-SCC(trim(Σ′′

i−1)) and Σ′
i ⊆ Σ′′

i for all i ∈ {1, 2, . . . j}, then the
following must hold for the full labeling L produced by A:

Induction hypothesis for S′
R,i: for all i ∈ {1, 2, . . . , j, j + 1} and v ∈ S′

R,i we have
L(v) ∈ trim(Σ′′

i−1).
Induction hypothesis for S′

C,i: for all i ∈ {1, 2, . . . , j} and v ∈ S′
C,i we have L(v) ∈ Σ′′

i .
The idea behind defining Σ′′

0 ,Σ′′
1 , . . . ,Σ′′

j is to ensure that (ΣR
1 = trim(Σ′′

0),ΣC
1 = Σ′′

1 ,ΣR
2 =

trim(Σ′′
1), . . . ,ΣC

j = Σ′′
j ,ΣR

j+1 = trim(Σ′′
j−1)) forms a good sequence and the corresponding

nodes follow some specific structure.

Proof. We prove this lemma with induction on i for a fixed j ≤ k:

Base Case: induction hypothesis for S′
R,1. By definition, we have Σ′′

0 = Σ. Moreover, by
definition, for every node v ∈ S′

R,1, the radius-β descendants of v are isomorphic to Tβ . For
any valid assignments, the labels of v and its radius-β descendants come from the set Σ = Σ′′

0 .
By definition of β, this must mean that the label of v must come from trim(Σ) = trim(Σ′′

0).
Therefore, for all v ∈ S′

R,i, we have L(v) ∈ trim(Σ′′
i−1) for i = 1.

Induction: induction hypothesis for S′
C,i. We assume that for some 1 ≤ i ≤ j, the induction

hypothesis for S′
R,i holds true, i.e. for all v ∈ S′

R,i we have L(v) ∈ trim(Σ′′
i−1). Let v be any

node in S′
C,i. By Observation 6.8, there exists a path P from ui

l for some l to ui
0 containing

v where all nodes of P and the children of all such nodes belong to S′
R,i. Let the path P be

ui
0 = v0 ← v1 ← · · · ← vα = ui

l. Then vy and its children are in S′
R,i, for all y ∈ {0, 1, . . . , α}.

Moreover, by Lemma 6.9, for all y ∈ {0, 1, . . . , α− 1}, L(vy)→ L(vy+1) is a directed edge in
M, where M is the automaton associated with the restricted problem Π ↾trim(Σ′′

i−1).
Now, L(ui

0), L(ui
l) ∈ Σ′

i and Σ′
i ⊆ Σ′′

i where Σ′′
i is a flexible strongly connected component

in M by the definition of Σ′′
i . Since M has the directed edge L(vy) → L(vy−1) for all

y ∈ {0, 1, . . . , α − 1}, L(ui
0) = L(v0) → L(v1) → · · · → L(v) → · · · → L(vα) = L(ui

l) is a
walk in M that starts and ends in the strongly connected component Σ′′

i . This must mean
L(v) ∈ Σ′′

i , for all v ∈ S′
C,i.

Induction: induction hypothesis for S′
R,i. We assume that for some 2 ≤ i ≤ j + 1, the

induction hypothesis for S′
C,i−1 holds true, that is for all v ∈ S′

C,i−1 we have L(v) ∈ Σ′′
i−1.

Moreover, by definition, each node v ∈ S′
R,i is a root of a subtree isomorphic to Tβ such that

all nodes reside in S′
C,i−1, each of which has a label from set Σ′′

i−1 by induction hypothesis
for S′

C,i−1. Hence, the label of v must be from trim(Σ′′
i−1), implying for all v ∈ S′

R,i, we have
L(v) ∈ trim(Σ′′

i−1). ◀

We can now combine this result with the independence lemma (Lemma 6.4) to provide a
lower bound for the failure probability of A on the randomized adversarial sequence Z, even
after fixing the labels produced by A on nodes ui

0, u
i
1, . . . , u

i
ci

for all i ∈ {1, 2, . . . , k}:
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▶ Lemma 6.12. For all choices of Σ′
1,Σ′

2, . . . ,Σ′
k, algorithm A fails to produce a correct

labelling for the randomized adversarial sequence Z of G with probability more than 1
n .

Proof. Let j be the largest integer in {0, 1, 2, . . . , k} such that there exists Σ′′
0 ,Σ′′

1 ,Σ′′
2 , . . . ,Σ′′

j

satisfying the conditions of Lemma 6.11, that is:
Σ′′

0 = Σ,
for all i ∈ {1, 2, . . . j},Σ′′

i ∈ flexible-SCC(trim(Σ′′
i−1)) and Σ′

i ⊆ Σ′′
i .

Note that such j always exists as these conditions trivially hold true for j = 0.
We now do a case analysis on j and show that in each case the algorithm fails to produce

a correct labeling with probability more than 1
n :

Case I: j < k. This means that there does not exist Σ′′
j+1 ⊇ Σ′

j+1 such that Σ′′
j+1 ∈

flexible-SCC(trim(Σ′′
j )). Let M be the automaton associated with the restricted problem

Π ↾trim(Σ′′
j

). Now one of the following must hold:
(a) Σ′

j+1 ⊈ trim(Σ′′
j ),

(b) Σ′
j+1 ⊆ trim(Σ′′

j ) but Σ′
j+1 does not form a strongly connected component of M,

(c) Σ′
j+1 ⊆ trim(Σ′′

j ) and Σ′
j+1 forms an inflexible strongly connected component of M.

