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Abstract
Consider any locally checkable labeling problem � in rooted regular trees: there is a finite set of labels �, and for each
label x ∈ � we specify what are permitted label combinations of the children for an internal node of label x (the leaf nodes
are unconstrained). This formalism is expressive enough to capture many classic problems studied in distributed computing,
including vertex coloring, edge coloring, andmaximal independent set.We show that the distributed computational complexity
of any such problem � falls in one of the following classes: it is O(1), �(log∗ n), �(log n), or n�(1) rounds in trees with
n nodes (and all of these classes are nonempty). We show that the complexity of any given problem is the same in all four
standard models of distributed graph algorithms: deterministic LOCAL, randomized LOCAL, deterministic CONGEST, and
randomized CONGEST model. In particular, we show that randomness does not help in this setting, and the complexity class
�(log log n) does not exist (while it does exist in the broader setting of general trees). We also show how to systematically
determine the complexity class of any such problem �, i.e., whether � takes O(1), �(log∗ n), �(log n), or n�(1) rounds.
While the algorithm may take exponential time in the size of the description of �, it is nevertheless practical: we provide a
freely available implementation of the classifier algorithm, and it is fast enough to classify many problems of interest.

1 Introduction

We aim at systematizing and automating the study of com-
putational complexity in the field of distributed graph algo-
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rithms. Many key problems of interest in the field are locally
checkable. While it is known that questions related to the
distributed computational complexity of locally checkable
problems are undecidable in general graphs [13,24], there is
no known obstacle that would prevent one from completely
automating the study of locally checkable problems in trees.
Achieving this is one of the major open problems in the field:
currently only parts of the complexity landscape are known to
be decidable [16], and the general decidability results are pri-
marily of theoretical interest; practical automatic techniques
are only known for specific families of problems [2,13,17].

In this work we show that the study of locally check-
able graph problems can be completely automated in regular
rooted trees. We not only give a full classification of the dis-
tributed complexity of any such problem (in all the usual
models of distributed computing: deterministic and random-
ized LOCAL andCONGEST), but we also present an algorithm
that can automatically determine the complexity class of any
given problem (with one caveat: our algorithm determines
if the complexity is n�(1), but not the precise exponent in
this case). Even though the algorithm takes in the worst case
exponential time in the size of the problem description, it is
nevertheless practical: we have implemented it for the case
of binary trees, and it is in practice very fast, classifying e.g.
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the sample problems that we present here in a matter of mil-
liseconds [27].

1.1 Setting

In this work we study locally checkable problems defined
in regular, unlabeled, not necessarily balanced, rooted trees
of bounded degree. For our purposes, such a problem � is
specified as a triple (δ,�,C), where δ ∈ N is the number
of children for the internal nodes, � is a finite set of labels,
and C is the set of permitted configurations. Each configu-
ration looks like x : y1y2 · · · yδ , indicating that if the label
of an internal node is x , then one of the possible labelings
for its δ children is y1, y2, . . . , yδ , in some order (that is, the
order of the children does not matter). The leaf nodes are
unconstrained.

The reason why we choose this specific setting is the
following. As soon as we consider inputs, it is known that
decidability questions becomemuch harder [1,14], and since
even the case with no inputs is still not understood, we try to
understand this setting first. Moreover, it is possible to use
non-regular trees to encode trees with inputs, and for this
reason we constrain only nodes with exactly δ children.

1.2 Example: 3-coloring

Consider the problem of 3-coloring binary trees, i.e., trees
in which internal nodes have δ = 2 children. The possible
labels of the nodes are� = {1, 2, 3}. The color of a node has
to be different from the colors of any of its children; hence
we can write down the set of configurations e.g. as follows:

C = {
1 : 22, 1 : 23, 1 : 33,
2 : 11, 2 : 13, 2 : 33,
3 : 11, 3 : 12, 3 : 22}.

(1)

We emphasize that the ordering of the children is irrelevant
here; hence 1 : 23 and 1 : 32 are the same configuration. It is
easy to verify that this is a straightforward correct encoding
of the 3-coloring problem in binary trees.

It is well-known that this problem can be solved in the
LOCAL model of distributed computing in O(log∗ n) rounds
in rooted trees [9, Section 3.4], using the technique by Cole
and Vishkin [19], and this is also known to be tight, both for
deterministic and randomized algorithms [21,23].

