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Abstract. Recent work on distributed graph algorithms [e.g. STOC 2022, ITCS 2022,
PODC 2020] has drawn attention to the following open question: are round elimination
fixed points a universal technique for proving lower bounds? That is, given a locally
checkable problem II that requires at least Q(logn) rounds in the deterministic LOCAL
model, can we always find a relaxation IT' of II that is a nontrivial fized point for the
round elimination technique [see STOC 2016, PODC 2019]? If yes, then a key part of
distributed computational complexity would be also decidable.

The key obstacle so far has been a certain family of homomorphism problems [ITCS
2022], which require (logn) rounds, but the only known proof is based on Marks’
technique [J.AMS 2016].

We develop a new technique for constructing round elimination lower bounds sys-
tematically. Using so-called tripotent inputs we show that the aforementioned homo-
morphism problems indeed admit a lower bound proof that is based on round elimina-
tion fixed points. Hence we eliminate the only known obstacle for the universality of
round elimination.

Yet we also present a new obstacle: we show that there are some problems with
inputs that require Q(logn) rounds, yet there is no proof that is based on relaxations
to nontrivial round elimination fixed points. Hence round elimination cannot be a
universal technique for problems with inputs (but it might be universal for problems
without inputs).

We also prove the first fully general lower bound theorem that is applicable to any
problem, with or without inputs, that is a fixed point in round elimination. Prior
results of this form were only able to handle certain very restricted inputs.



1 Introduction

Can we always systematically distinguish between easy and hard problems in distributed graph
algorithms? We study this question in the context of locally checkable labeling problems (LCLs)
[NS95] in trees; these are constraint satisfaction problems that can be conveniently specified by
listing a finite set of valid labeled neighborhoods. Numerous problems familiar from the theory of
distributed graph algorithms such as vertex and edge coloring, maximal independent set, maximal
matching, sinkless orientation, and many other splitting and orientation problems are examples of
LCLs in bounded-degree graphs.

1.1 Classification of LCL problems

As a result of a long research program [CV86,Nao91,Lin92,NS95,BFH"16,FG17, GHK18, BHK ™18,
CP19, CKP19, RG20, BBOS20, BBOS21, BCHM"21], the landscape of LCL problems is now well
understood [Suo20)], especially in the case of trees [Cha20, BBOS21, GRB22]. For our purposes the
most interesting part is the following dichotomy; any LCL problem in trees falls in one of these
complexity classes:

1. Easy problems: the round complexity is O(log*n) in the deterministic and randomized
LOCAL models [Lin92,Pel00] and O(1) in the deterministic and randomized SLOCAL models
[GKM17]. A canonical example of such a problem is 3-coloring of paths, for which all of these
complexities are tight [CV86, GPS88, Lin92].

2. Intermediate (or harder) problems: the round complexity is Q(logn) in deterministic
LOCAL, Q(loglogn) in randomized LOCAL, Q(loglogn) in deterministic SLOCAL, and
Q(logloglogn) in randomized SLOCAL. A canonical example of such a problem is sinkless
orientation, for which all of these complexities are tight [BFH 16, CKP19, GHK18, GS17,
BKK*23.

But given some unknown problem II, how can we tell whether it is easy or (at least) intermediate?

How to prove that a given problem is easy? One half of this is known; being easy is semi-
decidable. More precisely, for any easy problem II there exists a natural number k such that one
can map a distance-k coloring to a valid solution of IT [CKP19,BHK " 17]. For any fixed k, there are
only finitely many candidate functions to check, so at least in principle one could systematically
check k = 1,2,... and stop once a suitable function is found. However, the process will never
terminate for harder problems.

How to prove that a given problem is intermediate-hard? What is missing is a systematic
way to detect if a problem is at least intermediate-hard. There are many different proof techniques
used to show that a problem is intermediate or harder, but especially when more elementary
techniques have failed, by far the most successful proof technique has been round elimination,
which we will discuss in more depth next.



1.2 Round elimination

Round elimination [Bral9, BFH"16] is a function Q that maps an LCL problem II to another
problem Q(II). The key property is this:

If IT is an easy but nontrivial problem, then Q(II) is exactly one round easier to solve
than II.

So if Q(II) is not one round easier than II, and IT is not trivial (it requires at least one round to
solve), the only possible explanation was that IT was at least intermediate-hard.

In general, it is hard to compare Q(II) and II. However, if we are lucky enough to find a fized
point, i.e., Q(II) = II, then clearly Q(II) cannot be one round easier than II, and we can conclude
that IT must be intermediate-hard (or trivial).

In this work we slightly extend (and abuse) the notion of fixed points to also cover cases where
IT is a relazation of Q(IT). We write Q(IT) = II to denote that a solution of Q(IT) can be turned in
zero rounds into a solution of IT; clearly in this case Q(II) cannot be one round easier than IT, and
hence II has to be at least intermediate-hard.

Fixed points are rare, but for many intermediate problems II the following proof idea does the
trick: find a relaxation IT = II', show that I’ is nontrivial, show that Q(II') = II', conclude that
IT" has to be at least intermediate-hard, and hence is the original problem II.

1.3 1Is round elimination universal?

If this scheme worked for every intermediate problem, then we would have a procedure for proving
that a problem is at least intermediate-hard: simply start to enumerate the countable set of possible
relaxations II’ of II, and apply the Q function to each of them, and stop if we find a nontrivial
fixed point. If in parallel with this we also apply the procedure that searches for a proof that II is
easy, one of these procedures would always terminate. This would mean that distinguishing easy
vs. intermediate-hard problems would be decidable, resolving a major open question of this field,
see e.g. [BBCT22].

Inspired by this, the following open question was stated e.g. in [BBKO22, Open Problem 1]
and [BO20, Open Problem 6.3]:

Question 1.1. Do all intermediate problems relax to a nontrivial round elimination fixed point?

So far there is only one known family of problems that is known to be intermediate-hard, yet it
is not known if it admits a proof through a relaxation to a round elimination fixed point, namely
the graph homomorphism problems introduced by [BCG'22]. The simplest example is the task
that we will call restricted 9-coloring; the task is to find a homomorphism from the input graph G

to the following 9-node graph H:
><I M

This problem is known to be intermediate-hard [BCGT22], and the proof uses Marks’ technique
[Mar16], familiar from the context of measurable combinatorics.

If the family of homomorphism problems is indeed outside the scope of round elimination fixed
points, then it would mean that round elimination fixed points are not a universal technique.




Furthermore, it would mean that round elimination and Marks’ technique are orthogonal lower
bound techniques, and one does not subsume the other. In [BCG™22] obtaining the same lower
bounds for the homomorphism problems that Marks’ technique achieves is stated as an “exciting
open problem.”

1.4 Owur contributions

Contribution 1: homomorphism problems admit nontrivial round elimination fixed
points (Section 5). We show that round elimination fixed points can be indeed used to show
that the homomorphism problems studied in [BCG 22| are intermediate-hard. We show that for
each of these problems II, it is possible to find a relaxation II = II' such that Q(IT') = IT’.

In particular, we remove all known obstacles to Question 1.1; after this work, there is no candi-
date problem that would serve as a counterexample for the conjecture that round elimination fixed
points are indeed a universal technique for proving that a problem is intermediate-hard. Further-
more, these were the only known examples in which Marks’ technique was previously necessary to
prove lower bounds in the LOCAL model; our work is giving evidence that it might indeed be the
case that Marks’ technique can be always replaced by round elimination in this context.

Contribution 2: problems with inputs do not admit nontrivial round elimination fixed
points (Section 4). However, everything that we discussed above holds only for problems with-
out inputs. We show that problems with inputs can be much more challenging. In particular, we
prove that sinkless and sourceless orientation given a sinkless orientation (SSO-SO) is a problem
that is intermediate-hard, yet it admits no relaxation to a round elimination fixed point.

Hence the answer to Question 1.1 in full generality is negative, but it could be still true for
problems without inputs.

Contribution 3: auxiliary inputs can be eliminated (Section 3). We will next zoom
into the role of inputs. One trick that was used already in the very first applications of round
elimination [BFH16] may at first look counterintuitive: we want to show that II is intermediate-
hard, and we make our life seemingly harder and try to argue that II is intermediate-hard even
if we are given some friendly auxiliary input T. For example, to show that 3-vertex-coloring is
intermediate-hard, one can show that 3-vertex-coloring is intermediate-hard even if we are given a
3-edge-coloring as input. Why this makes sense is that it may enable one to find a useful relaxation:
a 3-vertex-coloring in 3-edge-colored graphs can be used to find a sinkless orientation, and sinkless
orientations are a nontrivial round elimination fixed point that remains nontrivial even if we are
given a 3-edge-coloring.

We show that such a roundabout approach is never needed. If we can find a relaxation to a
nontrivial fixed point with the help of auxiliary inputs, we can also eliminate such inputs. We
introduce the concept of tripotent inputs that allow us to turn fixed points with auxiliary inputs
in a mechanical way into fixed points without inputs. We demonstrate the effectiveness of this
tool to construct a pure input-free round elimination fixed point for the homomorphism problems
(Contribution 1).

Tripotent inputs also open up a genuinely new way for discovering lower bounds: if we can guess
a fixed point relaxation (say, using one of the well-known fixed points such as sinkless orientation),
we can also work backwards to construct a suitable input, and then we can finally verify whether
our guess was indeed correct. Hence instead of guessing a suitable input and finding a fixed point
(as has been done in the literature so far), we can guess a fixed point and calculate the input.



Contribution 4: round elimination works with inputs (Section 6). Finally, we turn
our attention to problems where inputs can play a crucial role; the input is not merely helpful
information that the algorithm may choose to use to make the problem easier to solve (e.g. SSO-
SO), but the input may restrict what are possible valid outputs (e.g. list coloring).

Prior proofs that show that round elimination fixed points imply that problems are intermediate-
hard are not compatible with arbitrary inputs—indeed, it is not even entirely clear exactly what
kind of inputs they can handle. We prove for the first time that we can use round elimination fixed
points to derive lower bounds also for problems with general inputs.

Discussion. In summary, our work provides new evidence pointing in the following direction:

1. For intermediate problems without inputs, round elimination fixed points might be a uni-
versal technique, and if this is indeed true, classification of input-free problems to easy vs.
intermediate would be decidable (at least in principle, if not in practice).

2. For intermediate problems with inputs, round elimination fixed points are not a universal
technique, and automatic classification of such problems seems to require the development of
new lower-bound proof techniques.

3. The distinction between problems with inputs vs. problems without inputs is clear-cut: aux-
iliary inputs that were only introduced as a proof technique in order to find appropriate fixed
point relaxations can be always systematically eliminated.

1.5 Key new ideas and proof techniques

Tripotent inputs (Section 3). The key novel tool that we introduce in this work is what we
call tripotent inputs. This is a function 7p parameterized by an LCL problem P and it maps any
given LCL problem II to another problem 7p(IT). For us the most interesting case is if P = F for
some nontrivial round elimination fixed point F.

The intuition is that 7#(II) would be a good choice of input if we wanted to show that IT with
some input can be relaxed to F, a nontrivial fixed point. But the remarkable property of 7r is
that as long as F is nontrivial given 77 (II), then II' = 77(7£(II)) will be a nontrivial fixed point
relaxation of II. Furthermore, as long as there is some input Z such that II with Z can be relaxed
to F and F remains nontrivial given Z, then F is also nontrivial given 7x(II).

Put together, tripotent inputs open up two new possibilities for proving hardness with the help
of round elimination fixed points:

1. We can freely cheat with inputs (e.g. assume 3-edge-coloring) to discover that II with some
input Z can be relaxed to some fixed point F that remains nontrivial even given Z. Then
we know that F is also nontrivial given 7#(II). Then we can in a mechanical way compute
II' = 77(7£(1)), and II" is guaranteed to be a nontrivial input-free fixed-point relaxation of
IT, that is, IT = II" and Q(IT') = IT" and I’ is nontrivial. We can fully eliminate the input!

2. We can also guess some fixed point candidate F, compute 7#(II) in a mechanical way, see if F
remains hard given 77(II), and if so, we can find a nontrivial input-free fixed point relaxation
Ir = T]:(T]:(H)) of II.

We will make use of the first approach to argue that e.g. restricted 9-coloring problem and other
homomorphism problems indeed admit an input-free round elimination fixed point. Here it is im-
portant to note that while II, Z, and F can be relatively simple problems with concise descriptions,



the description of I’ can be much longer, and in particular very hard to guess or systematically
discover without the use of our new tool.

It turns out that tripotent inputs satisfy numerous convenient mathematical properties. Among
others, as the name suggests, 7r is always a tripotent function in the sense that 7x(II) and
T7r(1r(Tr(I))) are equivalent problems. We expect that further study of this function will shed
much more light on the round elimination technique.

Non-existence of round elimination fixed points (Section 4). In Section 4 we show that
the SSO-SO problem (find a sinkless and sourceless orientation, given a sinkless orientation as
input) does not admit any nontrivial fixed point relaxation, even though it is intermediate-hard.

To prove this result, let II be the SSO problem. First, we analyze the structure of problems
QF(II) that are obtained by applying round elimination & times—we essentially obtain a closed-form
characterization of all such problems.

Second, we consider a hypothetical fixed-point relaxation IT of II. Since II is a relaxation of II,
also QF(II) = II is a relaxation of Q¥(IT). We choose a k sufficiently large in comparison with the
number of labels in II, and use the structural characterization of QF(II) to identify a subproblem
of II that is easy to solve.

Building on this idea, we then show that given a sinkless orientation, we can find a feasible
solution to Q¥(II) = II; hence II cannot be a relaxation of SSO that is a round elimination fixed
point that remains nontrivial given a sinkless orientation.

Finally, we can then use the machinery developed for tripotent inputs to show that there is no
such relaxation of SSO-SO, either.

ORCX problem (Section 5). To show that homomorphism problems from [BCG"22] admit a
fixed-point relaxation, we introduce a family of graph problem that we call the ORCX problem.

To better understand the key idea, let us consider the special case of 3-regular graphs and the
restricted 9-coloring problem introduced in Section 1.3. We can show that in 3-regular graphs, the
ORCX problem has these properties:

1. Let II be the restricted 9-coloring problem and let Z be the auxiliary input of 3-edge coloring.
Then II with input Z can be used to solve the ORCX problem.

2. The ORCX problem is a fixed point in round elimination.
3. The ORCX problem remains non-trivial even if we are given a 3-edge coloring.

Now we are ready to apply the machinery of tripotent inputs to turn ORCX together with 3-coloring
into an input-free problem I’ that is a nontrivial fixed point relaxation of the 9-coloring problem.

This idea can be generalized to a broader family of homomorphism problems. In Section 5
we will study them in A-regular graphs and the input will be a A-edge-coloring, but the same
construction of the ORCX problem applies also there.

Error probability analysis with inputs (Section 6). To show that round elimination fixed
points imply an (loglogn) lower bound in the randomized LOCAL model, the key step is to
analyze failure probabilities for a single step of round elimination.

While round elimination is a function that maps problems to problems, it also has algorithmic
implications: given an algorithm A that solves II in T rounds, we can construct an algorithm A’
that solves II' = Q(II) in T'— 1 rounds. However, the catch is that if A is a randomized algorithm
that fails with probability p, then A’ is a randomized algorithm that fails with probability p’ > p.



While in prior work there are results that analyze how p’ depends on p and the structural
properties of I, none of these results can handle inputs in full generality. In this work we present
the first analysis of error probabilities that is able to take into account also inputs.

We will use our new analysis in Section 4 to show that the SSO-SO problem is indeed at least
intermediate-hard, and in Section 5 to derive a lower bound for homomorphism problems.

2 Preliminaries

In this section, we provide some of the technical background from the literature and collect defini-
tions and observations that we need to obtain our results.

Graph-theoretic basics. Throughout the paper, we will use standard graph notation, such as
G = (V, E) for a graph, deg(v) for the degree of a node v, etc. Moreover, we will make use of the
following notion of a half-edge:

Definition 2.1 (Half-edge). Let G = (V, E) be a graph. A half-edge h is a pair (v, e) such that e
is incident to v. We say that the half-edge (v, e) is incident to v and belongs to e. We denote the
set of half-edges of G by H, i.e., H := {(v,e) | v € V,e € E,v is an endpoint of e}.

The LOCAL model. The LOCAL model is a synchronous message-passing model defined as
follows. A network is represented as a graph G = (V, E), where V is the set of machines and
FE is the set of communication links. At the beginning of the computation, each node v is aware
of the size n of the graph, the maximum degree A of the graph, its own degree deg(v), and the
input assigned to its incident half-edges. Moreover, in the case of deterministic algorithms, each
node is assigned a unique ID in {1,...,n}, while in the case of randomized algorithms each node
is assigned a random bit-string of infinite length. Then, the computation proceeds in rounds, and
at each round each node can send a (possibly different) message to each of its neighbors. Then, as
a function of the received messages, a node updates its state and proceeds to the next round. In a
T-round algorithm, each node is required to output a solution for the considered problem within
round T'. In this model, the size of the messages, and the computational power of each node, are
unbounded (messages do not even have to be of finite length: as in this paper we prove lower
bounds, considering this unreasonable assumption only makes our results stronger). In the case of
randomized algorithms, it is required that the produced solution is correct with probability at least
1—1/n. For technical reasons, we also assume that each node v comes with a port numbering, that
is, an arbitrary assignment of the numbers 1,...,deg(v) to the half-edges incident to v, such that
different half-edges get different numbers. Additionally, an arbitrary orientation is assigned to the
edges, or in other words, also edges come with a port numbering, in this case from {1,2}. The port
numbering (PN) model is defined similarly as the LOCAL model, and the only difference is that
there are no IDs assigned to the nodes. Since the size of the messages is not restricted, we can see
any T-round algorithm as a function that maps a given radius-7" neighborhood into an output.