Observe that if all three are false, then we could take the strongly connected component
containing the elements of Σ′

j+1 in M as Σ′′
j+1. This would contradict our assumption that

there does not exist Σ′′
j+1 ∈ flexible-SCC(trim(Σ′′

j )).
We now show that for all three cases, the probability that A eventually fails to output a

correct solution is more than 1
n :

Case I(a): Σ′
j+1 ⊈ trim(Σ′′

j ). There must be some l such that label L(uj+1
l ) generated by

A for node uj+1
l is not in set trim(Σ′′

j ). By Lemma 6.11, we know that in any valid
labelling we have L(v) ∈ trim(Σ′′

j ) for every node v ∈ S′
R,j+1. However, this is violated

in this particular run as uj+1
l ∈ S′

C,j+1 ⊆ S′
R,j+1 but L(uj+1

l ) /∈ trim(Σ′′
j ). Therefore,

irrespective of the other output labels, A must fail to generate a valid labelling for G.
Thus, the probability that A eventually fails is indeed 1.

Case I(b): Σ′
j+1 does not from a strongly connected component of M. There must be

two labels σ1, σ2 ∈ Σ′
j+1 such that σ1 and σ2 are not in the same strongly connected com-

ponent in M. This means that at least one of walks σ1 ⇝ σ2 and σ2 ⇝ σ1 does not exist
in M. Without loss of generality, we may assume that walk σ1 ⇝ σ2 is missing from M.
Algorithm A uses label σ1 to label at least one of nodes uj+1

0 , uj+1
1 , . . . , uj+1

cj+1
. As the

choices of the algorithm are independent of the input sequence Z by Lemma 6.4, and the
sequence Z contains a uniformly random permutation of the nodes uj+1

0 , uj+1
1 , . . . , uj+1

cj+1
,

the probability that A uses label σ1 on node uj+1
0 is at least 1

cj+1+1 >
1
n .

We now show that algorithm A is bound to fail in this case. As label σ2 ∈ Σ′
j+1,

algorithm A must use it to label at least one of the nodes uj+1
1 , . . . , uj+1

cj+1
. Let that

node be uj+1
l . Consider path P = uj+1

0 ← v1 ← · · · ← vα ← uj+1
l . Note that all

nodes of P , and their children, belong to set S′
R,j . Lemma 6.9 now gives us that

walk σ1 = L(uj+1
0 ) → L(v1) → · · · → L(vα) → L(uj+1

l ) = σ2 exists in M, which
contradicts our assumption that σ1 and σ2 don’t belong to the same strongly connect
component.
As this happens with probability at least 1

cj+1+1 >
1
n , algorithm A must fail with at least

the same probability.
Case I(c): Σ′

j+1 forms an inflexible strongly connected component of M. Similar to
the previous case, there must exist a walk L(uj+1

0 )⇝ L(uj+1
l ) in M for each l ∈ {1, 2,

. . . , cj+1}. For any pair of labels (L(uj+1
0 ), L(uj+1

l )) which are in an inflexible strongly
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connected component in M, automaton M cannot contain walks L(uj+1
0 )⇝ L(uj+1

l ) of
length both d and d+ 1; otherwise the component containing the pair would be flexible.
However, the distance between nodes uj+1

0 and uj+1
l is even with probability 1

2 and odd
with probability 1

2 by construction of sequence Z. As the labels chosen by A for nodes
uj+1

0 and uj+1
l are independent of sequence Z by Lemma 6.4, it must fail to choose a

label with the correct parity with probability at least 1
2 . Hence the algorithm must fail

with probability at least 1
2 >

1
n .

This proves that if j < k, the probability that the algorithm eventually fails is more than 1
n .

The other case j = k is relatively simpler:

Case II: j = k. Let v be a node in S′
R,k+1; note that S′

R,k+1 ̸= ∅ by Lemma 6.6. Due to
Lemma 6.11, the label of node v must be in trim(Σ′′

k) in any correct labelling of the graph,
which implies that trim(Σ′′

k) ̸= ∅. However, this cannot be the case since(
trim(Σ′′

0),Σ′′
1 , trim(Σ′′

1), . . . , trim(Σ′′
k−1),Σ′′

k , trim(Σ′′
k)

)
would be a good sequence of length k + 1, contradicting dπ = k. Therefore, algorithm A
must eventually fail (i.e. with probability 1).

Since the algorithm A fails with probability more than 1
n in all cases, the failure probability

of A in total must be more than 1
n . ◀

The main result now follows as a simple corollary of the previous lemma:

Proof of Theorem 2.2. Let A be a randomized online-LOCAL algorithm solving LCL prob-
lem Π on rooted regular trees having depth dΠ = k ∈ N+ with locality t = o(n1/k). Then by
Lemma 6.12 algorithm A must fail with probability more than 1

n . Hence any randomized
online-LOCAL algorithm solving Π with high probability must have locality Ω(n1/k). ◀

7 Lower Bounds in the Super-Logarithmic Region in Unrooted Regular
Trees

In this section, we restate and prove the following result:

▶ Theorem 2.3. Let Π be an LCL problem on unrooted regular trees with finite depth
k = dΠ > 0. Then any randomized online-LOCAL algorithm for Π has locality Ω(n1/k).

Let us thus fix such a problem Π and its depth k. We show that the existence of an
o(n1/k) algorithm which solves Π will force a contradiction. The procedure is analogous to
the rooted case.

We pick γ to be the smallest integer satisfying: for each set S ⊆ V and each C ∈ S\trim(S),
there exists no correct labeling of T ∗

γ where the node configuration of the root node is C
and the node configurations of the remaining ∆-degree nodes are in S. By definition of trim,
such a γ will always exist. We note that in any algorithm, γ is a constant, depending only
on the underlying LCL problem Π.