One can also in a similar way define the problem of 2-
coloring binary trees; it is easy to check that this is a global
problem, with complexity �(n) rounds:

C = {
1 : 22, 2 : 11}. (2)

1.3 Example: maximal independent set

Let us now look at a bit more interesting problem: maximal
independent sets (MIS). Let us again stick to binary trees,
i.e., δ = 2 children. The first natural idea for encoding MIS
as a locally checkable problem would be to try to use only
two labels, 0 and 1, with 1 indicating that a node is in the
independent set, but this is not sufficient to express both the
notion of independence and the notion of maximality. How-
ever, three labels will be sufficient to correctly capture the
problem. We set � = {1, a, b}, with 1 indicating that a node
is in the independent set, and choose the following configu-
rations:

C = {
1 : aa, 1 : ab, 1 : bb, a : bb, b : b1, b : 11}. (3)

Now it takes a bit more effort to convince oneself that this
indeed correctly captures the idea of maximal independent
sets. The key observations are these: a node with label 1
cannot be adjacent to another node with label 1, a node with
label a has to have 1 above it, and a node with label b has to
have 1 below it, so nodes with label 1 clearly form amaximal
independent set. Conversely, given anymaximal independent
set X we can find a corresponding label assignment if we
first assign labels 1 to nodes in X , then assign labels b to
the parents of the nodes in X , and finally label the remaining
nodes with label a. The only minor technicality is that this
labeling corresponds to anMIS only for internal nodes of the
tree, but as is often the case, once the internal parts are solved
correctly, one can locally fix the labels near the root and the
leaves.

Maximal independent set is a well-known symmetry-
breaking problem, and e.g. in the case of a directed path
(δ = 1) it is known to be as hard as e.g. 3-coloring. Hence
onemight expect thatMIS on rooted regular binary trees also
has got the complexity of �(log∗ n) rounds in the LOCAL
model. This is not the case—maximal independent set in
rooted binary trees can be solved in constant time! Indeed,
this is a good example of a non-trivial constant-time-solvable
problem. It can be solved in exactly 4 rounds, using the fol-
lowing idea (again, omitting some minor details related to
what happens e.g. near the root).

First, we need to pick some consistent way of referring
to your “left” child and the “right” child (for this reason,
we can assume that a port numbering is available, that is, a
node can send a message to a specific child, by indexing it
with a number from 1 to δ, or we can assume that nodes have
unique identifiers, and thenwe can order the children by their
unique identifiers). Label all nodes first with an empty string.
Then we repeat the following step for 4 times: add 0 to your
string and send it to your left child, and add 1 to your string
and send it to your right child. Your new label is the label
that you received from your parent. This way all nodes get
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(a)

(b)

Fig. 1 Finding a maximal independent set in O(1) rounds (Sect. 1.3)
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labeledwith a 4-bit string (see Fig. 1a). A key property is this:
if my string is xyzw, the string of my parent is 0xyz or 1xyz.
Finally, interpret the binary string as a number between 0 and
15, and output the corresponding element of the following
string (using 0-based indexing; see Fig. 1b):

b 1 a b b b 1 b b 1 1 b b b 1 b. (4)

One can verify the correctness of the algorithm by checking
all 23 possible cases: for example, if a node is labeled with
x010, it will output either symbol 2 of (4), which is a, or
symbol 10, which is 1. Its two children will have labels 0100
and 0101, so they will output symbols 4 and 5 of (4), which
are b and b. This results in a configuration a : bb or 1 : bb,
both of which are valid in (3).

The key point of the example is this: even though the
algorithm is somewhat involved, we can use the computer
program accompanying in this work to automatically dis-
cover this algorithm and to determine that this problem is
indeed constant-time solvable! Also, this problem demon-
strates that there are O(1)-round-solvable locally checkable
problems in rooted regular trees that require strictly more
than zero rounds, while e.g. in the previously-studied fam-
ily of binary labeling problems [2] all O(1)-round-solvable
problems are known to be zero-round solvable.