Node-edge-checkable problems. Next, we introduce the notion of a node-edge-checkable prob-
lem [Bral9, BCHM'21]. These are problems that capture the vast majority of problems studied
in the LOCAL model, including maximal independent set, maximal matching, and coloring prob-
lems. We define such problems in the case of regular graphs. The reason is that all known lower
bounds that are obtained by the lower bound techniques relevant to our work—round elimina-
tion [BFH 16, Bral9] and Marks’ technique [Marl6]—are obtained on regular graphs or regular



trees', and the same holds for the lower bound constructions we develop in this work. As such,
we can restrict attention to A-regular graphs/trees and will provide our definitions for this setting.
Consequently, for the remainder of the paper (except for Section 6), we will assume that some value
A is fixed.

We note that our definitions generalize straightforwardly to the setting of arbitrary graphs
though they might be much more cumbersome to write down in that setting. In fact, we will
provide a generalized definition in Section 6, which will consider problems in graphs that are not
necessarily regular, and problems where the validity of the output may depend on some given input.

Definition 2.2 (Node-edge-checkable problem). A node-edge-checkable problem 11 is a tuple (X,
N1, ) where

1. X is a finite set,
2. N is a set of cardinality-A multisets of elements from Xy, and
3. &1 is a set of cardinality-2 multisets of elements from Y.

The set Xy is called the (output) label set of 11 and the elements of X are called output labels
(of I1). The set Ny is called the node constraint of II and &y is called the edge constraint of
II. A multiset of elements from Y is called a configuration; in particular, the elements of &
and of Ny are configurations. A correct solution for IT on a A-regular graph is an assignment of
labels from Y to the half-edges of the input graph such that, for each node v, the cardinality-A
multiset of labels assigned to the half-edges incident to v is an element of N and, for each edge
e, the cardinality-2 multisets of labels assigned to the half-edges belonging to e is an element of
&n. In the case of A-regular trees, the same requirements apply, but only on nodes of degree A,
that is, leaves are unconstrained. When considering a distributed algorithm outputting a solution
to some node-edge-checkable problem II, we will assume that, for each half-edge h = (v,e), the
node deciding which output label is assigned to h is the incident node v. When considering a
configuration that consists of the labels assigned to the half-edges incident to some node, resp. edge
(or when considering a configuration in N, resp. in £11), we may refer to it as a node configuration,
resp. edge configuration.

We will write a configuration containing labels Ly,...,L; as Ly ... L;. Note that the contained
labels do not have to be pairwise distinct, as a configuration is a multiset. Note further that,
for the same reason, any displayed order of the labels represents the same configuration, e.g.,
Li ... Li=L; ... L.

Note that all the known lower bounds obtained via round elimination or via the Marks’ technique
hold on regular trees, and the lower bounds are already achieved on the “inner part” of the tree,
i.e., which configurations are admissible on the leaf nodes does not affect the lower bounds (thereby
ensuring that the presented standard definition is indeed all we need for our paper).

Condensed configurations. For writing down the configurations in a node or edge constraint,
it is often convenient to use so-called condensed configurations, which provide a shorthand for
capturing many configurations at once.

Definition 2.3 (Condensed configuration). Let II be a node-edge-checkable problem with output
label set ¥p;. Formally, a condensed configuration is a configuration Sy ... S; (for some positive
integer j) where each S; is a collection of labels from ¥1;. However, such a condensed configuration
is to be interpreted as the collection of all configurations L; ... L; of labels from ¥y such that

LA regular tree is simply a tree where every node of degree # 1 has the same degree.



L, € S; for each 1 < ¢ < j. To support this interpretation notationally, we will write the sets
S; with square brackets, e.g., [LiLg] [L1L3] represents the collection containing the configurations
L1 |_17 |_1 LQ, L1 |_3, and LQ |_3.

Example: sinkless orientation. We provide an example of a node-edge checkable problem.
Consider the problem of orienting the edges of a 3-regular graph such that no node is a sink, i.e.,
no node has all edges oriented incoming. This problem is called sinkless orientation, and can be
defined as a node-edge checkable problem IT = (X1, N, &) as follows.

e X = {l,0}, where | stands for incoming and O stands for outgoing.

e & = {l O}, that is, on the edges the only allowed configuration is | O. In other words, if a
node claims that an edge is outgoing, then the other endpoint must claim that such an edge
is incoming, and vice versa.

e N1 contains all the configurations given by the condensed configuration [O] [I O] [I O], that
is, 011,00 I, and O O O. (Recall that the order of labels does not matter.) In other words,
for each node, at least one incident half-edge must be labeled as outgoing.

Relaxations. In the following, we define the notion of a relazation of a node-edge-checkable
problem (introduced in [BO20] with a slightly different terminology). Intuitively, a relaxation of a
problem IT is a problem II such that II can be solved in 0 rounds given a solution to II. Formally,
this can be expressed as follows, making use of the definition of a node-edge-checkable problem.

Definition 2.4 (Relaxation). Let II = (X, Ni1, &) and I = (Eq, N, &x) be two node-edge-
checkable problems. Let z denote the number of configurations in N and let L;; ... L;a, where
1 <i < z, denote the z configurations. Then I1 is called a relazation of II if there exists a mapping?
f: {Ll] ’ 1§i§2’,1 S]SA}‘)Eﬁ such that

1. for every configuration L;; ... Lia € N, we have f(Li1) ... f(Lia) € Ny, and
2. for every configuration L; Lyj € &, we have f(Li;) f(Lirj) € &

We call such a rnappmg f a relazation function from II to II. Moreover, if II is a relaxation of II,
then we write IT - H symbohzmg the fact that a solution to II can be obtained from a solution
to II by a O-round algorithm. If II 2 1T does not hold, we write IT - II.

This definition captures the aforementioned intuition in the following sense: The only informa-
tion that a node v executing a 0-round algorithm has about a solution to II is the output labels of
that solution on the half-edges incident to v. Hence, in order to infer from said solution a (local)
solution to II (without making use of any further assumptions about the input graph), node v
must change each of the labels on its incident half-edges to an output label for II in a way that
guarantees that the new assignment satisfies the node and edge constraints of the new problem I1.
As, for each edge e = {u,v} incident to v, the only guarantee that v has about the label assigned
to half-edge (u,e) in the solution to II is that together with the label assigned to half-edge (v, e) it
forms a configuration contained in &1y, we arrive at the definition given above.

2We slightly abuse notation here by considering the L;; simultaneously as two different objects: entries in config-
urations and labels from . In particular, please note that the function f may map the same label L from X to
two different labels in Xy if L occurs in two different configurations of N (or if L occurs more than once in the same
configuration).



A second kind of relaxation we will make use of in our work is what we call port-local relaz-
ations. Differently from the regular relaxations defined above in which occurrences of labels in node
configurations are mapped (i.e., where the mapping takes entire node configurations into account),
a port-local relaxation is a direct mapping from the output label set of a problem to an output
label set of a second problem. Formally, we define port-local relaxations as follows.

Definition 2.5 (Port-local relaxation). Let I = (X1, N1, &) and 1T = (X, Ny, &) be two node-
edge-checkable problems. Then we say that II is a port-local relazation of 11 (and, equivalently,
that II is port-locally relazable to 1) if there exists a function f : ¥ — Xy such that

1. for each Ly ..., La € N, we have f(L1) ... f(La) € Ny, and
2. for each Ly Ly € &np, we have f(L1) f(L2) € &.

From Definitions 2.4 and 2.5, it follows that a port-local relaxation is always a relaxation.

Observation 2.6. Let II and II be two node-edge-checkable problems such that IIis a port-local
relazation of II. Then IT = 11.

Moreover, from the definition of a relaxation it follows immediately that a relaxation of a
relaxation of some problem II is a relaxation of II (and analogously for port-local relaxations),
which we capture in the following observation.

Observation 2.7. For any three node-edge-checkable problems IL I, II”, it holds that if II = I
and II' 3 11", then also I1 = II”. Moreover, if IU' is a port-local relazation of II and I a port-local
relaxation of II', then 11" is a port-local relaxation of II.

Equivalent problems. Based on the notion of a relaxation, we now formalize the concept of
equivalent problems, which we will encounter in several places throughout the paper.

Definition 2.8 (Equivalent problems). We call two node-edge-checkable problems II, II" equivalent
if II is a relaxation of II' and II' is a relaxation of II.

A simple case of equivalent problems that we will encounter frequently are two problems II, IT’
where one is obtained from the other by renaming labels. As, in this case, these two problems are
identical for essentially all purposes, for simplicity we will treat problems obtained from each other
via renaming of labels as the same problem and write IT = IT'.

Round elimination. The lower bounds we obtain in our work make use of the round elimination
technique, which we introduce in the following. The round elimination framework is based on two
functions R(-) and R(-) that take a node-edge-checkable problem as input and return a node-
edge-checkable problem. For the definition of the two functions, we need the notion of a mazimal
configuration of sets.

Definition 2.9 (Maximal and dominated configurations). Let k be a positive integer, ¥ a finite set
of sets and C a collection of cardinality-k multisets with elements from ¥ (i.e., each such multiset
consists of k sets). Then a configuration S; ... Sg € C is called mazimal (in C) if there is no
configuration S| ... S € C such that there exists a permutation p : {1,...,k} — {1,...,k}
satisfying 1) S; C S;(i) forall1<i<kand 2)S; C S;(i) for at least one 1 < ¢ < k. Otherwise, we

say that S; ... Sy is non-maximal and that it is dominated by S| ... S}.



Now we are set to define R(-) and R(-). Let II be a node-edge-checkable problem. The node-
edge-checkable problem R(II) is defined as follows.

Define ¥’ as the set of all nonempty subsets of Xy, i.e., ¥/ := 2%1\ {#}. We will call the elements
of ¥ labels but keep in mind that, formally, they are sets. For defining the edge constraint Erm)
of R(II), first define C’ as the collection of all configurations Sy So consisting of labels from ¥’ (i.e.,
consisting of sets of labels from Xy7) such that, for each pair (L1,Ls) € S; x Sy, we have L Lo € &fy.
Then, Er (1) is simply defined as the set of all maximal configurations in C'.

Next, define the output label set ¥z ) of R(II) as the subset of Y containing precisely those
labels that appear in at least one configuration in Exry). Finally, define the node constraint NR(H)
of R(II) as the set of all configurations Sy ... Sa consisting of labels from Yy such that there
exists a tuple (L1,...,La) € Sy x -+ x Sp satisfying Ly ... La € M. This concludes the definition
of R(II).

The node-edge-checkable problem R(II) is defined dually (where the application of the universal
and existential quantifiers is reversed): Define X" as the set of all nonempty subsets of Xy, i.e.,
Y/ := 2%1\ {(}. For defining the node constraint Nﬁ(n) of R(II), first define C" as the collection
of all configurations Sy ... Sa consisting of labels from 3" such that, for each tuple (Ly,...,LA) €
Si X -+ xSa, we have L1 ... Lo € Np1. Then, Nﬁ(n) is simply defined as the set of all maximal
configurations in C”.

Next, define the output label set Eﬁ(n) of R(II) as the subset of ¥” containing precisely those
labels that appear in at least one configuration in Nﬁ(n)' Finally, define the edge constraint 5ﬁ(n)
of R(IT) as the set of all configurations S; S consisting of labels from Y such that there exists
a pair (L1, L2) € Sy x So satisfying Ly Lo € &1 This concludes the definition of R(II).

We note that, while the function R(-) can be applied to any node-edge-checkable problem, in
this work we will only apply it to node-edge-checkable problems obtained by the application of the
function R(-), i.e., to problems of the form R(II). Furthermore, to simplify notation, we define
Q) = R(R()).

Moreover, when computing Exr (), resp. Nﬁ(n)a we will refer to configurations in the above
collections C’, resp. C”, as configurations that satisfy the universal quantifier.

An easy way to compute NR(H) and 5%(1‘[)' It has already been noticed in previous works
[Bral9] that there is an easy way to compute Nz and 5%(1]):

Observation 2.10. The constraint NR(H) (resp. gﬁ(n)) can be computed as follows: for each
configuration Ly ... La € N1 (resp. L1 Ly € &), add to the constraint NR(H) (resp. gﬁ(n)) all
the configurations that can be picked from the condensed configuration obtained by replacing each
L; with the set containing all the labels in Yg ) (Tesp. Eﬁ(n)) that are supersets of L;.

An easy way to compute Ex 1) and Nﬁ(n)' The hard part of computing R(IT) and R(II) is
computing the constraints Ex ) and Nﬁ(n)- A recent work developed an algorithm that makes it
easier to compute such constraints [BBK " 24]. Such an algorithm is based on an iterative application
of a simple operation, that we now describe.

Let C=S; ... Spand C' =S} ... S} be two configurations of sets of labels. Let 1 < u < k,
and let o: {1,...,k} — {1,...,k} be a permutation. The combination of C and C" w.r.t. u and o
is defined as the configuration C” =S/ ... S} satisfying the following:

o 57 =5; ﬂS’U(].) for each j € {1,...,k} \ {u}, and
o S :SUUS;(U).
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We now describe an algorithm A that takes as input a constraint C described as a collection
of condensed configurations and returns a new constraint C’ of configurations. If C is not given
as a set of condensed configurations, it is straightforward to convert it into a set of condensed
configurations, that is, by replacing each label with the singleton set containing that label.

The algorithm A works as follows. At first, C’ is initialized as C' := C. Then, remove non-
maximal configurations from C’. Choose two arbitrary (possibly the same) configurations C; and
C, from C’, and combine them w.r.t some arbitrarily chosen u and 0. Add the obtained configuration
to C' if it is not dominated by some configuration already present in C’, and remove non-maximal
configurations from C’. Repeat this operation for all possible choices of Cy, Co, u, and o, where C;
and Cy can also be configurations that have been added to C’ in the previous steps, until no new
configuration is added to C’.

Observation 2.11 (Theorem 4.1 of [BBK"24]). The result of applying A on Er is Er(m), and the
result of applying A on N1 is Nﬁ(n)-

We say that two sets S and S’ are comparable if S C S or S’ C S. Otherwise, we say that they
are non-comparable. In [BBCR'25], the authors made the following observation.

Observation 2.12. Let A’ be defined similarly as A, with the only difference that two configurations

Ci=S1 ... Spand Co =S| ... S| are combined w.r.t. w and o only if S, and S;( are non-

u)

comparable. Then, the output of A’ is the same as the one of A.

Obtaining lower bounds via round elimination. The way the round elimination framework
(and in particular the two functions R(-) and R(-)) are used to obtain lower bounds is based on
the round elimination theorem [Bral9], which, very informally speaking, states that, for any node-
edge-checkable problem II, the complexity of Q(II) is precisely one round less than the complexity
of II (or 0 in case also II is O-round-solvable).® Applying this theorem recursively to the sequence
I, Q(IT), Q*(II), ... of problems then yields that the complexity of Q'(II) is i rounds less than the
complexity of II. Now, to obtain a lower bound of k rounds for the complexity of II, we merely
need to show that problem QF~!(II) cannot be solved in 0 rounds (which is much easier to check
than j-round solvability for j > 0).

We emphasize that this overview is highly informal and hides a lot of details. In particular,
those hidden details guarantee that if none of the problems in the sequence II, Q(IT), Q*(II), ... is
0O-round solvable, then one obtains a deterministic lower bound of €2(log n) rounds and a randomized
lower bound of Q(loglogn) rounds.*

Fixed points. One beautiful scenario in which the above approach yields the desired lower bounds
without much effort is that II satisfies Q(II) = II, which implies that the aforementioned sequence
reduces to I, II,II,... and that therefore none of the problems in the sequence can be solved in 0
rounds, assuming that IT cannot be solved in 0 rounds. A problem IT satisfying Q(II) = II is called
a fized point. We slightly extend the definition of a fixed point in a way that guarantees the same
lower bounds but, for technical reasons, may capture more problems.

Definition 2.13 (Fixed point). A fized point is a node-edge-checkable problem II satisfying
Q(IT) % II. We call a fixed point nontrivial if it cannot be solved in 0 rounds, and trivial otherwise.

3This comes with a lot of fine print; for a modern overview containing all the technical details, see, e.g., [BBK022,
Appendix A, arxiv version] or Section 6.

4 Again, some details are hidden here; for a formal statement, see [BBKO22, Theorem 7.1], or Theorem 6.4 for a
more general version.
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Moreover, for two node-edge-checkable problems II, II, we call II a (trivial/nontrivial) fized point
relazation of I1 if II is a (trivial /nontrivial) fixed point and IT = II.

If IT is a nontrivial fixed point, then by combining the above argumentation with the fact that
IT can be solved in 0 rounds given a solution to Q(II), we indeed again obtain the deterministic
and randomized lower bounds of {2(logn) and (loglogn), respectively.