▶ Definition 7.1 (Lower bound graphs). Let t be any positive integer, and choose s = 4t+ 4.
GR,1 is the rooted tree Tγ, and G∗

R,1 is the rooted tree T ∗
γ . We say all nodes in GR,1 or

G∗
R,1 are in layer (R, 1).

For each integer i ≥ 1, GC,i is constructed as follows. Begin with an s-node path
(v1, v2, . . . , vs), and let v1 be the root. For each 1 ≤ i < s, append ∆− 2 copies of GR,i to
vi. For i = s, append ∆− 1 copies. We say nodes v1, v2, . . . , vs are in layer (C, i).
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For each integer i ≥ 2, GR,i is constructed as follows. Begin with a rooted tree Tγ . Append
∆− 1 copies of GC,i−1 to each leaf in Tγ . We say all nodes in Tγ are in layer (R, i). The
rooted tree G∗

R,i is defined analogously by replacing Tγ with T ∗
γ in the construction.

The choice of s = 4t+ 4 will be motivated later. Note that although the trees GR,i, G
∗
R,i,

and GC,i are defined as rooted trees, we can treat them as unrooted trees. We define our
main lower bound graph to be G = G∗

R,k+1. We will use this graph to show that if dΠ = k,
there can be no algorithm faster than Ω(n1/k) solving Π on G.

From the construction, it can easily be seen that G = G∗
R,k+1 has O(tk) nodes. So to

show that Π requires a locality of Ω(n1/k), it suffices to show that solving Π requires locality
of at least t on G.

We now define a sequence of subsets of nodes in G.

▶ Definition 7.2 (Subsets of nodes in G: SR,i, SC,i, Ui). We define the following sets:
Let SR,1 consist of all nodes in G with their radius-γ neighborhood isomorphic to Tγ .
For each path (v1, v2, . . . , vs) in layer (C, i), choose one element of the set {v2t+1, v2t+2}
uniformly at random. Define the set of all such elements as Ui.
For 1 ≤ i ≤ k, construct SC,i as follows: Initialize SC,i as Ui. For any uj , uk ∈ Ui, there
exists a path joining them, P = (uj , s1, s2, . . . , uk). Add each node sl in such a path to
Sc,i.
For 2 ≤ i ≤ k + 1, let SR,i consist of all nodes in SC,i−1 with radius-γ neighborhood
contained entirely within SC,i−1 and isomorphic to Tγ .

Intuitively, SC,i consists of all nodes in Ui and all nodes “above” any node in Ui. The
layers (R, i) and (C, i) form a partition of nodes in G; we impose an order on these layers for
subsequent discussion: let (R, 1) ⪯ (C, 1) ⪯ · · · ⪯ (R, k) ⪯ (C, k) ⪯ (C, k + 1). For example,
“layer (R, i) or higher” refers to layers (R, i), (C, i), . . . , (R, k + 1).

We now prove some properties of the sets SR,i and SC,i.

▶ Lemma 7.3 (Subset containment). It holds that SR,1 ⊇ SC,1 ⊇ SR,2 ⊇ · · · ⊇ SR,k+1.

Proof. Each SC,i ⊇ SR,i+1 follows immediately from the definition, as we require each node
in SR,i+1 to be in SC,i in the construction.

To see that SR,i ⊇ SC,i, observe that SR,i contains all nodes in layers (R, i) and higher,
for all i ≥ 2: each node in layer (R, i) or higher is a distance at least 2t+ 1≫ γ from any
node in Ui, and therefore its radius-τ neighborhood is contained entirely within SC,i. It can
easily be seen from the construction that this neighborhood is isomorphic to Tγ . So we have
that SR,i ⊇ SC,i. ◀

We now define our randomized adversarial order. Given a randomized online-LOCAL
algorithm A which has locality t, we will show that if A is given nodes in this order, it will
fail with probability asymptotically greater than 1

n .

▶ Definition 7.4 (Randomized adversarial order). We define a randomized adversarial order
of nodes as follows: begin with an empty sequence S.
1. For i from 1 to k, append the nodes of Ui to S in any randomized order.
2. Add all the remaining nodes (those in V (G) \

⋃
i Ui) to S in any order.

Also, define SU to be the subsequence of S consisting only of nodes in some Ui. Note that
SU is a prefix of S.

Now, we argue that when labeling the nodes of
⋃

i Ui, the label which A assigns the ith
node of SU is independent of the randomness in SU ’s order.
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▶ Lemma 7.5 (Independence of labels of nodes in each Ui). For i ∈ {1, 2, . . . , k}, the labels
assigned by A to the nodes of Ui are independent of the way the nodes of Ui are ordered
in SU .

Proof. Let Ui = {ui
1, u

i
2, . . . , u

ci
i }. The radius-t neighborhoods of any ui

p and ui
q are identical

and disjoint: since each node of Ui is chosen as the 2t + 1 or 2t + 2th node in a path of
length 4t+ 4, its radius-t neighborhood cannot see into any other such paths, and because
Ui ⊆ SC,i ⊆ SR,i for all i ∈ {1, 2, . . . , k}, each ui

p’s radius-t neighborhood is isomorphic to Tγ .
Since no nodes within the radius-t neighborhood of any ui

p are labeled when ui
p is revealed

to the algorithm, the algorithm will be unable to distinguish between ui
p and ui

q for any
p ̸= q. For i1 ̸= i2, the radius-t neighborhoods of any two ui1

p1
and ui2

p2
are also disjoint as

their nearest common ancestor is a distance of at least 2t from at least one of them. So
every ui

p’s radius-t neighborhood is identical, disjoint, unlabeled at the time of revealing to
the algorithm, for all orders of S. Thus, the algorithm is unable to distinguish between the
nodes of Ui, and thus, the labeling of Ui is independent of the randomness of the sequence S,
for all i ∈ {1, 2, . . . , k}. ◀

Note that this also means the orientation—in particular, the half-edge labels which
connect a given ui

j to the rest of the nodes in a path of layer (C, i)—is indistinguishable to
the algorithm.