1.4 Example: branch 2-coloring

As the final example, let us consider the following problem,
with δ = 2 and � = {1, 2}:

C = {
1 : 12, 2 : 11}. (5)

This problem is, in essence, 2-coloringwith a choice: starting
with a node of label 1 and going downwards, there is always a
monochromatic path labeled with 1, 1, 1, 1, . . . , and a prop-
erly colored path labeled with 1, 2, 1, 2, . . . . It turns out that
the choice makes enough of a difference: the complexity of
this problem is �(log n) rounds. We encourage the reader to
come up with an algorithm and a matching lower bound—
with our techniques we get a tight result immediately.

1.5 Contributions

As we have seen, the family of locally checkable problems
in regular rooted trees is rich and expressive. Using auxiliary
labels similar towhatwe saw in theMIS example in Sect. 1.3,
we can encode, in essence, any locally checkable labeling
problem (LCL problem) [24] in the classic sense, as long
as the problem is such that the interesting part is related to
what happens in the internal parts of regular trees. We have
already seen that there are problemswith at least four distinct
complexity classes: O(1),�(log∗ n),�(log n), and�(n). In

Sect. 8we also show how to generate problems of complexity
�(n1/k) for any k = 1, 2, 3, . . .

We prove in this work that this list is exhaustive: any prob-
lem that can be represented in our formalism has complexity
O(1),�(log∗ n),�(log n), or�(n1/k) in rooted regular trees
with n nodes. This is a robust result that does not depend on
the specific choice of the model of computing: the complex-
ity of a given problem is the same, regardless of whether we
are looking at the LOCALmodel or the CONGESTmodel, and
regardless of whether we are using deterministic or random-
ized algorithms.

One of the surprising consequences is that randomness
does not help in rooted regular trees. In unrooted regular
trees there are problems (the canonical example being the
sinkless orientation problem) that can be solved with the
help of randomness in �(log log n) rounds, while the deter-
ministic complexity is �(log n) [13]. This class of problems
disappears in rooted trees.

Our main contribution is that the complexity of any given
problem in this formalism is decidable: there is an algorithm
that, given the description of a problem � as a list of per-
mitted configurations, outputs the computational complexity
of problem �, putting it in one of the four possible classes,
i.e., determines whether the complexity is O(1), �(log∗ n),
�(log n), or �(n1/k) for some k; in the fourth case our algo-
rithm does not determine the exponent k, but then one could
(at least in principle) use themore general decision procedure
by Chang [14] to determine the value of k.

While our algorithm takes in the worst case exponential
time in the size of the description of�, the approach is never-
theless practical. We have implemented the algorithm for the
case of δ = 2, and made it freely available online [27]. Even
though it is not at all optimized for performance, it classifies
for example all of our sample problems above in a matter of
milliseconds.

We summarize our key results and compare them with
prior work in Table 1.

2 Related work

2.1 Landscape of LCL problems in the LOCALmodel

2.1.1 Paths and cycles

We know that, on graph families such as paths and cycles,
there are LCLs with complexities (both deterministic and
randomized) of O(1) (e.g., trivial problems), �(log∗ n)

[19,21,23] (e.g., 3-coloring), and�(n) (e.g., global problems
such as properly orienting a path/cycle). Moreover, there are
complexity gaps, that is, in these families of graphs, there are
no LCLs with round complexity between ω(1) and o(log∗ n)

[24], and between ω(log∗ n) and o(n) [15]. These works
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Table 1 An overview of the landscape and decidability of the round
complexity of LCL problems in the LOCAL model. The case studied in
the present work (unlabeled, rooted, regular trees) is highlighted with
shading, and the darker shade indicates the key new results. The decid-

ability is given assuming P �= PSPACE �= EXPTIME. We have listed a
few key references for each column, focusing on decidability aspects;
the overall picture of the complexity landscape is the result of a long
sequence of papers, including [4,5,7,12,15,19,21,23]

show that the only possible complexities for LCL problems
on paths and cycles are O(1), �(log∗ n), and �(n), and ran-
domness does not help in solving problems faster.