Inputs. As discussed in Section 1, one interesting aspect that our work explores are settings with
inputs. In this setting, each half-edge is labeled with an input label from some input label set
Yin and each node is aware of the input labels on its incident half-edges at the beginning of an
algorithm.

An important distinction in the setting with inputs is between problems where the correctness
of the output depends on the input and problems where the correctness of the output is independent
of the input (and the input is merely additional information that the algorithm can use). Apart
from Section 6, where we will develop a generic lifting theorem that will allow for problems of the
former kind (to capture problems like list coloring), throughout the paper we will focus on the
latter kind as it is sufficient for our purposes.

One nice property of round elimination is that in the deterministic port numbering model,
i.e., when nodes do mot have access to unique identifiers or random bits, round elimination is
known to work also in the setting with input (of the latter kind) as long as the input (or, more
specifically, the considered input-labeled graph class) satisfies some independence property [Bral9)].
This property, informally speaking, can be phrased as follows: for any sufficiently small T" and any
T-hop neighborhood N of any node v, “the input that v would see when extending its view one hop
beyond N in any fixed direction does not reveal any information about the input v would see when
extending its view one hop in any other direction”.? In particular, this independence property is
satisfied when the input labels assigned to the half-edges of the input graph constitute a correct
solution to some fixed node-edge-checkable problem. As such, we will allow precisely those inputs:
when studying the setting with inputs, a fixed node-edge-checkable problem Z specifies which input
configurations can appear, namely, precisely those that satisfy the constraints of problem Z. In
other words, the input graph comes with an arbitrary solution to Z, and this solution can be used
by the nodes while performing their communication and computation to solve some given problem
IT of interest.

As mentioned above, in the setting with such inputs, round elimination is only known to work
in the port numbering model. In Section 6, we show that round elimination works in the input
setting also in the LOCAL model.

To conclude the discussion of inputs, let us clarify what we mean when we say that round
elimination “works” in the setting with inputs: the definition and use of the functions R(-) and R(-)
stays precisely the same; the only difference that the input makes is that a problem is considered
to be 0-round solvable if it can be solved in 0 rounds given the input, i.e., in a potential 0-round
algorithm, each node v may make use of the information about the input on its incident half-edges
(which is all that v knows about the input).

Relaxations using inputs. A natural idea to make use of fixed points to obtain lower bounds
is via relaxations: finding, for a given problem II, a nontrivial fixed point F satisfying I > F
directly transfers the aforementioned 2(logn)- and Q(loglogn)-round lower bounds from F to II.
Now, based on our result in Section 6 that round elimination works in the setting with inputs, we

®For the formal definition of this independence property, see the definition of t-independence in [Bral9].
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can extend this idea to the setting with inputs: in particular, we obtain these lower bounds already
whenever we can find just a single node-edge-checkable “input” problem Z such that

1. we can relax II to some fixed point F given (a solution to) Z as input, and
2. F is nontrivial given input Z, i.e., Z - F.

Formally, for defining what we mean by a relaxation given some input, we introduce the notion
of the product of two problems.

Definition 2.14 (Product of problems). Let II,II' be two node-edge-checkable problems. Then
the product I x II' = (Zpywrr, Nixir, Enxir) of I and T is defined by setting

Yy = 2 X Xy,
Niaxar = {(L1, L)) ... (La,LA) |Ly ... La €Ngand L] ... Ly € M}, and
Enxr = {(Ll, Lll) (LQ, LIQ) ‘ L; Ly € & and Lll /2 S gnl}.

Now, we can formally restate point 1 from above as Il x 7 5 F.

Similarly as for relaxations, in the setting with inputs, we can also strengthen the notion of
a fixed point (in the sense that it captures more problems while providing the same complexity
implications) by making use of the available input.

Definition 2.15 (Generalized fixed point). Assume that we are in the setting with inputs, where
the input is given by some node-edge-checkable problem Z. Then we call a node-edge-checkable
problem IT a generalized fized point if Q(I1) x Z RN Moreover, we call a generalized fixed point
II nontrivial if IT cannot be solved in 0 rounds given Z, i.e., if 7 & 11

Given the definition of a generalized fixed point and using the insights from the above dis-
cussion, we can now formulate a strong version of the lower bound guarantees provided by fixed
point relaxations in the setting with input Z: if F is a nontrivial generalized fixed point and II a
node-edge-checkable problem satisfying II x 7 2, F, then II requires Q(logn) rounds to be solved
deterministically and Q(loglogn) rounds to be solved randomized. Note that the fact that these
lower bounds hold in the setting with input also implies that the lower bounds hold in the (harder)
setting without input.

3 The tripotent input

In this section we will investigate the technique of proving lower bounds for node-edge-checkable
problems via fixed point relaxations with input. Suppose we are given a node-edge checkable
problem IT for which we want to prove hardness. As we explained in Section 2, the hardness follows
if we can find a nontrivial fixed point F and an input Z (which are both node-edge-checkable
problems themselves) such that

IxZ>3F,  I-»F.

The first condition means that Il can be relaxed to F in the setting with input Z, the second
ensures that F is nontrivial even given a solution to Z. For the moment, suppose that we already
chose the fixed point F we want to use. We are then left to find an input Z ensuring the above
properties, where we focus on the first property II x Z 2 F. In the following, we provide a generic
construction of such a suitable input problem. More than that, we will show that our construction
in fact leads to the easiest node-edge-checkable problem 7 satisfying this property. By “easiest”,
we mean that any other input problem J allowing a relaxation from II to F can itself be relaxed
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to Z. Note that the existence of such an easiest input is highly nontrivial, but at the same time
optimal for our purposes: since we want to also ensure the second property Z - F, the input Z
should contain as little information as possible, i.e., be as easy as possible.

Later in this section we connect this new construction to the existing round elimination frame-
work. Rather surprisingly, we will prove that under some conditions, the constructed inputs them-
selves are again fixed points. More than that, we will encounter cases in which we can find nontrivial
fixed point relaxations (without input) for problems of interest using this construction.

3.1 Constructing an input problem

Suppose we are given two node-edge-checkable problems, IT and P, where 11 is a problem of interest
and P is some problem we chose in order to prove a lower bound or II. One can think of P as being
a fixed point, however for now this is not an assumption we make. Before we can define our generic
input problem 7p(II), we need to introduce another problem, R*(P), which is pretty similar to
R(P). The only difference in the definition is that we also allow non-maximal edge configurations,
Y and N stay the same. Formally, R*(-) is defined as follows:

ER*(P) = 2EP \ {@},
N’R*(p) :={S1 ... Sal3L1 €S1,...,LA €SA: Ly ... Lo € Np},
573*(;)) = {Sl SQWL1 S 51, Ly €Se: Ly Ly € 513}.

Although the definitions are similar, the reason we need R*(P) has nothing to do with round
elimination. Instead, we will later make use of its definition in Lemma 3.5, stating that R*(P)
behaves nicely w.r.t. port local relaxations.

We are now ready to define our generic input:

Definition 3.1. Let II and P be node-edge-checkable problems. The tripotent input 7p(II) of 11
w.r.t. P is defined as follows:

Yo = Af1 20 = Erepy )
Nppry = {1 -+ falVli ... La € Nip: fi(Ly) - fa(la) € Ngs(p ),
Erpy = {f1 fa|VLa Lo € En: fi(L1) fale) € Erupy}-

We call 7 the tripotent input generator.

The intuition behind this definition is that it provides an easy relaxation II x 7p(II) - R*(P),
meaning that IT can be relaxed to R*(P) given 7p(II) as input. A half-edge that is assigned labels
L and f by IT and 7p(II) respectively can choose its new label as f(L) € Xg«p). The node and
edge constraints of 7p(II) ensure that this indeed leads to a valid solution of R*(P). In fact, we
prove the following stronger statement, proving that 7p(II) can be chosen as input when one wants
to solve P (instead of R*(P)) given a solution to II.

Lemma 3.2. Two node-edge-checkable problems P and I1 always satisfy 11 x Tp(II) 5 P

Proof. We will prove II x 7p(II) & R*(P) & P, our claim II x 7p(II) & P then follows by
Observation 2.7.

We start with the relaxation IT x 7p(IT) = R*(P), which we perform port-locally as described
above: each node replaces all its labels (L, f) € Xpurpqr) by f(L) € Zgrs(p). We need to prove
that this is indeed a (port-local) relaxation, therefore consider an edge that was assigned labels
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(L1, f1) (L2, f2) € Erxrp(rr)- By the definition of the product of two problems, this implies Ly Ly € &n
and f1 f2 € & ,m)- Definition 3.1 now immediately yields fi(L1) f2(L2) € Er+(py which is what
we needed to prove. The definition of N, is analogous to &£, thus one can use the exact same
argument to conclude that (Ly, f1) ... (La, fa) € Nuxrpan implies fi(L1) ... fa(la) € Ng«(p).
This proves the above relaxation to be correct.

It is left to provide the second relaxation R*(P) = P. Therefore, assume that a node is assigned
labels Sy ... Sa by R*(II). By definition of J\/’R*(H) that node can pick Ly € Sq1,...,LA € SA such
that Ly ... La € Np. If each node proceeds like this, the definition of Ex« (IT) ensures that we end
up with a solution of II. ]

As we already mentioned, we will now prove that 7p(II) is not only a “valid input” for II in
the sense of Lemma 3.2 but is in fact the easiest such problem. Formally, we will prove that each
input Z allowing a relaxation from IT to P can itself be relaxed to 7p(II), as stated in the following
theorem:

Theorem 3.3. Let I, P and Z be node-edge-checkable problems. Then 11 x T % P holds if and
only if T > rp(I1).

To prove Theorem 3.3, we first need to introduce the notion of a problem property related to
port-local relaxations.

Definition 3.4. We say that a node-edge-checkable problem P allows port-local relazations if for
all node-edge-checkable problems II satisfying II 2 P, I is also port-locally relaxable to P.

Recall that port-local relaxations are a restriction of general relaxations. Hence it may seem
weird to introduce the “allowing port-local relaxations”-property for node-edge-checkable problems
we want to relax to. However, the following lemma shows that the R*(-)-operator constructs
problems with exactly this property, which is why we needed R*(-) in the first place:

Lemma 3.5. For any node-edge-checkable problem P, the problem R*(P) allows port-local relaz-
ations.

Proof. Let II be some node-edge checkable problem that can be relaxed to R*(P), i.e., satisfying
IT % R*(P). According to Definition 3.4, we need to prove that there exists a port-local relaxation
from TI to R*(P). Let f be the given relaxation IT = R*(P). f maps an L € Xy to one of finitely
many Sy, ...,Sg € Yr«(p), depending on the other labels that node is assigned. Recalling that the

Si,...,Sk are actually sets of labels of P, we can define g(I) = Ule S;. This can be done for every
L € X (where k of course depends on L), which yields a function g: ¥ — Xg«(p). We claim that
g is a port-local relaxation in the sense of Definition 2.5.

For the first condition, we choose an arbitrary L; ... La € Nj which is mapped to S; ... Sa
by f. Since f is a correct relaxation, we know Sy ... SaA € ./\/'R*( p)- According to the definition
of NR*(P) this means that there exist Ly € S1,...,La € Sa such that Ly ... Lo € Np. Note that
by definition of g, we must have S; C ¢g(L;) and thus L; € g(L;) for all i = 1,..., A. This implies
g(L1) ... g(La) € Np«(p).

For the second condition, we choose an arbitrary edge that is assigned labels L and L' by P.
Let Si,...,Sk € ¥g«(py be the sets f might map L to. Similarly, we define Si,..., S}, for L’. Since
g always maps L and L’ to a valid edge configuration of R*(P), we can apply the definition of
Erx(p) to all pairs S;,S) where 1 < ¢ < kand 1 < ¢ < k’. This means we have s s € Ep for all
s € S;,s' €S, Since this holds for all pairs i,7" we also get s ' € Ep for all s € g(L),s" € g(L).
Thus we have g(L) g(L) € Eg~(p) which finishes the proof. O
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With this we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. If we suppose Z — 7p(IT), we clearly have
I xZ 3510 x 7p(I1) & P,

where the last step follows from Lemma 3.2. We can combine these relaxations as explained in
Observation 2.7 to obtain IT x Z > P.

For the other direction we are given a relaxation from Il x Z to P. Further, P is (port-
locally) relaxable to R*(P) by just mapping every label [ € ¥ to {l} € Y. Again using
Observation 2.7, we can combine these relaxations II x Z = P and P 2 R*(P) to obtain II x
T 2 R*(P). Using Lemma 3.5, IT x Z must even be port-locally relaxable to R*(P). Unpacking
Definition 2.5 this means there exists an f: Xnxz — Xg«(py such that

Ly ... La € N,iy ... ia €Nz, = f(L1,i1) ... f(La,in) GN'R*(p) and
L Ly € g]‘[,il 19 € 51 — f(Ll,il) f(LQ,iQ) S gR*(P)~
This allows us to define a port-local relaxation from Z to 7p(II) as follows:
g: Yz — ET}D(H)?
i S(-,1).
We need to prove that g is indeed a port-local relaxation. Observe that for each i1 ... ian € N7
and Ly ... Lo € N1 we have

glin)(L1) ... g(ia)(La) = f(L1,i1) .. f(La,in) € Nr«(p)-
Thus by definition of 7p(II) for each i1 ... ian € N7 we have

g(il) g(’iA) GNTP(H)'

The latter ensures that ¢ maps each of Z’s valid node configurations to a valid node configuration of
7p(IT). € behaves exactly the same, proving that g is a port local relaxation from Z to 7p(II). O

Note that the above proof actually constructs the (port-local) relaxation Z = 7p(II), so when-
ever we use Theorem 3.3 to infer some relaxation of this type, the proof tells us how to perform
that relaxation.

As a direct consequence, we can use Theorem 3.3 to see what happens if one repeatedly applies
7p(-) to a problem. We prove that 7p(7p(II)) is always a relaxation of II and that 7p is indeed
tripotent, justifying its name.

Corollary 3.6. For two node-edge-checkable problems 11 and P the following statements hold:

1. IS 7p(7p(I1))

2. 7p(Il) and Tp(rp(7p(Il))) are equivalent.

Proof. We start with the first statement. By Lemma 3.2 we have 7p(II) x II = P. This allows us
to apply Theorem 3.3, where II is the input problem Z and 7p(II) takes the role of II. That yields
T % 7p(7p(11)) as claimed.

For the second statement, 7p(II) = 7p(7p(rp(IT))) follows immediately from the first. The

other direction’s proof is quite similar. Observe that using the first statement, we get:

I1 x 7p(1p(7p(I0))) = 7p(rp(I1)) X 7p(rp(rp(I1))) = P

Here the latter step follows from Lemma 3.2, and we obtain II x 7p(7p(7p(II))) = P by Observa-
tion 2.7. We can now apply Theorem 3.3 directly to II x 7p(7p(7p(I1))) = P, where 7p(7p(7p(II)))
takes the role of Z, in order to get 7p(7p(7p(I1))) = 7p(II). This is everything we needed. O
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3.2 Inputs in the RE framework

So far we introduced the notion of a generic input 7p(II) for two node-edge-checkable problems
II and P and proved a couple of nice results coming solely from the definition of 7. However,
for proving lower bounds, we also rely on the round elimination technique, which is not yet really
connected to 7. Broadly speaking, the goal of this section is to prove statements about 7’s behavior
in the round elimination framework.

For this purpose, we first need a lemma showing how relaxations behave w.r.t. round elimination.
To this end, we need the notion of an edge-based relaxation, which can be seen as the dual to the
standard relaxation notion where the role of nodes and edges has been reversed.

Definition 3.7 (Edge-based relaxation). Let I = (X, Nir,&n) and I = (Sg, Ny, &) be two
node-edge-checkable problems. Let z denote the number of configurations in &y and let L;; Lo,
where 1 < i < z, denote the z configurations. Then II is called an edge-based relaxation of 11 if
there exists a mapping f: {L;; [ 1 <i < 2,1 <j <2} — X such that

1. for every configuration L;; Lz € &, we have f(L;1) f(Li2) € &, and
2. for every configuration Ly, j, ... Liyj. € N, we have f(Li ;) ... f(Lija) € Ny

We call such a mapping f an edge-based relazation function from II to II.

Now we are ready to prove the aforementioned statement, which shows, informally speaking,
that the two notions of relaxing a problem and applying the function R(R(-)) commutate.

Lemma 3.8 (RE commutativity). Let II and IT be two node-edge-checkable problems. Then all of
these hold:

1. If 11 is a relazation of 11, then there exists an edge-based relazation from R(II) to ’R(ﬂ)
2. If11 is an edge-based relazation of I1, then there is a relazation from R(II) to R(II).
3. If11 is a relazation of 11, then Q'(Il) is a relaxation of Q'(I1) for all integers i.

Proof. We start with Statement 1, therefore let f be a relaxation function from II to II. Consider
an arbitrary edge configuration Sy Sy € Eg(m). Observe that Sy, Sy are sets of labels from Yy;. Now,
for each j € {1,2}, do the following.

Let Lj1,...,Ljk; denote the labels contained in S;. For each 1 < x < kj, the label L;; may occur
in different configurations from N; let £, denote the set of labels that these different occurrences
of Lj; are mapped to by f. Set further S := Ulgxgkj Liz.