We now have all necessary lemmas and definitions for the proof of Theorem 2.3.

Proof outline. We provide a high-level overview of the proof before discussing it with more
technicality. We first prove by induction that all edges in SC,i must be labeled with labels
in a flexible-SCC of the labels used in SR,i, and that all nodes in SR,i must be labeled with
labels in the trim of the labels used in SR,i−1. This forces the labels of these sets to be
contained within a corresponding set of our “good sequence”—that is, the labels of the nodes
in SR,i must belong to Vi, and the labels of SC,i must belong to Di. But this requires that
SR,k+1 be labeled with elements of some Vk+1— which, because the depth of Π is dΠ = k

by assumption, is empty. This allows us to conclude that A is unable to generate a valid
labeling of G with a sufficiently high probability of success.

Throughout the proof, we use the following notation. For each node v ∈ G, we define VA
v

as the set of all possible node configurations of v that can occur in any run of A. Similarly,
for any two edges e1 and e2 incident to a node v, we define DA

v,e1,e2
to be the set of all

multisets {a, b} ∈
((Σ

2
))

such that {a, b} is a possible outcome of labeling the two half-edges
(v, e1) and (v, e2) when we run A.

We now define our induction hypotheses.
Induction hypothesis for SR,i. For each 1 ≤ i ≤ k + 1, any node v ∈ SR,i satisfies
VA

v ⊆ Vi.
Induction hypothesis for SC,i. For each 1 ≤ i ≤ k, for each node v ∈ SC,i and any
two incident edges e1 = (v, u) and e2 = (v, w) such that u and w are in layer (C, i) or
higher, we have DA

v,e1,e2
⊆ Di.

Base case: SR,1. We show that the induction hypothesis for SR,1 holds. We recall that γ
was chosen to be the smallest integer such that for each set S ⊆ V and each C ∈ S \ trim(S),
there exists no correct labeling of T ∗

γ where the node configuration of the root node is C and
the node configurations of the remaining ∆-degree nodes are in S. Now consider any node
v ∈ SR,1: by construction, the radius-γ neighborhood of v is isomorphic to T ∗

γ . By setting
S = V, we can conclude there is no correct labeling of G such that the labeling chosen for v
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is in V \ trim(V) = V \V1. So for any run of A, the node configuration of v must be contained
within Vi—that is, VA

v ⊆ Vi. ◀

▶ Lemma 7.6 (Inductive step: SR,i). For 2 ≤ i ≤ k, if the induction hypotheses for SR,i−1
and SC,i−1 hold, then the induction hypothesis for SR,i holds.

Proof. Consider any v ∈ SR,i. We recall that by the construction of SR,i, v’s radius-γ
neighborhood is isomorphic to T ∗

γ . We note that the ∆-degree nodes in this T ∗
γ are the nodes

within the radius-(γ − 1) neighborhood of v. Consider any node u within this neighborhood.
Since u ∈ SC,i−1 ⊆ SR,i−1, we can apply the inductive hypothesis for SR,i−1 to conclude
that VA

u ⊆ Vi−1. Further, since all neighbors of u are in SC,i−1, we can apply the inductive
hypothesis on all edges e1, e2 incident to u, and conclude that DA

u,e1,e2
⊆ Di. From this, it

is clear that VA
u ⊆ S, where S consists of node configurations V ∈ Vi−1 such that for all

{a, b} ∈
((Σ

2
))

such that {a, b} ⊆ V , {a, b} ∈ Di. (Intuitively, this is the restriction of V⟩−∞
to node configurations which have every pair of edge labels {a, b} ∈ V contained in Di.)

So all ∆-degree nodes in the T ∗
γ rooted at v have labels in S. So by the definition of

γ, no valid labeling of this T ∗
γ can assign v a node configuration from S \ trim(S). Thus,

VA
v ⊆ trim(S) = Vi. ◀

We now prove the inductive hypothesis for Di. Note that this step is significantly more
involved.

▶ Lemma 7.7 (Inductive step: SC,i). For 1 ≤ i ≤ k, if the induction hypothesis holds for
SR,i, then the induction hypothesis for SC,i holds.

Proof. We first show that all u1, u2 ∈ Ui must belong to the same path-flexible strongly
connected component. Then, we show that all v ∈ SC,i must also belong to this flexible-SCC.
Finally, we argue that this flexible-SCC is indeed Di.

Let u1, u2 ∈ Ui. Recalling that each ui’s distance from layer (R, i + 1) was chosen
uniformly at random from the set {2t+ 1, 2t+ 2}, let α denote the distance between u1 and
u2 if 2t+ 1 was the chosen distance from layer (R, i+ 1) for both u1 and u2. So the actual
distance between u1 and u2 is either α (with probability 1/4), α+ 1 (with probability 1/2),
or α+ 2 (with probability 1/4). Further, by Lemma 7.5, at the time they are revealed to the
algorithm A, it does not know which of these 3 values is the true distance between u1 and u2,
nor does it know which half-edge of each node is contained in the path between u1 and u2.