2.1.2 Trees

For the case of the graph family of trees almost everything
is understood nowadays. As in the case of paths and cycles,
we have LCLs with time complexities (both deterministic and
randomized) O(1), �(log∗ n), and �(n). On trees, we know
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that there ismore: there are LCL problemswith both determin-
istic and randomized complexity of�(log n) (e.g., problems
of the form “copy the input of the nearest leaf”), and�(n1/k)
for any k ≥ 2 [16]. Moreover, there are cases where ran-
domness helps, in fact there are problems that have �(log n)

deterministic and �(log log n) randomized complexity [12].
As far as gaps are concerned, let us first consider the spec-
trum of time complexities of ω(log∗ n), and then the one
of o(log∗ n). Chang et al. [15] showed that the determinis-
tic complexity of any LCL problem on bounded-degree trees
is either O(log∗ n) or �(log n), while its randomized com-
plexity is either O(log∗ n) or�(log log n). Moreover, Chang
and Pettie [16] showed that any algorithm that takes no(1)

rounds can be sped up to run in O(log n) rounds. Balliu et
al. [4] showed that there is a gap between ω(

√
n) and o(n)

for deterministic algorithms, and Chang [14] extended these
results and showed that there is a gap between ω(n1/k) and
o(n1/(k−1)), for any k ≥ 2, for both deterministic and ran-
domized algorithms. The spectrum of time complexities of
o(log∗ n) is still not entirely understood. Chang and Pettie
[16] showed that ideas similar to Naor and Stockmeyer [24]
can be used to prove that there are no LCLs on bounded-degree
trees with time complexity between ω(1) and o(log log∗ n).
Also, in the same paper, the authors conjectured that it should
be possible to extend this gap up to o(log∗ n). While this still
remains an open question, Balliu et al. [8] showed that such
a gap exists for a special subclass of LCLs, called homoge-
neous LCLs. Observe that all the mentioned results hold for
the setting of unrooted trees, and in this setting there are still
many open questions related to decidability. In this work, we
prove decidability results for a restriction of this setting, that
is, for rooted trees.

2.1.3 General graphs

In general bounded-degree graphs there are LCLs with the
same time complexity as in trees, so the question is if there
are also the same gaps, or if in the case of general graphs
we have a denser spectrum of complexities. First of all, the
gaps of the lower spectrum on trees hold also on general
graphs: we still have the ω(1) – o(log log∗ n) gap for both
deterministic and randomized algorithms, the ω(log∗ n) –
o(log n) for deterministic algorithms, and the ω(log∗ n) –
o(log log n) gap for randomized algorithms. Also, Chang and
Pettie [16] showed that any o(log n)-round randomized algo-
rithm can be sped up to run in O(TLLL) rounds, where TLLL
is the time required for solving with randomized algorithms
the distributed constructive Lovász Local Lemma problem
(LLL) [18] under a polynomial criterion. By combining this
result with the results on the complexity of LLL by Fischer
and Ghaffari [20] and the network decomposition one by
Rozhoňand Ghaffari [26], we get a gap for randomized algo-
rithms between ω(poly(log log n)) and o(log n). Balliu et al.

[7] showed that, differently from the case of trees, the regions
between ω(log log∗ n) and o(log∗ n) and between ω(log n)

and o(n) are dense. In fact, for any complexity T in these
regions, it is possible to define an LCL with a time complex-
ity that is arbitrary close to T . Also, in the case of trees,
randomness either helps exponentially or not at all, while in
the case of general graphs this is not the case anymore. In
fact, Balliu et al. [5] showed that there are LCL problems on
general graphs where randomness helps only polynomially
by defining LCLs with deterministic complexity �(logk n)

and randomized complexity �(logk−1 n log log n), for any
integer k ≥ 1.

2.1.4 Special settings

Over the years, researchers have investigated the complex-
ity of interesting subclasses of LCLs. We already mentioned
homogeneous LCLs on trees [8], that, on a high level, are
LCLs for which the hard instances are �-regular trees. For
this subclass of LCL problems, the spectrum of determinis-
tic complexities consists of O(1), �(log∗ n), and �(log n).
Also, as in the case of trees, there are caseswhere randomness
helps: there are homogeneous LCLs with �(log n) determin-
istic and �(log log n) randomized complexity. These are the
only possible complexities for homogeneous LCLs. Brandt
et al. [13] studied LCLs on d-dimensional torus grids, and
showed that there are LCLs with complexity (both determin-
istic and randomized) O(1), �(log∗ n), and �(n1/d). The
authors showed that these are the only possible complexi-
ties, implying that randomness does not help. Balliu et al. [2]
studied binary labeling problems, that are LCLs that can be
expressed with no more than two labels in the edge labeling
formalism [3,25] (such LCLs include, for example, sinkless
orientation). The authors showed that, in trees, there are no
such LCLswith deterministic round complexity betweenω(1)
and o(log n), and between ω(log n) and o(n), proving that
the spectrum of deterministic complexities of binary labeling
problems in bounded-degree trees consists of O(1),�(log n)