Observe that, by the definition of R(-), the edge configuration Li,, Lag, is contained in & for
each 1 <z < ky and 1 < z9 < ko. By the fact that f is a relaxation and the definition of S;, it
follows that L) L5 € & for each L} € 57 and L), € Sy. This implies, again by the definition of R(-),
that there is an edge configuration S; Sy € SR(fI) such that S} C S, and Sy C Ss.

Now, for the considered edge configuration S; Sg € Exy), set g(S1) = S, and 9(S2) :== S,. As
the considered edge configuration was chosen arbitrarily from Ex ), this concludes the definition of
g. From the construction of g, we immediately obtain that Condition 1 of Definition 3.7 is satisfied.
In the following, we show that ¢ also satisfies Condition 2.

Consider an arbitrary node configuration S; ... Sa € ./\/R(H) and let S1,...,Sa be labels that
S1,...,SA, respectively, are mapped to by g. By the definition of R(-), we know that there exists
some configuration Ly ... Lo € Ny such that L, € S, for each 1 < y < A. Let L},..., L},
respectively, be the labels that the labels Lq,...,La of the configuration L; ... LA are mapped to
by f. By the definition of f, this in particular implies that L} ... L’y € Npy. By the construction
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of g, we know that there exist subsets S},...,S% of S1,...,Sa, respectively, such that Ly € 5,
for each 1 < y < A. By the definition of R(-), it follows that Si ... S € NR(ﬂ), as desired.
We conclude that g also satisfies Condition 2 of Definition 3.7. Hence, g is indeed an edge-based
relaxation function, proving our first statement.

Statement 2 is dual to statement 1, where the roles of nodes and edges are swapped. Here we
assume that ¢ is an edge-based relaxation function from II to II.

Consider an arbitrary node configuration Zy ... Za € Nﬁ(n)- For each y € {1,...,A}, do the
following.

Let Sy1, ..., Syk, denote the labels contained in Z,. For each 1 <z < k,, the label Sy, may occur
in different configurations from &yy; let Sy, denote the set of labels that these different occurrences
of Sy, are mapped to by g. Set further Z; = Ulga:gk:y Syz-

Observe that, by the definition of R(-), the edge configuration Sy, ... Saz, is contained in N
for each (x1,...2a) € {1,...,k1} x---x{1,...,ka}. By the fact that g is an edge-based relaxation
and the definition of Z, it follows that S} ... S\ € Ny for each (S},...,S)) € Z] x -+ x Z}.

This implies, again by the definition of R(-), that there is a node configuration Z; ... Za € Nﬁ(ﬁ)

such that Z7,...,Z)y are subsets of Z1,...,Za, respectively.

Now, for the considered node configuration Z; ... Za € Nﬁ(ny set h(Zy) = Zy for each 1 <
y < A. As the considered node configuration was chosen arbitrarily from Nﬁ(ny this concludes the
definition of h. From the construction of h, we immediately obtain that Condition 1 of Definition 2.4
is satisfied. In the following, we show that h also satisfies Condition 2.

Consider an arbitrary edge configuration Z; Zy € c‘:ﬁ(n) and let Z;,Zo be labels that Z1,2Zo,

respectively, are mapped to by h. By the definition of R(:), we know that there exists some
configuration S; Sy € & such that S; € Z; for each 1 < j < 2. Let S, S), respectively, be the
labels that the labels Sq,Ss of the configuration S; So are mapped to by g. By the definition of
g, this in particular implies that S] S5 € £4. By the construction of h, we know that there exist
subsets Z}, Z} of Z1,Z, respectively, such that S} € Z; for each 1 < j < 2. By the definition

of R(-), it follows that 7,7 € Sﬁ(ﬁ), as desired. We conclude that h also satisfies Condition 2
of Definition 2.4. Hence, h is indeed a relaxation function, which concludes the proof of the second
part.

For Statement 3, it suffices to prove the statement for ¢ = 1, it then holds for all 4 by induction.
If 11 is relaxable to II, then we know by part 1 that there exists an edge-based relaxation from R(II)
to R(ﬁ) This allows to apply part 2, proving that R(R(II)) = Q(II) is relaxable to R(R(II)) =
Q(II). O

We are now ready to connect 7 to the round elimination framework. To be precise, we will
now prove that Q(7p(II)) i.e., the problem obtained by performing one round elimination step on
7p(II), can always be relaxed to 7o(p)(Il). This holds without any further assumptions on P and
II, however the application to the case where P is a fixed point is particularly important. Broadly
speaking, P being a fixed point allows us to replace the appearing Q(P) with P, which yields a
relaxation Q(7p(I1)) = 7p(II). But this just means that 7p(II) itself is a fixed point, which we will
formally see in Corollary 3.10.

We will now prove the statement Q(7p(II)) 7o(p)(II) as mentioned above. The proof requires
delving into the definitions of R(-) and R(-) making it very technical, luckily it is the only time we
need to unpack these definitions.

Lemma 3.9. For any two node-edge-checkable problems P and I1 we have

Q(7p(II)) = Tg(p)(I1).
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R(R*(P)) = Q(P)

Qe (10) (%)

TQ(p) (H) X

Figure 1: Diagram to visualize Lemma 3.9

Proof. To get a better overview, we visualize the present node-edge-checkable problems in a small
diagram, see Figure 1. A “—” means that one problem can be relaxed to another. Two problems
pointing at a xX-node mean that their product can be relaxed to the problem the x-node points to.

At first we will explain why the black relaxations in Figure 1 hold. Observe that 7g(py(IT) x II 2
Q(P) follows directly from Lemma 3.2. Furthermore, R*(P) can be relaxed to R(P) using an edge-
based relaxation. The only thing each edge needs to do is to enlarge its labels (which are sets)
so that it ends up with a maximal configuration of R*(P), which by definition is contained in
R(P). Since R(P) is a more restrictive version of R*(P), it is clear that, conversely, R(P) can also
be relaxed to R*(P), using an edge-based relaxation that just does nothing. Thus we can apply
part 2 of Lemma 3.8 to obtain that R(R*(P)) and R(R(P)) = Q(P) are equivalent in the sense of
Definition 2.8. This concludes the black relaxations.

The orange relaxation Q(rp(II)) = To(p)(II) is the one we want to prove.

Now consider the blue relaxations and observe that Q(7p(IT)) x IT = Q(P) implies Q(7p(I)) =
To(p) (1) using Theorem 3.3. Thus it suffices to prove Q(7p(II)) x II 2 Q(P). But since Q(P) and
R(R*(P)) are equivalent, we can instead finish the proof by showing the other blue relaxation

Q(7p(II)) x IL = R(R*(P))

which we will do in the following.
Therefore, we first define a function T': ¥g(;, ) X X — Eﬁ(R*(P)) as follows: For

S = {{fﬂ, . 7f1b1}7 {fgl, ceey f2b2}7 ceey {fal; . 7faba}} c Eﬁ(R(Tp(H)))

and some L € X1 we set

b1
L) :{Uflk Uf% Ufak }
k=1

One can imagine each node applies this functions to all its label pairs, however that is not quite the
relaxation yet. For now let (Si,L1) ... (Sa,La) € Ng(rpm))xn be a node configuration. Suppose
that each S; is given by

Si = {{f{b .- 'aflib”i}’ e '7{f;11a .- ’félb;z}}
We have S1 ... Sa € Nﬁ(R(Tp (my)) and can thus apply the definitions of R(-) to obtain

{fjllp---;f]:‘llb;l} {f A RIS AbA }E R<TP( ))
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for all indices 1 < j* < a’. We now choose some arbitrary indices j', ..., j*. By definition of R(:)
we can w.l.o.g. assume fjlll fjAAl € NTP(H) for these indices j°. By definition of 7 this implies

jlll(Ll) e fjAAl(LA) € Nz« (p). Following the definition of R*(P) we can enlarge these sets to get

bt bs

jl ]A

U i) - U fagLa) € Nrep).
k=1 k=1

Since the indices 1 < j° < a’ were arbitrary, the latter relation holds for all possible j¢. We recall
that T'(S;,L;) by definition is given by

bl
J
T(Si,Li) = § | fip(Li)i1 <j° < d
k=1

Hence we can conclude:
VS'l € T(Sl, Ll), . ,VS/A € T(SA, LA): S,l . /A S NR*(p)

Now by definition of R(-) there exist supersets T'(S;,L;) 2 T(S;,L;) for all 1 < i < A such
that 77(S1,L1) ... T'(Sa,La) € R(R*(P)), which a node knowing the T'(S;,L;) can compute.
For our relaxation, each node chooses these T"(S;,L;) as its new labels. The definition of 7"
immediately proves condition 1 of Definition 2.4, so we are left to prove condition 2. Therefore, let
(S1,L1) (S2,L2) € Eg(rp ()1 be an arbitrary edge configuration. Similar to above, we set

Sl = {{fllv"')flbl}v{f217' . 'af?bg})' "a{fala"' 7faba}}7
52 = {{9117” . 7gld1}7{9217"'792d2}5‘ . '7{9017"'790116}}‘

Since we have S1 Sz € Ex g (7, (my))» We can use the definition of R(-) and w.l.o.g. assume

{fin, s fi Y {o1n, -, 910} € Er(rp())-
We then get:

{flla .- '7f1b1} {glla .. 7gld1} S 5R(TP(H))

Db fry VI<i<bV1<j<di: fu 915 € Erpa
Def. &, . .
== VI <i< bVl <j<di: fui(l1) g15(L2) € Er~(p)
Def. Exx . .
—F5 VI <i <Vl <j <diVpr € fri(Li)Vps € g1j(L2): p1 p2 € Ep
bl dl
= Vp; € U J1i(L1)Vp2 € U g1j(L2): p1 p2 € Ep
i=1 Jj=1
Def. € b o
=25 |J Aull) | 915(La) € Ere(py.-
i=1 j=1

Observe that by the definitions of 7' and 7" we know have Uflzl f1i(L1) € T(S1,Ly) € T7(S1,L1)
and U;ilzl glj(Lg) S T(SQ, LQ) - T/(SQ, LQ). So we ﬁnally obtain T/(Sl, Ll) T,(SQ, Lz) € Sﬁ(R*(P))
which is what we needed to finish the proof. O
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Lemma 3.9 has no further assumptions on P and II, however as we already mentioned, the case
where P is a fixed point is particularly nice. Informally speaking, it allows us to replace Q(P) with
P, which makes 7p(II) a fixed point. Indeed we have:

Corollary 3.10. Let P,Z and F be node-edge-checkable problems satisfying the following:

1. Q(F)xT 2 F, meaning that F is a generalized fized point with input T.
2. P5T.

Then 7£(P) is a fized point, even in the setting without input.

Proof. We immediately get

Q(rr(P)xP %  1op(P)xP 5 Q(F)x P35 Q(F)xISF,
Lemma 3.9 Lemma 3.2
where the last two steps follow from the two assumptions. We can combine these relaxations
using Observation 2.7 to obtain Q (77(P)) x P = F. This allows us to apply Theorem 3.3 to get

Q(7£(P)) & 77(P), proving that 77(P) is a fixed point. O

What this means is that the fixed point property is carried over from F to 77(P). We will
make use of this in the next section. Further, it is worth noting that while generating new fixed
points using Corollary 3.10, we can get rid of a previously required input. Observe that while F is
a generalized fixed point requiring Z as input, 77(P) is a fixed point in the setting without input.
The input is, of course, hiding in the assumption P 2 7, however broadly speaking, this can easily
be ensured by replacing P with P x Z, which does not make P harder in the setting where Z is a
given input.

3.3 Constructing fixed point relaxations

We have now collected everything necessary to prove a rather surprising result. Broadly speaking, it
states that whenever a node-edge-checkable problem II allows a relaxation with input to a nontrivial
generalized fixed point, there also exists a nontrivial fixed point relaxation of II.

Theorem 3.11. For two node-edge-checkable problems Il and I the following two statements are
equivalent:

1. There exists a nontrivial generalized fized point F given I which is a relaxation of 11 in the
setting with input Z:

0

nxZ%F, I-F, QF)xT 3 F.

2. There exists a fized point relaxation G of 11 in the setting without input, which is nontrivial
even given the input Z:

n%¢g, I%G 96>

Proof. Statement 2 clearly implies 1, as we can just choose F := G. For the other direction we
assume that there exists a problem JF satisfying the properties listed in statement 1. We set
G := 77(Z) and prove that G fulfills all required properties. First we note that

Theorem 3.3 0
>

NxZ>SF n3%g,
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where we used F’s first property. Now assume 7 2 G. This would imply
I5IxG=Ix17(I)> F

by Lemma 3.2 contradicting Z -+ F. Thus we must have Z - G. Lastly, we have Q(G) = G by
Corollary 3.10, where we choose P to just be Z. O

Here one should think about II as some node-edge-checkable problem for which we want to
prove hardness. Z is an input problem that may have been introduced artificially to find such
a proof. If we were interested in II in the setting given some input, Z can be chosen as some
node-edge-checkable problem that is O-round relaxable to this input.

With this interpretation in mind, part 1 of Theorem 3.11 means that the hardness of II can be
proven using a generalized fixed point relaxation with (artificial) input. Note that the input may
be used in the relaxation of II to the fixed point F and in the relaxation from Q(F) to F making
F a generalized fixed point. In contrast, part 2 states that the hardness of I can be proven using
a fixed point relaxation without input. Even more, we can “force” G in strategy 2 to not be easier
than our artificially introduced input.

Recall that the first is clearly a generalization of the latter, since we can just introduce a trivial
input. However, Theorem 3.11 proves that these strategies are equally powerful in the sense that
they allow to prove hardness for the same problems II. This may be surprising, but note that it
is actually a necessary condition for the correctness of the possible conjecture that there exists a
nontrivial fixed point relaxation for each intermediate-hard node-edge-checkable problem.

We further note that given a node-edge-checkable problem II we want to solve given a fix input
Z, the part 1 of Theorem 3.11 is nothing else then finding a nontrivial generalized fixed point
relaxation in the setting with this given input. It asks to find a node-edge-checkable problem F,
which is a relaxation of II (here also adding the input Z), nontrivial given Z and a generalized fixed
point in the setting with input Z.

Further, it is worth noticing that the proof of Theorem 3.11 is constructive. When given
a node-edge-checkable problem Il and a nontrivial generalized fixed point relaxation F under a
certain input Z, a nontrivial fixed point relaxation of II without input is given by 7£(Z).

Lastly, we reconsider the setting where a fixed point candidate J has already been chosen, and
we are left to find a suitable input problem Z to ensure part 1 of Theorem 3.11. Since we need
to ensure II x Z > F and Z - F, a natural good candidate would be Z = 7r(II), since it is the
easiest problem satisfying Il x Z %5 F by Lemma 3.2 and Theorem 3.3. Following the proof of
Theorem 3.11, the double-input 77(77(II)) would then be a nontrivial fixed point relaxation of II
in the setting without input. This suggests that whenever there exists a fixed point relaxation of
IT given some input, we can choose that input as 77(II) and furthermore obtain that 7x(7x(II)) is
a nontrivial fixed point relaxation of Il without input. The following corollary formally proves this
statement.

Corollary 3.12. For a node-edge-checkable problem 11 and a fized point F, the following three
statements are equivalent:

1. Problem 77(11) satisfies 77 (I1) - F.
2. There exists a node-edge-checkable problem T such that IT x T 5 FandI 5 F.
3. Problem tx(t£(I1)) is a nontrivial fized point relaxation of 1.

Proof. Tt is easy to see that 1 implies 2, since we can choose Z := 7x(II) and obtain IT x Z 5 F
directly from Lemma 3.2.
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Conversely, II x Z = F implies Z — 77(II) by Theorem 3.3. Thus 7+ (II) 2 F would imply
%5 F by Observation 2.7, contradicting the assumption Z — F. Hence we must have T (1I) - F,
proving that 2 implies 1.

To prove 1 implies 3, observe that our assumptions Q(F) 2 F and 77 (IT) - F together with
Lemma 3.2 correspond to the assumptions in part 1 of Theorem 3.11, where 7£(II) takes the role of
Z. According to the proof of Theorem 3.11, 7£(7£(II)) is a nontrivial fixed point relaxation of II.

Lastly, we prove the contraposition = 1 implies = 3 and hence assume 75 (II) 2 F. This
immediately yields 72(I) x P 2y F for the trivial node-edge-checkable problem P, and thus P RN
77 (77(I1)) by Theorem 3.3. It follows directly that 77(7£(II)) is also trivial. O

4 SSO with SO as input

In this section, our goal is to prove the following theorem.

Theorem 4.1. Let II denote the sinkless and sourceless orientation problem. Then, in the setting
where a sinkless orientation is given as input, 11 satisfies the following two properties.

1. Solving II with a deterministic algorithm requires Q(logn) rounds and solving I1 with a ran-
domized algorithm requires Q(loglogn) rounds.

2. There is no nontrivial fized point relaxation of Il. Moreover, there is no nontrivial generalized
fized point relaxation of I1.

The sinkless and sourceless orientation problem (SSO) is the problem of orienting the edges such
that no node is a sink and no node is a source, i.e., such that each node has at least one outgoing
and at least one incoming edge. For simplicity, in the remainder of this section, we focus on the
case of 3-regular SSO. This already suffices to provide our impossibility results (and generalizes
straightforwardly to any A > 3).