Let Du1 denote the set of all elements of
((Σ

2
))

that can be assigned to 2 half-edges of
u1 in some fixed correct run of A. Define Du2 analogously for u2. Since the path between
u1 and u2 can be of length α, α+ 1, or α+ 2, and this length is unknown to the algorithm,
any {a1, b1} ∈ Du1 and {a2, b2} ∈ Du2 must have walks of all of these lengths in MVi

. Since
α+ 1 and α+ 2 are clearly coprime, there exists some N ∈ N (the Frobenius number of α+ 1
and α+ 2) such that for all n > N , there exist x, y ∈ N such that n = x(α+ 1) + y(α+ 2).
By definition, then, all such {a1, b1} and {a2, b2} must belong to the same path-flexible
strongly-connected component of Vi. We call this component DU .

Now, consider any v ∈ SC,i, and any two of its incident edges e1 = {v, w1} and e2 =
{v, w2} such that w1, w2 are in layer (C, i) or higher. Note that w1, w2 are therefore in
SC,i as well. By construction of SC,i, there is a path P1 = (u1, . . . , w1, . . . , u2) and a path
P2 = (u3, . . . , w2, . . . , u4) for some u1, u2, u3, u4 ∈ Ui (with u1 ̸= u2, u3 ≠ u4). Without loss
of generality, suppose u1 ̸= u4. Then we can construct a path P ′ = (u1, . . . , w1, v, w2, . . . , u4)
between u1 and u4 which passes through e1 and e2. Let a1 be the edge adjacent to u1 which
is traversed in P ′, and b1 any other edge adjacent to u1. Define a4 and b4 analogously for u4.
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Let L(v, e) denote the label assigned to the half-edge (v, e). By the previous observa-
tions, L(a1, b1) and L(a4, b4) belong to the same flexible strongly-connected component, so
L(a1, b1) → · · · → L(e1, e2) → · · · → L(a4, b4) is a walk in the automaton M which starts
and ends in the same flexible strongly connected component. Thus, L(e1, e2) must also
belong to this component—that is, Dv,e1,e2 ⊆ DU .

Finally, it can be seen that DU is indeed Di by noting that we must be able to label
SC,i for i ∈ {1, . . . , k}. We have seen that DU must be a path-flexible strongly connected
component of Vi. Thus, if Vi is a component of a good sequence of length less than
k, then trim(flexible-SCC(Vk−1)) = ∅ by definition, and we would thus have that DU =
flexible-SCC(Vi−1) = ∅, and would not be able to label SC,k. ◀

We now have sufficient tools to prove Theorem 2.3:

Proof of Theorem 2.3. Given a randomized online-LOCAL algorithm A with depth k = dΠ
which runs with o(n1/k) locality, we can derive a contradiction. Taking G to be defined
as above, with subsets SR,1, SC,1, . . . , SC,k, SR,k+1, the previous induction argument tells us
that SR,k+1 must be labeled with elements of some Vk+1 = trim(flexible-SCC(Vk)). But if
Vk+1 ≠ ∅, then we have a good sequence of length k + 1—a contradiction to the assumption
that dΠ = k. Thus, no such o(n1/k) algorithm can exist, and Π has locality Ω(n1/k). ◀

8 Extending the Gap Between o(n) and ω(
√

n) in Unrooted Trees

Here, we are concerned with the following result:

▶ Theorem 2.6. Suppose Π is an LCL problem that can be solved with o(n) locality in
the online-LOCAL model (with or without randomness) in unrooted trees. Then Π can be
solved in unrooted trees in online-LOCAL with O(

√
n) locality (with or without randomness,

respectively).

Our proof is based on the work of Balliu et al. [5]. In said paper the authors show that,
in the LOCAL model, any LCL with sublinear locality o(n) can be transformed into an LCL
with locality O(

√
n).

8.1 Previous Work
We provide a brief overview of the proof described in [5].

Suppose we have an LCL Π which is solved by an algorithm A which is known to run
with sublinear (o(n)) locality. For any graph G, we can distributedly construct a “virtual
graph” G′ with similar properties to G by viewing a radius-O(

√
n) neighborhood. G′ is

constructed to be much bigger than G, and has its size upper-bounded by N ≫ n. It will be
possible to simulate the execution of A on G′ by viewing only its corresponding radius-O(

√
n)

neighborhoods in G.
Given a tree T , we will now describe how we distributively construct T ′ using radius

O(
√
n) neighborhoods of T .

Let τ = c
√
n for a constant c which depends only on the LCL problem Π (we will determine

its precise value later). Given a node v ∈ T , we consider its radius-2τ neighborhood. We
construct the skeleton tree Tskel by performing the following operation τ times: If a node
within the radius-2τ neighborhood of v is a leaf node, remove it. Repeating this operation τ
times results in removing all subtrees of height τ or less.

Now from Tskel we construct a set of paths QT by first removing all nodes of degree greater
than 2. We are left with a set of paths which we will call T ′

skel. We find a (c+ 1, c) ruling set
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(a) (b)

(c)

Figure 8 (a) T with height-τ trees (green) and long paths (blue) identified. (b) T with ruling set
nodes (red) and paths to pump (blue) (c) S, with pumped paths.

R for these paths. Note that this can be done with constant locality in the online-LOCAL
model. Remove all nodes from R from T ′

skel to obtain QT .
So we have a set QT of paths of length l such that c ≤ l ≤ 2c. From here, we construct T ′.
We now define c = lpump + 4r. Since c > lpump, we can apply the pumping lemma to make

each path in Q’s corresponding path in T arbitrarily long.

8.2 Constructing a Virtual Tree

At a high level, we use the following procedure, nearly identical to that described by Balliu
et al. [5]; the steps are visualized in Figure 8. For each node we are given, we construct
a portion of a virtual graph with many more nodes than our original graph. This graph
consists of radius-O(

√
n) neighborhoods connected by very long paths, which cannot be

seen in full by the algorithm. We show we can run the algorithm on this graph (that is,
without knowledge of the parts of the original graph which are outside of the selected node’s
radius-O(

√
n) neighborhood), and that the results of this algorithm will give us a valid

labeling of the original graph.
We begin by defining our new virtual graph. Suppose we are given a tree T = (V,E) and

an online-LOCAL algorithm A with locality o(n).