and �(n). The authors also studied the randomized com-
plexity of binary labeling problems that have deterministic
complexity�(log n), showing that for someof them random-
ness does not help, while for some others it does help (note
that from previous work we know that, in this case, random-
ness either helps exponentially or not at all). Determining the
tight randomized complexity of all binary labeling problems
is still an open question.

2.2 Decidability of LCL problems

As we have seen, there are often gaps in the spectrum of
distributed complexities of LCLs. Hence, a natural question
that arises is the following: given a specific LCL, can we
decide on which side of the gap it falls? In other words, are
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these classifications of LCL problems decidable?We can push
this question further and askwhether it is possible to automate
the design of distributed algorithms for optimally solving
LCLs. There is a long line of research that has investigated
these kind of questions.

For graph families that consist of unlabeled paths and
cycles (that is, nodes do not have any label in input), the
complexity of a given LCL is decidable [13,17,24]. The next
natural question is whether we have decidability in the case
of trees (rooted or not). Because the structure of a tree can
be used to encode input labels, researchers had to first under-
stand the role of input labels in decidability. For this purpose,
Balliu et al. [1] studied the decidability of labeled paths
and cycles, showing that the complexity of LCLs in this set-
ting is decidable, but it is PSPACE-hard to decide it, and
this PSPACE-hardness result extends also for the case of
bounded-degree unlabeled trees (since the structure of the
tree may encode input labels). The authors also show how
to automate the design of asymptotically optimal distributed
algorithms for solving LCLs in this context. Later, Chang
[14] improved these results showing that, in this setting, it is
EXPTIME-hard to decide the complexity of LCLs. While the
decidability on bounded degree trees is still an open ques-
tion, there are some positive partial results in this direction.
In fact, Chang and Pettie [16] along with the ω(log n) – no(1)

gap, showed also that we can decide on which side of the
gap the complexity of an LCL lies. Moreover, Balliu et al. [2]
showed that, the deterministic complexity of binary label-
ing problems on trees is decidable and we can automatically
find optimal algorithms that solve such LCLs. The works of
Brandt [10] and Olivetti [25] played a fundamental role in
further understanding to which extent we can automate the
design of algorithms that optimally solve LCLs.

Unfortunately, in general, the complexity of an LCL is not
decidable. In fact, Naor and Stockmeyer showed that, even on
unlabeled non-toroidal grid graphs, it is undecidable whether
the complexity of a given LCL is O(1) [24]. For unlabeled
toroidal grids, Brandt et al. [13] showed that, given an LCL,
it is decidable whether its complexity is O(1), but it is unde-
cidable whether its complexity is �(log∗ n) or �(n). On the
positive side, the authors showed that, given an LCL with
round complexity O(log∗ n), one can automatically find an
O(log∗ n) rounds algorithm that solves it.

3 Roadmap

We will start by providing some useful definitions in Sect. 4.
Then, inSect. 5wewill consider the spectrumof complexities
in the �(log n) region (that is, �(log n) and above). We will
define an object called certificate for O(log n) solvability,
for which we will prove, in Theorem 5.3, that we can decide
the existence in polynomial time. We will prove in Theorem

5.1 that, if such a certificate for a problem exists, then the
problem can be solved in O(log n) time with a deterministic
algorithm, even in the CONGEST model, while if such a cer-
tificate does not exist then we will prove in Theorem 5.2 that
the problem requires n�(1) rounds, even in the LOCALmodel
and even for randomized algorithms. By combining these
results, we will essentially obtain a decidable gap between
ω(log n) and no(1) that is robust on the choice of the model.