Analogously to how sinkless orientation can be phrased as a node-edge-checkable problem
(see Section 2), SSO can be easily phrased as a node-edge-checkable problem by labeling half-
edges with | (incoming) and O (outgoing), which naturally leads to the following node and edge
constraints: the only (condensed) configuration in the node constraint of SSO is | O [I O], the only
configuration in the edge constraint of SSO is | O.

Now we turn our attention towards proving Theorem 4.1. We start with characterizing the
problems in the round elimination sequence IT, Q(II), Q(Q(II)), ... for the case of II being SSO.

Lemma 4.2. Let II be the problem of sinkless and sourceless orientation and k a monnegative
integer. Then the node and edge constraints of QF(II) are:

If k=0: Norany: B C[BC]
Egrany: BC,

If k=1: Nokan: BCD
£oray: (B D] [CD].

If k> 2: Nokary: B CDg

A; D; Dy foreach1 <i<k-—1
EQk(H)Z [B D1 D2 Dk] [C D1 D2 Dk]
A; D; for each 1 <i < j<k.
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Proof. We prove the lemma for the cases £k = 0, k = 1, and k£ > 2 in that order. The case k = 0
follows directly from the definition of sinkless and sourceless orientation by renaming the labels.

Now consider the case k = 1. It is straightforward to verify that, by applying R(:) to II, we
obtain

Erany = {{B} {C}},
Sran = {{B},{C}}, and
Nran = {{B} {B} {C}, {B} {C} {C}}.

Again, it is straightforward to apply R(-) to R(II) (where, for computing Sﬁ(n(n)), we can make
use of Observation 2.10), and we obtain

Nerany = {{B} {{C}} {{B}. {C}}},
Yrrany = {{BH{H{C}H {{B}, {C}}}, and
Crrary = {HH{BH G} {{B}} ({BL{C}},  {{C}} {{B}.{C}}, {{B}.{C}} {{B}.{C}}}.

By performing the renaming

{{B}} =B

H{C = C

{{B}. {C}} = D,
we obtain
as desired.

Finally consider the case k& > 2. We will prove this case via induction. For the base case,
consider that k& = 2. We claim that by applying R(:) to Q(II) (which we already established), we
obtain

g’R(Q(H)) = {{B’ D} {C’ D}v {D} {B’ C, D}}v
272(Q(H)) = {{D}7 {Bv D}7 {C7 D}7 {B7 C, D}}7 and
NR(Q(H)) = {[{Bv D} {Bv C, D}] [{C’ D} {Ba C, D}] [{D} {Bv D} {C> D} {B? C, D}]}

It is straightforward to verify that all configurations listed in the claimed Ergo(m)) satisfy the uni-
versal quantifier. Moreover, it is clear that no listed configuration dominates another (different)
listed configuration and that each configuration obtainable by taking a configuration from Eg(
and replacing each label in the configuration by the singleton set containing the label is dominated
by a listed configuration. Since {B,D} and {C,D} are the only incomparable sets appearing in the
claimed €g(rry and the configuration {B,D} U {C,D} {C,D} N {B,D} is identical to {D} {B,C,D}
(which is listed above), we obtain by Observation 2.11 and Observation 2.12 that Eg (o)) is indeed
as given above. Now the correctness of the claim follows straightforwardly by applying Observa-
tion 2.10.
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Let us rename the labels in ¥z g(mr)) to make the obtained problem R(Q(II)) more readable.
By performing the renaming

{D}—>D
{B,D} —» B
{C,D} —=C
{B,C,D} — A,
we obtain

E’R(Q(H)) = {B C, A D} and
Nigom) = {IA Bl [A CJ [A B C D]},
We claim that, by applying R(-) to R(Q(II)), we obtain
Nﬁ(R(Q(H))) = {{A7 B} {A7 C} {A7 B’ C7 D}7 {A} {A7 B’ C} {A7 Ba Ca D}}v
Srriom)) = {{A}. {A.B}.{A,C}.{A,B,C},{A,B,C,D}}, and
gﬁ(R(Q(H))) = {[{Av B} {A7 87 C} {Av B7 C7 D}] HAv C} {A7 B7 C} {A7 Ba C7 D}]v
[{A} {A,B} {A,C} {A,B,C} {A,B,C,D}] {A B,C,D}}.

To prove the claim, observe that {A,B} and {A, C} are the only incomparable sets appearing in
the claimed Nﬁ(R(Q(H)))' Since the configuration

{A,B}U{A,C} {A,C} N {A B} {A, B,C,D} N {A,B,C,D}
is identical to {A} {A,B,C} {A,B,C,D} and the configuration
{A,B}U{A,C} {A,C} n{A,B,C,D} {A,B,C,D} N {A,B}

is dominated by {A, B} {A, C} {A, B, C, D}, analogously to the argumentation in the case of £z gy
we obtain that Nﬁ(R( o)) is indeed as given above. Again, the claim follows by applying Obser-
vation 2.10.
By performing the renaming
{A} — A1
{A,B} - B
{A,C} = C
{A,B,C} - Dy
{A,B,C,D} — Dg,

we obtain

Nz o) = {B C D2,A; Dy D2} and
Ex(r(oamy)) = 1B D1 D2] [C D1 Do, [A; B C Dy Dy] Do}

Observing that

{[B D1 Do] [C D1 D3], [A; B CD;j Dg] Do} ={[B Dy Dg] [C D1 Do|], A; Dy}
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concludes the base case.

For the induction step, fix any k& > 2 and assume the induction hypothesis, i.e., that N, Qk—1(1T)
and Egr-1(pyy are as given in the lemma. We claim that, by applying R(-) to QF~1(IT), we obtain
that the edge constraint Ex(gr-1(my) of R(QF~1(IT)) is given by the following configurations:

{B7 Dla‘ . '7Dk—1} {C7 Dlv"'7Dk—1}7
{B,C,Dy,...,Dp_1} {D1,...,Dp_1},
{Al,. . .,Ai,B,C, Dl,.. .,Dkfl} {Di+17~- .,Dkfl} for each 1 < 1 < k—2.

Analogously to before (i.e., making use of Observations 2.11 and 2.12), the claim follows from the
facts that {B,D1,...,Dr_1} and {C,Dy,...,Dg_1} are the only incomparable listed sets and

{B, Di,..., Dkfl} U {C, Di,..., Dkfl} {C, Dy,..., Dkfl} N {B, Dy,..., Dkfl}

is identical to (the listed) {B,C,Dy,...,Dg—1} {D1,...,Dr—1}.
The claim implies that the output label set for R(QF~1(II)) is

ZR(Qkfl(H)) = {{B, Dl, ey Dk—1}7 {C, Dl, ey Dk:—l}7 {B, C, Dl, ey Dk—l}}

U{{A1,....Ai,B,C.D1,....Dp 1} |1<i<k—2)
U{{Di,...,Dk,1}|1§i§k—1}.

By performing the renaming

{Dj,...,Dg_1} = D; foreach 1 <i<k—1
{B,D1,...,Dx_1} - B
{C,Dy,...,Dg_1} = C
{B,C,D1,...,Dr_1} — Ag

{A1,...,A;,B,C,Dy,...,Dp_1} = A;foreach 1 <i < k—2,

we can rewrite the edge constraint and output label set for R(Q¥~1(II)) as follows:

gR(Qk—l(H))Z B C
A,L' Di+1 for each 0 § /) S k — 2,
ER(Qk71(H)): {B,C}U{Ai ‘ 0<: < k—Q}U{DZ’ ’ 1< < ]{—1}.
Using the aforementioned renaming, we obtain, by Observation 2.10, that the node constraint
Nr(gr-1(m)) of R(QF~1(IT)) is given by the following condensed configurations:

Ao ... A2 B][Ag ... Ak2C] [Ag ... A,_2 BCD;y ... Dg_1],

[Ai ... Ako][Ag ... A,oBCDy ... Dj]J[Ag ... A2 BCD;y ... Dpq] V1<i<k-2.
Finally, we claim that, by applying R(-) to R(Q*1(II)), we obtain that the node constraint
Nﬁ(R(Qkfl(n))) of R(R(QF~1(IT))) is given by the following configurations:

{A(]a ooy Ag—2, B} {A(): ooy Ag—2, C} {A07 ooy Ak—2, B, C; Dy,..-, Dk*l}a
{A(]a s 7Ak—2} {AOa ooy Ak—2, B, C} {A07 ooy Ag—2,B,C, Dy, Dk—l}a
{Ai,...,Ak_2} {Ag,...,Ak—2,B,C,D1,...,D;} {Ao,...,Ax—2,B,C,Dy,..., D1} VI<i<k-—2.
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Analogously to before, the claim follows from the facts that {Ao,...,Ax_2,B} and {Ao,...,Ax_2,C}
are the only incomparable listed sets, the configuration

{Ao,...,Ap—2,B} U{Ao,...,Ax_2,C}
{Ao, vy Ap_o, C} N {Ao, vy Ap_o, B}
{A07 coe s Ag—2, B, Cv D1,..., Dk*l} N {A07 ooy Ag—2, B, Ca D1,..+, Dk*l}
is identical to {Ag, ..., Ar—2} {Ao, ..., Ax—2,B,C} {Ag,...,Ax—2,B,C,D1,...,Dr_1} (which is listed
above), and the configuration
{Ao,...,Ap_2,B}U{Ao,...,Ax_2,C}
{A()y s 7A]€727 C} N {A07 s 7Ak727 87 Cu D17 ceey Dk*l}
{A07 ey Ag—2, B, Ca D1,..., Dk*l} N {AOa ooy A2, B}
is dominated by {AQ, e ,Ak_g, B} {Ao, ey Ak_g, C} {AQ, ce 7Ak—27 B, C, Dl, SN Dk—l} (Which is

listed above).
The claim implies that the output label set for R(R(Q*~1(II))) is

Eﬁ('R(Qkfl(H))) - {{AOa “e. aAk—Qa B}a {A[)a ce. 7Ak‘—27 C}a {A07 ce. 7Ak‘—27 Ba C}}
U{{Ao,...,Ak_Q,B,C,Dl,...,Di} ‘ 1 Slgk—l}
By performing the renaming

{Aiy.. ., A2} > Ay foreach 0 < i<k —2

{Ao, ey Apo, B} — B

{Ao, R ,Ak,Q,C} - C

{A(), ey Ag_o, B, C} — Dy

{Ao,...,Ak_Q,B,C,Dl,...,Di}—) Di+1 for each 1 <i<k-—-1,

we can rewrite the node constraint and output label set for R(R(Q*1(II))) as follows:

Nr(r(@-1am): B CDs
A; D; D foreach 1 <i<k—1,

Note that in this last renaming, indices have been “shifted by 1”7. Again making use of this renaming
(and Observation 2.10), we obtain that the edge constraint ER(r(gk-1(my)) Of R(R(QF1(1))) is
given by the following configurations:

[BD; ... Di] [CDy ... Dy
[Al AZ‘BCDl Dk] [Di+1 Dk] foreachlgigk—l

Observing that this characterization of 5ﬁ(R(Qk*1(H))) can be equivalently written as

gﬁ(R(Qk—l(H)))i [B D1 . Dk] [C D1 e Dk]
Aip Djforeach 1 <i<j<k

concludes the induction and the entire proof. O
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Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We start by showing Property 1. By applying Theorem 6.4 with k €
O(logn), resp. k € O(loglogn), we see that it suffices to show for any ¢ > 0 that QY(II) is
not solvable in 0 rounds in the deterministic PN model, even if a solution for sinkless orientation
is given as input. (Note that we can choose the parameter L in Theorem 6.4 to be from ©(logn),
resp. O(loglogn), since the characterization of the ot (IT) given in Lemma 4.2 guarantees that the
number of labels used to describe Q*(II) is in O(¥).)

To this end, consider first the case that ¢ > 2, and assume for a contradiction that there is a
0-round PN-model algorithm A that solves Q*(II) given a solution to sinkless orientation as input.
Consider a node with input configuration O | |, i.e., two of the half-edges incident to the node are
oriented towards the node and the last half-edge is oriented away from the node. We consider two
cases.

First consider the case that A chooses the node configuration A; D; Dy € NQe(H) for some
1 < i < /¢ for such a node. If A outputs the label A; on the outgoing half-edge and therefore
outputs label D; on one of the incoming half-edges, then on some input graphs, A will produce
the edge configuration A; D;, which is not contained in Eqge (), yielding a contradiction. Hence, A
necessarily outputs label A; on an incoming half-edge. Now consider a node with three outgoing
half-edges. No matter which node configuration A chooses for such a node, there is some output
label from {Ay,...,As—1,B,C} that A outputs on an outgoing half-edge. Since none of the labels
contained in this set yields an edge configuration in Ege () when combined with A;, we conclude
that A will produce an incorrect output on some input graphs, yielding a contradiction.

Now consider the complementary case, i.e., that A chooses the node configuration B C Dy for a
node with precisely one incident outgoing half-edge. Then A outputs one of B and C on an incoming
half-edge. Due to symmetry, we can assume w.l.o.g. that A outputs B on an incoming half-edge.
Now consider again an edge with three outgoing half-edges. No matter which node configuration
A chooses for such a node, there is some output label from {Ay,...,A;,_1, B} that A outputs on an
outgoing half-edge. Since none of the labels contained in this set yields an edge configuration in
EQe(H) when combined with B, we conclude that A will produce an incorrect output on some input
graphs, yielding a contradiction.

We remark that, while we omitted an explicit specification of the ports of the incoming, resp.
outgoing, edges in the above considerations, it is straightforward to select such a specification.
Moreover, for the case that ¢ € {0,1}, we obtain a contradiction analogously to the second case in
the above considerations. This concludes the proof that II satisfies Property 1.

Now we turn to showing Property 2. First we prove that there is no nontrivial fixed point
relaxation of II. We will do so by showing that each fixed point relaxation of II can be solved in 0
rounds in our setting, i.e., given a sinkless orientation as input. Let II be an arbitrary fixed point
relaxation of II. Let y be an integer satisfying y > [X| +2. Consider the problem QY(II) obtained
from II after y recursive applications of R(R(+)).

As IT is a relaxation of II, we obtain by Lemma 3.8 that QY(II) is a relaxation of Q¥(II). Since
QY(IT) = II (due to II being a fixed point), it follows that II is a relaxation of QY(II). Moreover,
by Lemma 4.2, the definition of y implies that N, ov(ID) contains configuration A; D; D, for each
1<i< |8yl +1

Recall the definition of a relaxation function given in Definition 2.4, and let f be a relaxation
function from QY(II) to II. By the pigeonhole principle, we obtain that N Qv (1) must contain two
configurations A; D; D, and A; D; D, satisfying i < j < |Xq| + 2 and f(A;) = f(A;). Moreover,
the definition of f ensures that f(A;) f(D;) f(D,) is contained in II. We claim that if we select
any two (not necessarily distinct) labels in this configuration, the configuration consisting of the
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selected two labels is contained in £y, except possibly if we select f(A;) twice. In the following, we
prove this claim.

By Lemma 4.2 and the fact that j < |E4|+ 2 <y, we know that the four configurations D; Dy,
D; Dy, Dy Dy, and :Aj Dy are all contained in Egyyy. Hence, by the fact that f is a relaxation
function from II to II, we obtain that the configurations f(D;) f(D;), f(D;) f(Dy), f(Dy) f(Dy),
and f(A;) f(Dy) are all contained in £g. Moreover, since ¢ < j, Lemma 4.2 also implies that A; D;
is contained in Egy (), which in turn implies that f(A;) f(D;) is contained in &g. As f(A;) = f(A;),
it follows that also f(A;) f(D;) is contained in &, which concludes the proof of the claim.

The proved claim now offers a simple way to solve IT in 0 rounds given a sinkless orientation as
input: each node v simply selects one of its incident half-edges for which the corresponding edge
is oriented away from v in the given sinkless orientation, outputs f(A;) on the selected half-edge,
outputs f(D;) on an arbitrarily chosen half-edge out of the remaining two, and outputs f(D,) on
the last remaining half-edge. It remains to show that the output returned by this 0-round algorithm
is indeed a correct solution for II. From the design of the algorithm it directly follows that, for
each node v, the configuration consisting of the output labels on the half-edges incident to v is
f(A;) f(D;) f(Dy) and therefore contained in Nj. For the correctness on the edges, observe that
the design of the algorithm ensures that there is no edge e for which the output label on both
half-edges is A; (since e is outgoing for only one of its endpoints in the given sinkless orientation).
Now, the claim that we proved above guarantees that, for each edge e, the configuration consisting
of the output labels on the half-edges belonging to e is contained in &£y, which concludes the proof
for the statement that there is no nontrivial fixed point relaxation of II.