A. Dhar et al. 33

8.2.1 Skeleton Tree
Our first step is to “prune” T , by removing any subtrees of height less than or equal to
τ = c

√
n (for a constant c which we will define later). We call this the skeleton tree T ′ of T .

More formally, initialize T ′ as a copy of T . For τ rounds, we remove all leaf nodes from
T ′. After this, T ′ is our skeleton tree.

Note that we perform this construction distributedly and sequentially: given a node v,
we check its radius-2τ neighborhood, and prune the leaf nodes for τ rounds. This ensures
that every node within a radius-τ neighborhood will be completely pruned.

For the remaining nodes in T ′ (those which were not pruned), we define a function
ψ : V (T ′)→ V (T ) which maps nodes of T ′ to their corresponding node in T .

8.2.2 A Set of Long Paths
We now want to construct a set of paths of T ′ which are of length l ∈ [c, 2c] for some
constant c.

We begin by removing any node with degree greater than 2 from the skeleton tree T ′.
From here, we are left with a set of long paths (note we only worry about those within
a radius-τ neighborhood of whichever node we have selected at a time). We construct a
(c+ 1, c) ruling set for the remaining nodes. (Recall that an (α, β) ruling set is a set of nodes
which are a distance at least α apart, with the property that every other node in the graph
is no more than distance β from at least one ruling set node.)

Removing all the ruling set nodes, we obtain a set of paths with length at most 2c. We
discard any paths shorter than c (which occur at the ends of the original long paths we obtain
after removing the high-degree nodes). We now have a set of paths with length l ∈ [c, 2c],
which we call Q.

8.2.3 Virtual Tree
Before we can finish our definition of the final virtual tree S, we need to introduce some
additional concepts. We do this in the next section, then resume the construction of S in
Section 8.4.1.

8.3 An Equivalence Relation on Paths and the Pumping Lemma
We take an “intermission” to discuss properties of the paths of Q.

Given a graph G with a subgraph H, we define the poles of H to be nodes v ∈ V (H) which
are adjacent to some node in V (G) \ V (H). Now we can define the following equivalence
relation on trees (introduced originally in [11]):

▶ Definition 8.1 (Equivalence relation ∗∼). Given a graph H and its poles F , define ξ(H,F ) =
(D1, D2, D3) to be a tripartition of V (H) where:

D1 =
⋃

v∈F N
r−1(v)

D2 =
⋃

v∈D1
Nr(v)\D1

D3 = V (H)− (D1 ∪D2)
Let Q and Q′ be the subgraphs of H and H ′ induced by the vertices D1 ∪D2 and D′

1 ∪D′
2

respectively. The equivalence holds, i.e., (H,F ) ∗∼ (H ′, F ′), if and only if there is a 1 to 1
correspondence φ : (D1 ∪D2)→ (D′

1 ∪D′
2) satisfying:

Q and Q′ are isomorphic under φ, preserving the input labels of the LCL problem (if
any) and the order of the poles.
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Let L∗ be any assignment of the output labels to vertices in D1 ∪D2, and let L′
∗ be the

corresponding labeling of D′
1 ∪D′

2 under φ. Then L∗ is extendible to V (H) if and only if
L′

∗ is extendible to V (H ′).

It is proven by Chang and Pettie [11] that if the number of poles is constant, there is a
constant number of equivalence classes under ∗∼. We also inherit the following lemma from
Chang and Pettie [11], where Replace(G, (H,F ), (H ′, F ′)) is the graph obtained by replacing
a subgraph H of G with poles F with a new graph H ′ with poles F ′.

▶ Lemma 8.2. Let G′ = Replace(G, (H,F ), (H ′, F ′)). Suppose (H,F ) ∗∼ (H ′, F ′). Let
D0 = V (G) \ V (H). Let L⋄ be a complete labelling of G that is locally consistent for all
vertices in D2 ∪D3. Then there exists a complete labelling L′

⋄ satisfying the following:
L⋄ = L′

⋄ for all v ∈ D0 ∪D1 ∪D2 and their corresponding vertices in D′
0 ∪D′

1 ∪D′
2. Also,

if L⋄ is locally consistent for a node v, then L′
⋄ is locally consistent for φ(v).

L′
⋄ is locally consistent for all nodes in D′

2 ∪D′
3.

We now inherit the notation introduced by Balliu et al. [5]: given a tree rooted at v,
which we denote Tv, let Class(Tv) denote the equivalence class of Tv with v as its unique pole.
Given a path Q ∈ Q with length k, we can consider Q’s image in the original tree T as a
sequence of trees, (Ti)i∈[k], since each node v ∈ Q is the root of some (possibly empty, aside
from v itself) tree which was deleted in the first stage of processing. Let Type(Q) denote the
equivalence class of the path Q with its 2 endpoints as poles.

We now restate 2 lemmas:

▶ Lemma 8.3. Each node u can determine the type of Tv for all v contained within u’s
radius-τ neighborhood.

This lemma allows us to ignore the deleted subtrees of T \ T ′, as they can be filled in at
the end.

▶ Lemma 8.4. Let H = (Ti)i∈[k] and let H ′ = (Ti)i∈[k+1] be identical to H in its first k
trees. Then Type(H ′) is a function of Type(H) and Class(Tk+1).