Now, applying Theorem 3.11 yields that there is no generalized fixed point F (with sinkless
orientation as input), as that would imply the existence of a non-generalized fixed point relaxation
that is nontrivial in the setting with sinkless orientation as input. This implies the second part of
Property 2. O

5 Fixed point relaxations for homomorphism problems

In [BCGT22], the authors show an interesting connection between two fields that, at a first glance,
seem unrelated: distributed computing and descriptive combinatorics. A class of problems that
has been widely studied in the context of descriptive combinatorics is the so-called Borel class.
In [BCGT22], the authors show that, if a problem does not belong to the class Borel, then such a
problem requires Q(logn) deterministic rounds and Q(loglog n) randomized rounds in the LOCAL
model. In the literature of the field of descriptive combinatorics, there is a technique that can be
used to show that a problem is not in the Borel class [Mar16]. The authors of [BCG™22] use such
a technique to derive lower bounds in the LOCAL model for a so-called homomorphism problem.
They leave as an open question the problem of understanding whether the same lower bounds can
be achieved via the round elimination technique, and in particular they ask whether there is a
nontrivial fixed point relaxation for the problems they achieve lower bounds for. In this section, we
solve this open question by providing a positive answer. We start by defining the class of problems
for which [BCG'22] obtains Q(log n)-round deterministic and €2(log log n)-round randomized lower
bounds via the aforementioned technique from descriptive combinatorics, which, in the distributed
context, is often referred to as Marks’ technique.
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5.1 A subclass of homomorphism problems

Let P denote the class of problems [BCG22] obtain the aforementioned lower bounds for. The
problems in P come from a class of problems called homomorphism problems. In a homomorphism
problem the task is to compute a homomorphism from the input graph to a given fixed graph H.
This task can be reformulated as a coloring problem: color the nodes of the input graph such that
each color is a node of H and any two neighboring nodes u,v in the input graph must output
colors ¢y, ¢, such that ¢, and ¢, are adjacent nodes in H. To phrase a homomorphism problem
as a node-edge-checkable problem, we simply require outputting the same color at each half-edge
incident to the same node and that the two outputs on the half-edges belonging to the same edge
satisfy the aforementioned coloring property.

The class P studied in [BCGT22] is the class of all homomorphism problems where graph H
satisfies a certain reasonably natural property, called A-(*). For a formal definition of A-(*),
see [BCG 122, Definition 4.8, arXiv version]. The authors show further that, for any® A > 3,
a graph H satisfies A-(*) if and only if there is a homomorphism from H to a specific graph
Hpa [BCG 22, Proposition 4.10, arXiv version]. Observe that the existence of a homomorphism
from a graph H to Ha implies that there is a relaxation from the homomorphism problem with
target graph H to the homomorphism problem with target graph Ha as any homomorphism from
the input graph G to H can be concatenated with the homomorphism from H to Ha to yield a
homomorphism from G to Ha (and this argumentation translates straightforwardly to the node-
edge-checkability formalism). Hence, to obtain the statement that each problem from P has a
nontrivial fixed point relaxation, it suffices to show that, for each A > 3 the homomorphism
problem with target graph Ha has a nontrivial fixed point relaxation.

Assume for the remainder of this section that A > 3 is fixed. In the following, we state the
homomorphism problem with target graph Ha, introduced in [BCG 22, Section 4.1, arXiv version],
in the node-edge-checkability formalism. We will refer to this problem as IT2.

As alluded to before, we can regard II® as a coloring problem where only certain color com-

binations are allowed for neighboring nodes. The colors of IT® are all pairs (y,2) € {1,...,A} x
{1,...,A}, e, Xpga :={1,...,A} x {1,...,A}. The node constraint Njja contains precisely the
configurations ¢ ... ¢ for all colors ¢ € ¥. The edge constraint &qa contains all configurations

(y,2) (v, 7') satisfying

l.y£1#z,y#vy,and 2 # 2 (or, dually, v #1 #£ 2", y # 4/, and z # 2/), or
2. y=y =1, 241427, and 2 # 7, or

3.z=2=1y#1#y,andy #v.

As an example, we explicitly provide the node and edge constraint of II® for A = 3 below.

SRecall that for all considered lower bound techniques, it suffices to study regular graphs. Here A refers to the
maximum degree of the (A-regular) input instance, not to the maximum degree of H or Ha.
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L1y @1y (1,1 (L] 1(2,2) (2,3) (3,2) (3,3)]
(1,2) (1,2) (1,2) [(1,2)] [(1,3) (2,3) (3,3)]
(1,3) (1,3) (1,3) [(1,3)]1(1,2) (2,2) (3,2)]
21 =1 = (2, D] [3,1) (3,2) (3,3)]
(2,2) (22) (2,2) [(2,2)] [(1,1) (1,3) (3,1) (3,3)]
(2,3) (23) (2,3) [2,3)] [(1,1) (1,2) (3,1) (3,2)]
31 61 61 (B, D] [(2,1) (2,2) (2,3)]
3,2) (32 (32 [3,2)] [(1,1) (1,3) (2,1) (2,3)]
3,3) (3,3) (3,3) [(3,3)] [(1,1) (1,2) (2,1) (2,2)]

We devote the rest of this section to proving the following theorem and deriving lower bounds
from it.

Theorem 5.1. There ezxists a nontrivial fized point relazation for II*.

As discussed above, Theorem 5.1 implies the following corollary that covers all problems for
which lower bounds via Marks’ technique have been known but (so far) no lower bounds via round
elimination.

Corollary 5.2. FEvery problem in P has a nontrivial fixed point relaxation.

To prove Theorem 5.1, we make use of Corollary 3.12 where we choose II to be II®. Then Part
3 of Corollary 3.12 states that there exists a nontrivial fixed point relaxation of IT®, and hence it
suffices to prove part 2 of Corollary 3.12 which we will do in the following.

To this end, we introduce a problem II°"*, which we will prove to be a round elimination fixed
point. Moreover, we will prove that TI°¥ is a relaxation of II®, given a A-edge coloring as input.
Lastly we need to show that II°" is nontrivial given a A-edge coloring.

The ORCX problem. In the following we define the aforementioned problem II°"*. We set the
output label set of II°* to be Xporex := 31 U g, where X1 := {O,R,C, X} and X9 := {o,r,c,x}.
The node constraint Ny of II° contains precisely those configurations Ly ... La that satisfy
that

1. there is precisely one index 1 < k < A such that Ly € ¥; and

2. there are two indices k, k' € {1,..., A} satisfying k # k' such that Ly» € {O,0} for each
K" e {1,...,A}\ {k,¥'} and

(a) either Ly € {X,x} and Ly € {O, 0},
(b) or Ly € {R,r} and Ly € {C,c}.

The edge constraint Eperex of 119" contains precisely the following configurations.

[O] [ORCX]
[OR] [OR]

[0 C] [O0C]

[0] [orcx]
[o 1] [o ¢]



5.2 A O-round transformation

We now show that problem II°* can be reduced to IT? if a A-edge coloring (with colors 1,...,A)
is given as input.

Lemma 5.3. Given a A-edge coloring and a solution to II®, it is possible to solve TI" in 0 rounds.

Proof. Each node v which is labeled (¢, j) (i.e., whose incident half-edges are labeled (i, 7)) in the
solution to IT® produces a solution for IT°' as follows. First, node v marks the incident edge
of color ¢ as “my row” and the incident edge of color j as “my column”. Then, on the incident
half-edge of color 1, node v outputs the following label:

e X, if the edge is marked both as “my row” and as “my column”. Observe that this output is
produced if v is labeled (1,1).

e R, if the edge is marked as “my row” only. Observe that this output is produced if v is labeled
(1,4) for some j > 1.

e C, if the edge is marked as “my column” only. Observe that this output is produced if v is
labeled (7,1) for some i > 1.

e O, if the edge is not marked.
Then, on any incident half-edge of color z € {2,..., A}, node v outputs the following label:

e X, if the edge is marked both as “my row” and as “my column”. Observe that this output is
produced if v is labeled (z, 2).

e r, if the edge is marked as “my row” only. Observe that this output is produced if v is labeled
(z,2") where 2’ # 2.

e ¢, if the edge is marked as “my column” only. Observe that this output is produced if v is
labeled (2’, z), where 2’ # 2.

e o, if the edge is not marked.

Since v outputs a label from 3; on the incident half-edge of color 1 but on no other incident
half-edge, the node configuration produced by v satisfies Property 1 of the definition of Nyprex. Since
v marks exactly one incident edge as “my row” and exactly one incident edge as “my column”,
there are A — 2 incident half-edges on which v outputs a label from {O, 0}. Moreover, if v marks
two different incident edges, then of the two half-edges where v does not output a label from {O, o}
one receives a label from {R, 7}, and the other a label from {C, ¢}, while if v marks the same edge
twice, then one of the two “remaining” label comes from {X, 2}, and the other from {O, o}. Hence,
the node configuration produced by v satisfies also Property 2 of the definition of Njorex.

We now argue that all produced edge configurations are in Erorex. Let u and v be two neigh-
boring nodes. Assume that u has color (i,7) and v color (i, ;). Let z be the color of the edge
connecting v and v. If z = 1, the algorithm produces an edge configuration that is contained in
[ORCX] [ORCX]. We show that the produced configuration is not in {R C,R X, C X, X X}, which
are all the configurations from [ORCX] [ORCX] not contained in Erporex:

e X X cannot be obtained, since X is only produced by a node labeled (1, 1), but only one node
among v and v can have this color.
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e R X cannot be obtained, since R is only produced by nodes labeled (1, ;") for some j” > 1,
which cannot be neighbors of (1,1) by the definition of Epa.

e C X cannot be obtained, since C is only produced by nodes labeled (i”,1) for some i"” > 1,
which cannot be neighbors of (1,1) by the definition of Epa.

e R C cannot be obtained, since nodes labeled (1, ;") for some j” > 1 (which are the only nodes
that can produce R) cannot be neighbors of nodes labeled (i, 1) for some i” > 1 (which are
the only nodes that can produce C), by the definition of Exa.

Let z € {2,3}. On edges colored z, the algorithm produces an edge configuration that is contained
in [orcx| [orex]. We show that the produced configuration is not in {r r,c c,r x,c x,x x}:

e x x cannot be obtained, since x is only produced by a node labeled (z, z), but only one node
among v and v can have this color.

e r x cannot be obtained, since r is only produced by nodes with a label in {(z,2') | 2’ # z},
which cannot be neighbors of (z, z) by the definition of Epa.

e r r cannot be obtained, since r is only produced by nodes with a label in {(z,2) | 2’ # 2},
and two such nodes cannot be neighbors by the definition of &pa.

e c x cannot be obtained, since c is only produced by nodes with a label in {(Z/,2) | 2’ # 2},
which cannot be neighbors of (z, z) by the definition of ya.

e c c cannot be obtained, since c is only produced by nodes with a label in {(2/,2) | 2’ # z},
and two such nodes cannot be neighbors by the definition of £qa. 0

5.3 The ORCX problem is a fixed point

In the following we prove that I1°"* is a fixed point under the round elimination framework. More
precisely, we prove the following theorem.

Theorem 5.4. R(R(II°")) = I1°7*.

Computing the constraint fju. We start by computing the set of maximal configurations
that satisfy the universal quantifier w.r.t. Erporex.

Lemma 5.5. Let Efjoex = ER (o) be the set of maximal configurations that satisfy the universal
quantifier w.r.t. Eqerex. Then, Eljuex contains exactly the following configurations:

{0} {O,R,C, X}
{O,R} {O,R}
{0,C} {0, C}
{o} {o,r,c,x}
{o,r} {o,c}.

Proof. By the definition of Eerex, it is clear that all listed configurations satisfy the universal quan-
tifier. Moreover, it is clear that there is no listed configuration that dominates another (different)
listed configuration and that each configuration obtainable by taking a configuration from Erporex
and replacing each label in the configuration by the singleton set containing the label is dominated
by a listed configuration. Hence, what remains to show is that there is no maximal configuration
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that satisfies the universal quantifier that is not listed above. In order to show this, by Observa-
tion 2.11, it is enough to show that, by combining any two configurations of the list we obtain a
new configuration that is dominated by some configuration in the list.

Let C =Ly Le and C' = L] L), be two arbitrary (possibly the same) configurations from the list.
Let o be a permutation of {1,2}, and let u € {1,2}. Let C” be the combination of C and C" w.r.t.
u and 0. We first observe that, in order for C” to be a valid configuration, we must not obtain
any empty set, and hence either both C and C’ contain only labels from {O, R, C, X} or they both
contain only labels from {o,r,c,x}. Moreover, by Observation 2.12, it must hold that the union is
taken on non-comparable sets.

Hence, in the former case, up to symmetries, the only case to consider is when C = {O,R} {O, R},
C' = {0,C} {0,C}, u = 2, and o is the identity function. In this case, we get that C" =
{0} {0, R, C}, which is dominated by {O} {O,R, C, X}.

In the latter case, up to symmetries, the only case to consider is when C = C" = {o,r} {o,c},
u=2,0(l) =2, and 0(2) = 1. In this case, we get that C"” = {o} {o,r,c}, which is dominated by
{0} {o,r,c,x}. O

For the sake of readability, we rename the obtained sets of labels as follows.

e [0]:={0}

b EZ{RaO}

i :{C7O}

° ={0,R,C, X}
® [0] := {O}

o ={r,o}

e [c]:={c,0}

e [x]:={o,r,c,x}

Under such a renaming, we obtain that &fjue contains exactly the following configurations.

O] [X]

clelE
X [

In the following, let Yoo = {[O], [R],[C], [X], (0], [71, [€], X}

0O

Computing the constraint N .. We now compute Morex, that is, we apply the existential
quantifier.

Lemma 5.6. The constraint Nfjoe = NR(Horcx) contains precisely those configurations Ly ... La
that satisfy that

1. there is precisely one index 1 < k < A such that Ly € {@, R], [C], } and
2. there are two indices k, k' € {1,..., A} satisfying k # k" such that

(a) either Ly € {[X], x|}
(b) or Lk’ € {E; 7 7 } and Lk' S {7 7 7 }

Proof. The lemma follows directly by Observation 2.10. O
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Computing the constraint N//,.. We now compute the set of maximal configurations that
satisfy the universal quantifier w.r.t. Norex.

Lemma 5.7. Let Noox = N= oy be the set of mazimal configurations that satisfy the universal
I R(R(I1o)) g y

quantifier w.r.t. Mioe. Then, N{{oe contains precisely those configurations Ly ... La that satisfy
that
1. there is precisely one 1 < k < A such that Ly € {{@, R],[C], }, {@, }, {> }7 {}}
and

2. there are two indices k,k' € {1,... A} satisfying k # k' such that Lg» is contained in
{{[O], R}, [C, [XI}, {(e), [7], (€], xI}} for each k" € {1,...,A}\ {k,k'} and

(a) either Ly, € {{[X|},{x1}} and Ly € {{{O],[R],[C], X}, {0, 7, €, x}},
(b) or Ly, € {{[R],[X]}, {1, x1}} and Ly € {{[C],[X]},{[cl, xI}}.

Proof. By the definition of Mu, it is clear that all listed configurations (i.e., all configurations
characterized in the lemma) satisfy the universal quantifier. Moreover, it is clear that there is no
listed configuration that dominates another (different) listed configuration and that each configura-
tion obtainable by taking a configuration from N and replacing each label in the configuration
by the singleton set containing the label is dominated by a listed configuration. Hence, what re-
mains to show is that there is no maximal configuration that satisfies the universal quantifier that
is not listed above. In order to show this, by Observation 2.11, it is enough to show that, by
combining any two configurations of the list we obtain a new configuration that is dominated by
some configuration in the list.

Let C=L; ... Laand C’ =L} ... L\ be two arbitrary (possibly the same) configurations from
the list. Let o be a permutation of {1,...,A}, and let u € {1,..., A}. Let C" be the combination
of C and C' w.r.t. u and 0. We first observe that, in order for C” to be a valid configuration, we must
not obtain any empty set, and hence L; and L, ;) must either be both subsets of {[0], [R],[C], [X]}
or both subsets of {[0], [f], [c], [X]}, for all i # u. Due to Property 1 in the lemma, this behavior
holds also for i = w.

Moreover, by Observation 2.12, it must hold that L, and Ls(,) are non-comparable sets. We

thus get that, up to symmetries, L, = {[R],[X]} and L;(u) = {[C],X]} or that L, = {[r],x]} and
L) = {16 X}

In the former case, up to symmetries, we must have

¢ ={[Rl, X} {[e, x} {0, M, €, X} ... {[0l, [, x} and
¢ = {ICl, X} {m, x1} {0, [F,[c, X} ... {[],[F, [, X}

Depending on the choice of o we obtain that either

¢” ={[0],[R],[C], X[} {x]} {[o], M, [c), xI} ... {[ol, [F], [c], X},

which is in the list, or

¢” = {0}, R}, [C], X[} {w@, x} {m, x1} {[e], M, [c],x]} ... {0, F], [c], X},

which is also in the list.
In the latter of the two cases discussed above, we have to consider four cases:
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e We have
¢ =c = {[0],[Rl,[C], X} {/m, x} {[c], x} {[e], 7, [c, X} ... {[o],[F], c], X}
In this case, the resulting configuration C” is dominated by

{[o],[Rl,[C], X[} {x} {[ol, 7, [c], I} ... {[o], [F], [c], x|} or
{[Ol,[R], [C], X} {m, x} {[e), xI} {[o], 7], [c], X} ... {[o],[F], [c], [x]}.

e We have

¢ ={[Rl, X} {[el, xI} {0, M, [c], X} ... {[ol, 1, [c], X} and
¢’ = {[Cl,[XI} {m, =} {[e], 7, [, I} ... {0, [F], e, X}

In this case, C" is dominated by {[X|} {[ol, [r], ], X} ... {[o], 1], €], XI}.
e We have

¢ ={[Rl,X]} {[e, xI} {0, [, [cl, I} ... {[o],[F], c], X} and
¢’ ={[0), R}, [C], X} {m, ®I} {ic], x1} {0, 7], [c], X} ... {0, ], [c], X}

In this case, C” is dominated by C.
e We have

¢ ={[Cl, X]} {m, =1} {[ol, [r],[cl,x} ... {[o],[r],[c], X} and
¢’ ={[0), R}, [C], X} {m, ®I} {ic], x1} {0, ¥, [c], X} ... {0, ], [c], X}

This case is symmetric to the previous one, i.e., again C” is dominated by C. O

For the sake of readability, we rename the obtained sets of labels as follows:

= {[0], R, [C], [X]}
° = {@,}

e |[C]|:= {[C],[X]}

X}
{[o1, [, [c], X1}
{Im, xI}

{el, x1}

= {x]}

In the following, let X{joex = {, , , , (o], (1], [[<]], [X]]}-

Computing the constraint £fja«. We now compute o, that is we apply the existential

quantifier.

BEEEENEEE

Lemma 5.8. The constraint Efjoe = Eﬁ(R(Ho,cx)) contains exactly the following condensed configu-

rations.

« [[[0]]) [[[O]][[RI][[c]][X]]
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[[RI][[0]]] [[RI][[0l]

[[<I][fol) ][0l
IRINEGEEE)
(@)@ [][@])

Proof. The lemma directly follows from Observation 2.10. O

Proof of Theorem 5.4. In Lemma 5.5 and Lemma 5.6 we computed R(I1°"*), while in Lemma 5.7
and Lemma 5.8 we computed R(R(II°*)). Theorem 5.4 follows by the fact that the equivalence of

{forec With Mpporex and the equivalence of Efforex With Epporex is witnessed by the renaming =l O

5.4 The ORCX problem is non-trivial

We previously showed that I1°* is a fixed point under the round elimination framework. We now
show that it is a nontrivial fixed point, even when a A-edge coloring is given as input.

Lemma 5.9. The problem TI°™* cannot be solved in 0 rounds in the PN model, even if a A-edge
coloring is given.

Proof. Consider a graph in which, for each node v, the i-th port of v is assigned to the edge of
color ¢ incident to v. In such a graph, any O-round deterministic PN algorithm must pick a node
configuration Ly ... La from N and output it on all nodes, such that label L; is output on the
edge of color (i), for some permutation o. Observe that, if a node v assigns label L to an incident
edge {v,u}, then u is also assigning L to the edge {v,u}. Hence, for this algorithm to be correct,
all the edge configurations in {L; Li,...,LA La} must be contained in Epporex.

Observe that all node configurations containing any of the labels r, ¢, x cannot be used by
the algorithm, as they would create an edge configuration from {r r,c c,x x}, neither of which is
contained in &rorex. The only remaining node configuration is X o ... o. However, using such a
configuration would create the edge configuration X X, which is not contained in Ejorex. O

5.5 Putting things together

We now combine the statements proved above to prove Theorem 5.1 along the lines discussed
before.

Proof of Theorem 5.1. By combining Theorem 5.4 (that shows that II°"* is a fixed point) and
Lemma 5.9 (that shows that II° is nontrivial even under the assumed input), we obtain that I1°"*
is a nontrivial fixed point, even if a A-edge coloring is given. By Lemma 5.3, in A-edge colored
graphs, it is possible to convert a solution for II® into a solution for II°%, in 0 rounds. Thus, given
a A-edge coloring, IT°"* is a relaxation of II®. It follows that, in the setting where a A-coloring is
given as input, there exists a nontrivial fixed point relaxation of II®. Now Corollary 3.12 implies
that there also exists a nontrivial fixed point relaxation of II® in the setting without input. O

By Corollary 6.5, we obtain the desired lower bounds for any problem from P.

Corollary 5.10. Each problem 11 € P requires Q(logn) rounds to be solved by a deterministic
algorithm and Q(loglogn) rounds to be solved by a randomized algorithm. In particular, for any
A >3, problem TI® requires Q(logn), resp. Q(loglogn), rounds to be solved deterministically, resp.
randomized.

37



6 Lifting with inputs

In order to obtain a lower bound result using the round elimination technique, one has to first
produce a sequence of problems, Iy, Iy, Ils, . .., II7, such that Il is the problem for which we want
to prove a lower bound, Il7 is nontrivial, and for all 4 it holds that I1;;1 is a relaxation of R(R(IL;)).
Once such a sequence is obtained, a lower bound in the LOCAL model is automatically obtained
by applying a so-called lifting theorem [BBKO22]. The strongest lifting theorem that is currently
known works in regular graphs in which either no input is provided or the input comes from some
specific class. However, the input that we assumed in Section 4 does not belong to this class. Thus,
in this section, we prove a stronger lifting theorem. We actually prove a lifting theorem that is
stronger than what we need for the purposes of this paper: the new lifting theorem that we prove
holds also in non-regular graphs and also in the case where the input can be an arbitrary problem
expressed in the black-white formalism.

6.1 Preliminaries

In this section, we consider a class of problems that is strictly larger than the one defined in
Section 2. For this reason, we define such a class of problems, and we then define the functions R
and R for this setting.

Problems with input in the black-white formalism. In more detail, we define problems on
bipartite graphs that are not necessarily regular and that have constraints that can depend on some
given input. Note that this setting contains the problems defined in Section 2: a graph can be seen
as a bipartite 2-colored graph, where nodes are white nodes and edges are black nodes of degree 2.

Definition 6.1 (Problems with input in the black-white formalism). A problem II with input in
the black-white formalism is a tuple (i, Xout, N, €, g), where:

e i, and Yt are finite sets representing, respectively, the input and output labels of II.

o N = (N',...,N®) consists of A collections N of cardinality-i multisets {{1,...,¢} with
O, ... 0; from Yoy N is the white constraint of II. N represents the constraint of white
nodes of degree 1.

o & = (E',...,&°%) conmsists of A collections N? of cardinality-i multisets {¢1,...,¢} with
O, ... 0; from Yoy. & is the black constraint of II. £ represents the constraint of black
nodes of degree 1.

o g: %, — 2¥out ig g function that assigns to each label from Y, a subset of labels from gy¢.

The degree of II is defined as the maximum between A and 6. Let G = (U,V, E) be a 2-colored
bipartite graph. Let U be the set of white nodes and V' be the set of black nodes. Assume that
white nodes have maximum degree A and black nodes have maximum degree §, and that to each

edge e is assigned a label fi,(e) from %;,. A correct solution for IT on G is given by an edge labeling
fout : E(G) — Yoyt such that the following holds:

e For each white node u, the multiset consisting of the labels assigned by fout to the edges
incident to v is contained in Nde8(®),

e For each black node v, the multiset consisting of the labels assigned by fout to the edges
incident to v is contained in £¢8(v),

e For every edge e, the label fou(e) is contained in the label set g(fin(e€)).
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White and black algorithms. In order to apply round elimination for problems in the black-
white formalism, we need to introduce the concept of white and black algorithms. A white algorithm
for IT running on G = (U, V, E) is an algorithm that is executed by white nodes, and in which black
nodes act as passive relayers of messages. In such a setting, the output is only produced by white
nodes. The output of a white node u defines fou(e) for each edge e incident to w. The runtime
complexity of an algorithm is defined such that there is a natural mapping between the runtime
and the distance at which a node sees on G. For this reason, if two white nodes u and u' are
incident to the same black node v, then we define the number of rounds that it takes for v and «’
to communicate as 2. A black algorithm is defined in the same way, but by reversing the roles of
white and black nodes.

Round elimination. We now define R(II) and R(II) for problems II with input in the black-
white formalism. Note that round elimination in the case of problems with input has already been
introduced in [GRB22], and we now report its trivial generalization to the case in which the black
nodes have a degree that is not necessarily 2.

Definition 6.2 (The function R). Let IT = (XL, S A = (VYL .. NG, En = (&Y, -, &), gn)
be a problem with input in the black-white formalism. Then, we define the problem R =
(ZZE(H) DN NR (> 9r () as follows:

° EE(H) = Eil}l.

o Erqm is defined as (5713(H), .. ,S%m)), where S%m) contains all the multisets {Lq,...,L;},

where L; C QEgut, such that:

— For any choice (£1,...,4;) € Ly X ... x L;, the multiset {¢1,...,¢4} is in &Y;

— By adding any label in X1l to any set L;, the above condition is not satisfied anymore.
) Ezl(tn) = UZ 1 UCegz( C. That is, the set of output labels of R(II) is the set of sets that

appear in at least one conﬁguration contained in Ex ().

o Nz is defined as (N71z(n)’ . ,/\/’é(n)), where N?%(H) contains all the multisets {Lq,...,L;},
where L; € ¥ R ), such that there exists a choice (¢1,...,¢;) € L1 x ... x L; satisfying that

out

the multiset {f1,...,¢;} is in N;

e For each ¢ € EE, gr(m is defined as gr(m(¢) := 91(0) 4 xR 1y other words, a label of

out
Ez)i(tn) which is a subset of ¥IL | is allowed on input £ if and only if all its elements are allowed

with ¢ according to the function gry.

Definition 6.3 (The function R). The function R(II) is defined analogously as R, except that
the roles of N and £ are reversed. In more detail, let TT = (X S A, &, g11), and let T =

(z1 Eout,EH,Nn,gn) Let R(IV) = () g ) , Er () Nr(1r), 9r(1)- The problem R(IT) is

in’ out

defined as (X R(H) Eout Nn(n/),gR(H') QR(H’))

Relaxations. The definition of relaxations, provided in Section 2, directly extend to the setting
considered in this section. In particular, a problem II' is a white (resp. black) relaxation of a
problem II if there exists a white (resp. black) 0-round algorithm that solves II" given a solution
for II, where the 0-round algorithm can exploit the given input.
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6.2 The extended lifting theorem

Theorem 6.4. Let Iy, I14,... Il be a sequence of problems with input in the black-white formal-
ism, where input labels come from Yi,. Let 1, be a problem (without inputs) in the black-white
formalism where output labels come from Xi,. Assume that, for all 0 < i < k, and for an integer
L, the following holds:

o There exists a problem 11} that is a black relazation of R(I;);
o 11,11 is a white relazation of R(IL});
e The number of input and output labels of II;, and the ones of II;, are upper bounded by L.

Also, assume that 1l has at most L input and output labels and is not 0-round solvable in the
deterministic PN model, even if a solution for Il;, is given as input. Let /A be the degree of Ilj.
Then, for all n, on trees of n nodes and mazimum degree at most A, Iy requires at least

min{k — 1, {=(logp n — loga log L — 624)}
rounds in the deterministic LOCAL model and at least

min{k — 1, %(logA logn — loga log L — 5)}

rounds in the randomized LOCAL model, even if a solution for Iy, is given as input.

Before proving the theorem, we discuss how to use such a theorem to obtain lower bounds
starting from sequences of problems. The following corollary shows that a nontrivial fixed point
directly implies a lower bound.

Corollary 6.5. Let II be a problem in the black-white formalism satisfying R(R(IT)) = II, and
where inputs come from Xi,. Let I, be a problem (without inputs) in the black-white formalism
where output labels come from ¥i,. Assume that 11 is not O-round solvable in the deterministic PN
model, even if a solution for Il;, is given as input. Then, on trees of n nodes and mazximum degree
at most A = O(1), II requires Q(logn) rounds in the deterministic LOCAL model and 2(loglogn)
rounds in the randomized LOCAL model, even if a solution for Iy, is given as input.

Proof. Since Il is a nontrivial fixed point, for any ¢t we can construct a sequence of length ¢ satisfying
the requirements of Theorem 6.4. Hence, the lower bounds of Theorem 6.4 are determined by the
second terms in the min operator. Let L be the maximum between the number of input and output
labels of II, and let A be the degree of II. Observe that L may depend on A but cannot depend
on n. Since A is a constant that solely depends on II, the claim follows. ]

A similar statement holds for infinite sequences, assuming that the number of labels does not
grow too fast. The following corollary considers the case in which the number of labels grows
linearly, but it can be easily generalized to other cases.

Corollary 6.6. Let Iy, I11,... be an infinite sequence of problems with input in the black-white
formalism, where input labels come from 3i,. Let I, be a problem (without inputs) in the black-
white formalism where output labels come from ¥i,. Assume that, for all i > 0, and for some
constant c, the following holds:

e there exists a problem IT, that is a black relazation of R(IL;),

o 11,11 is a white relazation of R(IL}),

o the number of input and output labels of I1;, and the ones of I}, are upper bounded by c-(i+1),
and
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e II; is not O-round solvable in the deterministic PN model, even if a solution for Ily, is given
as input.

Let A be the degree of Ilyg. Then, for all n, on trees of n nodes and mazximum degree at most
A, Ty requires Q(logn) rounds in the deterministic LOCAL model and Q(loglogn) rounds in the
randomized LOCAL model, even if a solution for Iy, is given as input.

Proof. For all i, we apply Theorem 6.4 on the prefix sequence of length 7 + 1. We obtain that, for
all i and for all n, Ily requires at least min{i — 1, ;5 (logp n —loga log(c(i+1)) — 624)} rounds in the
deterministic LOCAL model and at least min{i — 1, 1= (loga log n — loga log(c(i + 1)) — 5)} rounds
in the randomized LOCAL model, even if a solution for Il;, is given as input. Hence, for each n,
we obtain infinite different lower bounds, parameterized by i. For each fixed n, we can obtain an
asymptotically optimal lower bound by considering the case in which ¢ = logn, obtaining a lower
bound of Q(logn) for deterministic algorithms and Q(loglogn) for randomized ones. (Note that,
similarly as in Corollary 6.5, A is a constant that depends solely on Ilj.) ]

In some cases, we just know that an infinite sequence exists, but we have no bound on the number
of labels. In such a case, we directly obtain a lower bound of 2(log* n). A similar statement holds
for infinite sequences, assuming that the number of labels does not grow too fast. The following
corollary considers the case in which the number of labels grows linearly, but it can be easily
generalized to other cases.

Corollary 6.7. Let 11y, 114,... be an infinite sequence of problems with input in the black-white
formalism, where input labels come from Yi,. Let Ily, be a problem (without inputs) in the black-
white formalism where output labels come from Yiy,. Assume that, for all i > 0, the following
holds:

e there exists a problem II, that is a black relazation of R(IL;),

o 11,11 is a white relazation of R(IL;), and

o II; is not O-round solvable in the deterministic PN model, even if a solution for Iy, is given
as input.

Let A be the degree of Ily. Then, for all n, on trees of n nodes and maximum degree at most A,
Iy requires Q(log* n) rounds for both randomized and deterministic LOCAL algorithms, even if a
solution for Iy, is given as input.

Proof. By the definition of R and R, for all 4, the number of labels of II;;; is at most doubly
exponentially larger than the number of labels of II;. Hence, an upper bound on the number of
labels of problem II; is roughly a power tower of height 2.

Similarly as in the proof of Corollary 6.6, we apply Theorem 6.4 on each prefix sequence of length
i+1, and for each n we then optimize the lower bound by considering the case i = % log*n—0(1). O

We now consider the case in which we want to prove a lower bound as a function of A. In this
case, we usually define a problem P (e.g., MIS) as a family of problems II’ (e.g., MIS’), one for
each degree j, and we create a round elimination sequence for each such problem. In the case of
inputs, we additionally assume that for each j, in graphs of degree j, we receive as input a solution
for I . The following corollary captures exactly this case.

Corollary 6.8. Let P = (Il | j > 0) be a Jamily of problems, where II7 is a problem of degree j in
the black-white formalism, with inputs from S Let Py, = (I, | 7 > 0) be a family of problems
(without inputs) in the black-white formalism where output labels come from ZEIJ. Suppose that,
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Jor each j, there exists a sequence of problems starting from I satisfying the requirements of
Theorem 6.4 w.r.t. input ‘Hijn and of length f(4), for some f. Moreover, suppose that, for each j,
the number of labels of TIV is at most 27° for some universal constant c¢. Then, P requires

Q(min{f(A),log n})

rounds for deterministic algorithms and

Q(min{ f(A),loga logn})

for randomized ones, in n-node trees of maximum degree A, even if a solution for Py, is given as
mput.

Proof. The claim follows by applying Theorem 6.4 on each sequence independently. ]

6.3 Lifting theorem in a nutshell

We devote the rest of this section for proving Theorem 6.4. Our proof uses ingredients that are
already present in the literature [BBH19,BBO20,B020,BBE"20,BBK022], and the proofs that we
provide in this section are essentially an extension of the proofs present in [BBKO22, Appendix A in
the arXiv version|. In the following, we summarize the high-level ideas behind the lifting theorem.

In order to lift a result obtained with round elimination to the LOCAL model, we need to follow
the steps listed below.

1. Let I be a relaxation of R(R(II)). Prove that, if there exists a randomized k-round algorithm
for II with failure probability p (which could depend on n), then there exists a randomized
(k—1)-round algorithm for IT" with some failure probability p’ that is not too large compared
to p.

2. Prove that, if a problem cannot be solved in 0 rounds in the deterministic PN model, then
any O-rounds randomized PN algorithm for the same problem must fail with some large
probability.

3. Apply Item 1 recursively. The number of times that we can apply this recursive procedure
before obtaining a failure probability that is larger than the one in Item 2 is a lower bound
on the runtime for solving the problem in the randomized PN model. This directly gives a
lower bound in the randomized LOCAL model as well.