8.3.1 The Pumping Lemma
We now have the necessary pieces to define a crucial lemma: the pumping lemma for paths.

▶ Lemma 8.5 (Pumping lemma for paths). Let H = (Ti)i∈[k] be a chain of trees with k ≥ lpump.
Then H can be decomposed into three subpaths H = x ◦ y ◦ z such that:
|xy| ≤ lpump,
|y| ≥ 1,
Type(x ◦ yj ◦ z) = Type(x ◦ y ◦ z) for all j ∈ N.

Now, the pumping lemma tells us that in every path Q ∈ Q, there is some subpath which
can be “pumped”—repeated an arbitrary number of times—and leave the type of the graph
unchanged. This means that a valid solution of the graph with pumped paths, S, can be
mapped to the original graph and be used to produce a valid solution.

8.4 Properties of the Virtual Tree
We first finish our construction of the virtual tree, which we began in Section 8.2. Then we
examine some important properties of S which will allow us to simulate A on T by knowing
only a radius-O(

√
n) neighborhood of T .
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8.4.1 Finishing the Virtual Tree Construction
We now are able to finish the construction of the virtual tree S.

We choose a parameter B which can be an arbitrarily large function of n (which we will
define more precisely later). At a high level, we will duplicate the pumpable subpath of
each path Q ∈ Q so that its new length l′ satisfies the inequality: cB ≤ l′ ≤ c(B + 1). We
maintain a mapping of nodes of T which are not a part of any pumped subpath of some
Q ∈ Q to their new nodes in S: Let So ⊂ V (S) denote the set of nodes of S which are not
part of any path in Q, or are at distance at most 2r from a node not contained in any Q ∈ Q
(recall r is the checkability radius of our LCL). Informally, So is the set of “real” nodes of
S—they are not part of the pumped paths, and they have corresponding nodes in T . Let
η : So → T be a mapping of nodes in So to their corresponding nodes in T . We also define
To = {η(v) | v ∈ So}. So To is the set of nodes far enough from the pumped regions of T
which were not removed in the construction of T ′.

So we have a virtual tree S which is a function of T and two parameters c and B (which
will be defined more precisely soon).

8.4.2 Properties of S

We state some properties of S, proved originally by Balliu et al. [5]:

▶ Lemma 8.6. S has at most N = c(B + 1)n nodes, where n = |V (T )|.

This is because each node in a pumped path or a subtree of a node in a pumped path is
duplicated at most c(B + 1) times. Note that N is an upper bound on the number of nodes
of S, but the actual number of nodes |V (S)| will be much smaller.

▶ Lemma 8.7. For any path P = (x1, . . . , xk) of length k ≥ c
√
n which is a subgraph of T ′,

at most
√
n/c nodes in V (P ) have degree greater than 2.

This lemma gives us an upper bound on the number of high-degree nodes, and is the
point where this procedure demands Ω(

√
n) locality, rather than allowing us to obtain an

even better locality such as O( 3
√
n).

Now, we can prove a new lemma which is helpful in the online-LOCAL model. This tells
us no matter what path we take from a given node in S, we will either hit a pumped path or
a leaf node within a radius-c

√
n neighborhood.

▶ Corollary 8.8. Any path P = (x1, . . . , xk) ⊂ T ′ with length k ≥ c
√
n will contain a subpath

Q ⊂ Q.

Proof. By the previous lemma, P can have at most
√
n/c nodes which have degree greater

than 2 in T ′. By the pigeonhole principle, there must be at least one subpath (vi, . . . , vi+l) of
P between 2 high-degree nodes (or the endpoints of P ) with length l ≥ c2 − 1 > c (this will
always be true by our choice of c), so after selecting ruling set nodes from this subpath, we
will be left with at least one path with length between c and 2c—that is, a path Q ⊂ Q. ◀

This corollary tells us that any path in T ′ starting from some vertex v ∈ T ′ will either be
short enough that it is contained within v’s τ -radius neighborhood, or that it contains some
subpath which will be pumped.

We now have all necessary ingredients to construct a new algorithm, A′, which can find a
labeling for T with O(

√
n) locality.
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▶ Lemma 8.9. Let v ∈ T ′. For any path in T starting at ψ(v) and ending at a leaf node,
one of the following holds:

The path has length less than or equal to 2τ .
The path contains some path Q ∈ Q within its first τ nodes.

Furthermore, this can be determined with knowledge of only the radius-2τ neighborhood of v.

Proof. Let P = (v = v1, v2, . . . , vl) be a path in T , where ψ−1(v) is defined, and where vl is
some leaf node which is reachable from v. l denotes the length of the path. If l ≤ 2τ , then
we are done. So suppose l > 2τ . We consider P ′ = (v = v1, v2, . . . , vτ )—the first τ nodes of
P . We note that even if we have only seen v at this point in our algorithm, we can be certain
of the degree of the first τ nodes of P after trimming their height-τ subtrees (that is, in T ′),
since we can see the 2τ -radius neighborhood of v (and thus the τ -radius neighborhood of
all nodes in P ′). So ψ−1(P ′) ⊂ T ′. P ′ has length τ , so we can apply the previous lemma
to determine that at most

√
n

c nodes of P ′ have degree greater than 2. Define P ′′ ⊂ P ′ as
the set of paths obtained by removing all nodes with degree greater than 2 from P ′. By the
pigeonhole principle, at least one path in P ′′ must have at least c2 − 1 nodes. c2 − 1 > 2c
(this will always be true by our choice of c). This path therefore must contain a path between
2 ruling set nodes with length between c and 2c—that is, one of the paths of Q. ◀

8.5 Speeding up A
Given a node v ∈ T ′ (a node which will not be removed in the construction of the skeleton
tree T ′), we can construct a local portion of S by viewing only v’s radius-2τ neighborhood
(which we will call Tv). If every node in this neighborhood is removed in the construction of
T ′, then the connected component containing v has an O(

√
n) diameter and the problem

can trivially be solved with O(
√
n) locality. So suppose T ′

v is nonempty.
Let torig(n) denote the original runtime of A on a graph of n nodes. The following lemma,

reproduced from work by Balliu et al. [5], is essential in determining the value of B:

▶ Lemma 8.10. There exists some constant c such that, if nodes u, v ∈ To are at distance at
least c

√
n in T , then their corresponding nodes η−1(u) and η−1(v) are at distance at least

cB
√
n/3 in S.