4. Prove that a randomized lower bound in the LOCAL model implies an even stronger deter-
ministic lower bound.

6.4 Evolution of the failure probability in a single step of round elimination

We first observe that, existing results in the literature, imply that Item 1 holds also in the case in
which the graph is not necessarily regular and in the presence of inputs.

Lemma 6.9 (Theorem 3.4 of [GRB22]). Let F be the set containing all forests of mazimum degree
at most A. For any set N of positive integers, let Fn denote the class of forests with a number of
nodes that is contained in N. Let II be a node-edge-checkable LCL problem and A a randomized
algorithm solving I1 on F with runtime T'(n) and local failure probability at most p < 1. Let N
be the set of all positive integers n satisfying T'(n) + 2 < loga n. Then, there exists a randomized
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algorithm A’ solving R(R(I1)) on Fxn with runtime max{0,T(n) — 1} and local failure probability
at most Spt/BGAT3) where

AT (n)+1
$ = (10A (|| + max{|Slh |, =01} )

In other words, the above lemma says that, if there exists a randomized k-rounds algorithm for
IT that has some failure probability p, then we can construct a (k — 1)-rounds algorithm that solves
R(R(II)) (and hence also a relaxation of it) with failure probability that is not too large compared
to p.

While this lemma holds for graphs, in the following we show that it is straightforward to extend
it to the case of 2-colored bipartite graphs and problems expressed in the black-white formalism.

In the following, let II be a problem in the black-white formalism, let A be its degree, let
Yin be the set of input labels of II, let XL, be the set of output labels of II, and let ITj, be a
problem (without inputs) in the black-white formalism where output labels come from ¥j,. Let
A be a randomized white algorithm solving IT on F with runtime at most 7'(n) and local failure
probability at most p < 1, when a solution for IT;, is given as input”.

To simplify the notation, in the following, we state a version of Lemma 6.9 for problems in the
black-white formalism, for a fixed choice of n. Fix a value of n, assume that T'(n) is even, and let
2T = T'(n). Assume that 27" + 2 < logs n. Moreover, let F,, A be the set of forests of maximum
degree at most A and containing n nodes.

Lemma 6.10. Let I’ be a black relazation of R(IT), and let XV, be the set of output labels of II.
Then, there exists a randomized white algorithm A" solving ﬁ(ﬂ’) on Fn A when a solution for 11,
is given as input, with runtime max{0,2T — 2} and local failure probability at most

P < 20(s + [ S () /AT,

out
where s = (3|Ein|)2A2T+2, and p' <2A(s+ |Egut|)p1/(A+1).

Proof. While the original proof is phrased on graphs, for the ease of the presentation we now express
it in the case of bipartite 2-colored graphs in which black nodes (which correspond to edges) have
degree exactly 2. The proof of [GRB22] works as follows.

Given a white algorithm A for II, they first use A to construct a black algorithm A’ for R(II)
that has complexity 27" — 1. Observe that A’ solves IT' as well. Then, they use A’ to construct a
white algorithm A” for R(IT) that has complexity 27" — 2. This construction is done such that the
failure probability of A" is not too large compared to the one of A.

The black algorithm A" running on a black node v is constructed as follows: gather the (27°—1)-
radius neighborhood of v, imagine all possible extensions of the gathered neighborhood into a
(2T + 1)-radius neighborhood one, and for each of them compute the output of A that the white
neighbors of v give on the edges incident to v. The assumption 2742 < loga n is used to guarantee
that A does not see more than n nodes, and hence it works correctly. The output of A’ on such
edges is the set of labels that A outputs on a fraction of the extensions that is at least K, for some
parameter 0 < K < 1. The authors of [GRB22], in [GRB22, Lemma 3.7, arXiv version], show that,
if the failure probability of A is p, then the failure probability of A’ is at most 2A(s + |Z‘Onut\)p1/ 3,
where s = (3|Zi[)22”" "' This bound is obtained as follows:

"In the original paper, it is assumed that algorithm A is able to solve II for any input that comes from Zip.
However, it is easy to check that the same proof holds in the case in which it is assumed that the input is a solution
for a fixed problem Iliy,.

43



e On white nodes, the failure probability is upper bounded by p + |SIL JAK + psA/K.
e On black nodes, the failure probability is upper bounded by ps/K?2.

Then, the bound is obtained by picking K = p'/3. In the above formulas, s is the number of
possible extensions, and the exponent 2 on K on the second bound comes from the fact that a
black node has 2 white neighbors.

By going through the proof of these lemmas, it is easy to see that they work also in the case
in which black nodes have degree at most A, by using the following new bound on the failure
probability of A’ on black nodes:

p-

K—AS, where s = (3|3in])

2A2T+2

Indeed, a black node has at most A white neighbors, and the possible extensions of a (27'—1)-radius
neighborhood into a (21" + 1)-radius neighborhood are at most s:

e There are at most A7 black nodes at distance 27 from the center, and at most A?T 1 white
nodes at distance 27" from the center. Hence, there are at most (A + 1)A27 < 2A2T+! nodes
in the extension.

A2T+2

e There are at most 2 edges incident to the nodes in the extension.

e In order to describe an extension, for each edge, we need to express its label, which comes
from a domain of size |i,|, and one of the following three possibilities:

— The edge does not exist.
— The edge exists, and connects the node to another node that is nearer to the center.

— The edge exists, and connects the node to another node that is further away.

e Hence, up to isomorphism, there are at most s = (3]Zin])2A2T+2 possible extensions.
1
By picking K = pa+1, we obtain that the failure probability of A’ is at most

p/ < 2A(S+ |EH )pl/(A—l-l)7

out

2A2T+2

where s = (3|Ziy])
The algorithm A” is constructed analogously (by considering neighborhoods of radius 27" — 2
and extensions of radius 27"), and its failure probability is at most

P < 2A(s+ [ ()Y AT,

out

where p’ is an upper bound on the failure probability of .A’. Hence, the claim follows. O

6.5 Zero-round solvability

We now show that Item 2 holds also in the case of (possibly) non-regular graphs and for problems
with input in the black-white formalism. In other words, we show that if a problem II cannot be
solved in 0 rounds in the deterministic PN model, then any randomized 0-rounds PN algorithm for
IT must fail with some large probability.

Lemma 6.11. Let I be a problem with input that cannot be solved in 0 rounds with a deterministic

white algorithm in the PN model, even if a solution for 1y, is given. Then, any randomized 0-round

algorithm solving 11 must fail with probability at least Ti?’ even if a solution for Iy, is given.
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Proof. In 0 rounds, an algorithm running on node v only sees the input assigned to v, and the
ports assigned to v (which includes the degree of v). Hence, we can see any O-round algorithm as
a function mapping each possible input assigned to white nodes and a permutation of a subset of
{1,...,A} into a probability assignment to the white output configurations of II.

Since A is an upper bound on the degree of the nodes, and L is an upper bound on the
number of output labels, for each input and port assignment there are at most L® possible output
configurations. Hence, there exists a configuration C to which the algorithm assigns probability at
least L%.

Since II is not solvable in 0 rounds with a white algorithm in the deterministic PN model, then
for each (deterministic) mapping from input and port assignment to outputs there exists a way
to connect (at most A) white nodes to a single black node, and assign inputs and ports to these
nodes, such that, by applying the considered mapping, we obtain an invalid configuration on the
black node.

In the case of randomized algorithms, for each input and port assignment on a white node, there
exists a configuration that is given with probability at least L%. Hence, it is possible to connect
white nodes to a single black node such that the black node obtains an invalid configuration with
probability at least (LLA)A =1 O

A2

6.6 Evolution of the failure probability in multiple steps of round elimination

Lemma 6.12. Let Iy, I1;,...,Il7 be a sequence of problems satisfying the conditions of Theo-
rem 6.4. Let A be the degree of Ilg. Let n be an integer, and assume that 2T + 2 < loga n.
Let A be a randomized 2T-round white algorithm for Ily on F, A with local failure probability at
most p (which may depend on n). Then there exists a randomized (21 — 2j)-round white algorithm
A’ for 11; with local failure probability at most (2A(s + L))Qpl/(AH)QJ, for all 0 < j < T, where
s = (3|Zm )22

Proof. By assumption, |EI.| and || are upper bounded by L. Hence, by Lemma 6.10, we
obtain:
P < 20(s + [Sg ) () AT
< 2A(s + L)(p) YA+,
Similarly,

p/ < 2A(S+’EH )pl/(A+l)

out

< 2A(s + L)pY/ A+,
Summarizing, we get that:
p” <2A(s + L)(p’)ﬁ, where
p < 2A(s+ L)pﬁ.
By recursively applying Lemma 6.10, we get the following:
pj < 2A(s + L)(pj—1) 571,

where py = p and paj, are, respectively, the local failure probability bounds for IIy and II;. Tech-
nically, for different values of j, we would have different values for s, since for each step we have a
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different runtime. However, the value of s that we are using upper bounds all of them. We prove
by induction that, for all 7 > 0,

1
pj < (2A(s + L))?p@a+ni,
For the base case where j = 0, we get that p < (2A(s + L))?p, which clearly holds. Let us assume
that the claim holds for j, and let us prove it for j + 1. We obtain the following, where the second
inequality holds by the inductive hypothesis:

1

R
pi+1 < 2A(s + L)(p;) 55 < 2A(s + L) <<2A<s + L))2paind )

< (2A(s + L))1+ﬁpm < (2A(s + L))%W_ O

We now handle Item 3, by showing that any randomized algorithm that runs in strictly less
than 27 rounds must fail with large probability.

Lemma 6.13. Let 11y, I1;,...,Il7 be a sequence of problems satisfying the conditions of Theo-
rem 6.4. Let A be the degree of Ilg. Let n be an integer, and assume that 2T + 2 < logan. Any
algorithm for Iy running in strictly less than 21" rounds on F, Ao must fail with probability at least

1/LA16T; even if a solution for Iy, is given as input.

Proof. For any T < T, by applying Lemma 6.12 on the subsequence containing the first 77 + 1
problems, we get that a white algorithm solving Iy in 27" < 27 rounds with local failure probability
at most p implies an algorithm solving Il in 0 rounds with local failure probability at most
(2A(s + L))2p1/(A+1)2T/, where s = (3\Ein|)2A2T/+2 < (3L)2A2T’+2. Then, since by assumption Iz~
is not 0-round solvable in the deterministic PN model®, by applying Lemma 6.11 we get that

o1/ 1
(2A(s + L))2p"/A+D* > TAE

which implies the following:

. (A41)2T’ . (A+1)2T
> >
b= (LAQ(QA(S + L))2> - (LA2(2A((3L)2A2T’+2 + L))2>

1 (A+1)2T/ 1 (A+1)2T’
> > —F
- (LAQ 4A2 (4L)4A2T’+2 ) - <A4LA2T’+8 >

1 (A+1)21" 1 (A+1)2T’
= (LAQT'+8+410gA> = <LA2T’+11)

1 1
> LAQT’+11.(A+1)2T’ - LA2T’+11.A2T’+1
1 1 1
Z LA4T’+12 Z LAIGT’ Z LAIGT

6.7 A lower bound for randomized LOCAL

We now prove that a sequence satisfying the conditions of Theorem 6.4 implies a lower bound for
the LOCAL model on forests. We will later show that such a lower bound implies a lower bound
for trees as well.

80bserve that, if IIz is not 0-rounds solvable in the deterministic PN model, then also Il7 is not.
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Lemma 6.14. Let 11y, I1;,...,Il7 be a sequence of problems satisfying the conditions of Theo-
rem 6.4. Let A be the degree of Iy, and let n be an integer. Any randomized algorithm running on
Fn,a in strictly less than

min{27, £(logx logn — loga log L — 3)}
rounds must fail with probability > 1/n, even if a solution for I1;, is given as input.
Proof. Let 2t = 2|min{27’, {(loga logn — log log L — 2)}/2|. Observe that 2t + 2 < logs n. We
apply Lemma 6.13 on the subsequence Iy, ..., II;. We obtain that any algorithm for IIy running

in strictly less than 2t rounds on F,, o must fail with probability at least 1 /LAW. Observe that
the following holds.

1
2t < g(logA logn — loga log L)

16tlog A < loglogn — loglog L
16t log A + loglog L < loglogn
A% log I < logn

LA <n

1

I

Hence, any algorithm for Il running in strictly less than 2¢ rounds on F;,, A must fail with proba-
bility strictly larger than 1/n. O

Lemma 6.14 proves a lower bound for forests. We show that such a lower bound implies a lower
bound for trees as well. For this purpose, we exploit a lemma already proved in [GRB22]°.

Lemma 6.15 (Lemma 3.3 of [GRB22], rephrased). Let II be a problem in the black-white formalism
that has deterministic (resp. randomized) complexity T (n) on trees. Then, the deterministic (resp.
randomized) complexity of I on forests is at most 2T (n?) + 2.

We are now ready to prove a lower bound for trees, that is, we prove the randomized lower
bound of Theorem 6.4. Let 7, o be the class of trees of n nodes of maximum degree at most A.

Lemma 6.16. Let 11y, I1,...,II7 be a sequence of problems satisfying the conditions of Theo-
rem 6.4. Let A be the degree of Iy, and let n be an integer. Any randomized algorithm running on
Tn,A in strictly less than

min{7 — 1, & (log logn — loga log L — 5)}
rounds must fail with probability > 1/n.

Proof. Let A be the degree of II. Suppose for a contradiction that there exists an algorithm for
Tn,A With runtime strictly less than

$(min{2T, £ (loga log /n — loga log L — 3)} — 2).
Then, by Lemma 6.15, this implies an algorithm for 7, o with runtime strictly less than

min{27, £(logp logn — loga log L — 3)}

°In [GRB22], this lemma is stated for complexities in o(log* n), since it was enough for the purposes of that paper.
However it is easy to check that such an assumption is not used in the proof.
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rounds, which is a contradiction with Lemma 6.14. Hence, any algorithm for 7, A requires at least

+(min{27, £(loga log v/n — loga log L — 3)} — 2)
min{7, = (loga log v/n —loga log L — 3)} — 1
min{7, ;=(logx logn — loga log L — 4)} — 1
min{7T" — 1, & (log logn — loga log L — 5)}

(A\VARAYS

rounds. O

6.8 A lower bound for deterministic LOCAL

We now prove the deterministic lower bound of Theorem 6.4.

Lemma 6.17. Let 1y, Iy, ..., II7 be a sequence of problems satisfying the conditions of Theo-
rem 6.4. Let A be the degree of Iy, and let n be an integer. Any deterministic algorithm running
on 7;L,A requires at least

min{7 — 1, & (logs logn — log log L — 624)}/13

rounds.
Proof. Suppose for a contradiction that there exist n and T satisfying the following;:

e There exists a sequence of problems Ilg, Iy, . .., II7 satisfying the conditions of Theorem 6.4.
e There exists a deterministic algorithm A running on 7, A in strictly less than

t =min{T — 1, {5 (loga n — loga log L — 624)}/13

rounds.

We show that, under such assumptions, we can construct an algorithm A’ with runtime strictly less
than min{7" — 1, %ﬁ(logA n — loga log L — 624)} on graphs in Tan o. By renaming n = log IV, this
implies an algorithm with runtime strictly less than min{7" — 1, %(logA log N —loga log L — 624)}
on graphs in Ty a. Since any deterministic algorithm trivially implies the existence of a randomized
algorithm with the same complexity, this contradicts Lemma 6.16.

In order to construct A’, we use a standard indistinguishability argument. In more detail,
in [CKP16, Theorem 6], it is shown that, under some conditions, we can run an algorithm, designed
to work on graphs of size n in time t, on graphs of different size in the same runtime ¢, such that

the algorithm still works correctly. The conditions are the following:

e The IDs in each (¢ + 1)-radius neighborhood are unique and from {1,2,...,n};
e Each (¢ + 1)-radius neighborhood contains at most n nodes.

As we will show later, the second condition is guaranteed by the assumed bound on the runtime
of A. In order to guarantee the first condition, it is sufficient to compute a coloring and use it
as a new ID assignment. For this purpose, we use Linial’s algorithm, which can convert a given
k coloring into a 5A2log k coloring in 1 deterministic round [Lin92, Corollary 4.1]. Observe that,
at the beginning of the algorithm, we can use the original IDs of the nodes, which come from
{1,..., N}, as a coloring. Hence, at first, algorithm A’ runs 3 rounds of Linial’s algorithm on G?/*2
(the graph obtained by putting an edge between all nodes that are at distance at most 2t +2). This
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requires at most 6t + 6 < 12¢ rounds. Let A = A?*2 be an upper bound of the degree of G?*2,
We obtain a coloring with a palette of size at most

. 1
Since t < 16

50A2(logloglog N + log A) = 50A222) (log log n 4 log A%+2).

(loga  — 624)/13 = 15z loga n — 3 < $loga n — 3, we obtain the following:

e Each (¢ + 1)-radius neighborhood contains at most A**! < n nodes;

e The number of colors is at most

50A222) (log log n 4 log A?+2)
< 5OA2(2(% loga n—3)+2) (IOg logn + log AQ(% loga n73)+2)

< —+/n(loglogn + (1/4)logn — 4log A)

100
< F\/ﬁlogn < n.

After computing the coloring, A’ runs the original algorithm A4, and as argued, it works correctly.

In total, A’ requires strictly less than 12t + ¢ = 13t rounds. Hence the claim follows. O
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