In particular, let c = 4r + lpump.
So we choose B such that torig(N) ≤ cB

√
n/6. Such a B will always exist, as torig(x) = o(x).

(Recall that B may be an arbitrarily large function of n.) This choice of B, by the previous
lemma, implies that if 2 nodes u, v ∈ To are a distance at least c

√
n in T , their radius-torig(N)

neighborhoods are entirely disjoint, and thus one can have no influence on the other’s labeling.
We run A on η−1(v), but tell A that the size of S is (exactly) N . Note that since N is

an upper bound, it is not possible that A sees more than N nodes.
Finally, we can prove the following result:

▶ Lemma 8.11. For nodes in To, it is possible to execute A on S by knowing only the
neighborhood of radius 2c

√
n in T .

Proof. Since B satisfies torig(N) ≤ cB
√
n/6 (≤ cB

√
n/3), and since by the previous lemma,

nodes outside of a radius-2c
√
n ball in To are at distance at least cB

√
n/3 in S, when A runs

on S and is processing v, it cannot see any nodes u such that the distance between η(u) and
η(v) is greater than 2c

√
n. So the locality of A on S is less than the radius of the subtree of

S which η(v) computed. This also implies that the nodes in T0 do not see the whole graph
and thus A cannot notice that N is not the actual size of the graph S. Thus, A can execute
on S by knowing only the radius-2c

√
n neighborhood of a given node in T . ◀



A. Dhar et al. 37

8.6 LOCALizing A
We now show that A can be transformed not only to an online-LOCAL O(

√
n) algorithm,

but a LOCAL one.
We note that the procedure followed in constructing S does not rely on any properties

unique to the online-LOCAL model–and, in fact, can be done in the LOCAL model, as is
shown by Balliu et al. [5]. So we can inherit this construction in the LOCAL model; it only
remains to eliminate potential dependencies on global memory and sequential processing.
We do this using a procedure similar to that used by Akbari et al. [1], where we create an
“amnesiac” algorithm A′. This algorithm effectively will see so many nodes and paths of the
same type that global memory is of no use, and can be effectively disregarded.

8.6.1 Preprocessing
The preprocessing phase involves enumerating all possible pumpable subpaths of the paths
in Q, and feeding them to A many times. Recall that every such path is a chain of trees of
height ≤ c

√
n The pumpable portions of a path are bounded by a constant—in particular,

they must have length ≤ lpump. Further, there is a constant number of equivalence classes
(“Types”) which tree in the path can take on—let us call this number ξ. Then the number
of possible pumpable subpaths is bounded by ξlpump—a constant.

Let P be a sequence of all possible such paths, in an arbitrary order. We proceed by
feeding each path P ∈ P to A. We repeat this many times, until we notice a repeated labeling
on each path P . This is guaranteed to happen since there is a constant number of input
labels and thus a constant number of possible labelings for each path. More formally, for any
constant ∆, if we feed a given path P ∈ P to the original algorithm ξlpump∆ times, by the
pigeonhole principle, we are guaranteed to see at least one labeling LP

0 appear ∆ many times.
We call LP

0 the canonical labeling of P . Finally, we define a function f : P → {LP
0 }P ∈P ,

which maps each P to LP
0 .

8.6.2 Running the Algorithm
From here, we will construct a LOCAL algorithm A′ which solves Π in O(

√
n) rounds.

Given a tree T , we first construct S as described above. This can be done in the LOCAL
model with O(

√
n) locality, as proven by Balliu et al. [5].

Let QS denote the set of all (pumped) paths in S. Each path Q ∈ QS takes the form
Q = x ◦ yj ◦ z for subpaths x, y, z and some constant j, with |y| ≤ lpump, since we duplicate a
middle portion of the original path from T some number j times to obtain Q. y ∈ P. We
find the canonical labeling Ly

0 of y, and will label each copy of y ⊂ Q with this labeling. We
then label x and z with brute force. This is doable in constant locality, since |x ◦ y ◦ z| ≤ 2c,
a constant.

From here, we can fill in the remaining portions of the graph—those not included in any
path in Q. By lemma 4.3, the remaining nodes not in any deleted tree or pumped path can
be labeled with knowledge of a τ -radius neighborhood. Similarly, by lemma 3.3, each node in
some deleted tree can be labeled with only knowledge of the tree itself. Since each of these
trees has height at most τ , a locality of τ is sufficient to label each of these nodes using A.

So we are able to run A with O(
√
n) locality, without reliance on any properties of

the online-LOCAL model—and in particular, through use of the LOCAL model. With this
procedure, we can transform any online-LOCAL o(n) algorithm to a LOCAL algorithm which
runs with O(

√
n) locality.
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Since the paths are bounded by a constant length, this can be done with constant locality.
Further, there is a (likely very large) constant number of paths, so this process will terminate.
We will repeat this many times, and notice that our algorithm will begin to repeat labelings
of a given path. From here, we can paste the labelings to the paths of Q.

More formally, we notice that the paths of Q have their lengths bounded by a constant,
namely 2c. Further, the set of input labels Σin has constant size. So there is a constant
number of possible paths which can occur in Q.
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