We will then consider, in Sect. 6, the spectrum of com-
plexities in the O(log n) region. We will define the notion
of certificate for O(log∗ n) solvability, and we will prove,
in Theorem 6.10, that we can decide in exponential time if
such a certificate exists. We will also prove, in Theorem 6.3,
that the existence of such a certificate implies a deterministic
O(log∗ n) algorithm for the CONGEST model, while we will
prove in Lemma 6.7 that the non-existence of such a cer-
tificate implies an �(log n) randomized lower bound for the
LOCALmodel. Hence, also in this case we obtain a decidable
gap that is robust on the choice of the model.

In Sect. 7, we consider the spectrum of complexities in the
O(log∗ n) region. We will define the notion of certificate for
O(1) solvability, that will be nothing else than a certificate
for O(log∗ n) solvability that has some special property. We
will show, in Theorem 7.8, that also in this case, we can
decide its existence in exponential time, and we will show
in Theorem 7.2 that its existence implies a constant-time
deterministic algorithm for the CONGEST model, while we
will show in Theorem 7.7 that the non-existence implies an
�(log∗ n) lower bound for the LOCALmodel. Hence, wewill
obtain that there are only four possible complexities, O(1),
�(log∗ n), �(log n), and n�(1), and that for all problems we
can decide which of these four complexities is the right one.

For the fine-grained structure inside the n�(1) class we
refer to the prior work [6,14,16]; while these papers study
the case of unrooted trees, we note that the orientation can
be encoded as a locally checkable input, and the results are
also applicable here. It follows that there are only classes
O(1), �(log∗ n), �(log n), and �(n1/k) for k = 1, 2, . . . ,
and the exact class (including the value of k) is decidable.
Although the existence of the gap ω(n1/(k+1)) – o(n1/k) [14]
applies to regular rooted trees, the problems with complexity
�(n1/k) that have been shown to exist in [16] are not defined
on regular rooted trees (e.g., nodes of different degrees may
have different constraints). In Sect. 8, we define problems
with complexity �(n1/k) in regular rooted trees, showing
that the complexity class �(n1/k) is non-empty for regular
rooted trees.

4 Definitions

In this section we define some notions that will be used in
the following sections.
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4.1 Input graphs

We assume that all input graphs will be unlabeled rooted
trees where each node has either exactly δ or 0 children for
some positive integer δ. That is, input graphs are full δ-ary
trees. For convenience, when not specified otherwise, a tree
T is assumed to be a full δ-ary tree.

4.2 Models of computing

The models that we consider in this work are the classical
LOCAL and CONGEST model of distributed computing. Let
G be any graph with n nodes and maximum degree �. In the
LOCALmodel, each node of G is equipped with an identifier
in {1, 2, . . . , poly(n)}, and the initial knowledge of a node
consists of its own identifier, its degree (i.e., the number of
incident edges), the total number n of nodes, and � (in the
case of rooted trees, each node knows also which of its inci-
dent edges connects it to its parent). Nodes try to learn more
about the input instance by communicating with the neigh-
bors. The computation proceeds in synchronous rounds, and
at each roundnodes sendmessages to neighbors, receivemes-
sages from them, and perform local computation. Messages
can be arbitrarily large and the local computational can be
of arbitrary complexity. Each node must terminate its com-
putation at some point and decide on its local output. The
running time of a distributed algorithm running at each node
in the LOCAL model is determined by the number of rounds
needed such that all nodes have produced their local output.
In the randomized version of the LOCAL model, each node
has access to its own stream of random bits. The randomized
algorithms considered in this paper are Monte Carlo ones,
that is, a randomized algorithm of complexity T that solves
a problem P must terminate at all nodes upon T rounds and
this should result in a global solution for P that is correct
with probability at least 1 − 1/n.

There is only one difference between the CONGEST and
the LOCAL model, and it lies in the size of the messages.
While in the LOCALmodel messages can be arbitrarily large,
in the CONGEST model the size of the messages is bounded
by O(log n) bits.

4.3 LCL problems

We define LCL problems as follows.

Definition 4.1 (LCL problem) An LCL problem is a triple� =
(δ,�,C) where:

• δ is the number of allowed children;
• � is a finite set of (output) labels;
• C is a set of tuples of size δ+1 from�δ+1 called allowed

configurations.

A configuration (a, b1, . . . , bδ) will also be written as (a :
b1, . . . , bδ), in order to highlight that the label a is for the par-
ent and b1, . . . , bδ are labels of the leaves. Sometimeswewill
omit the commas, and just write (a : b1 . . . bδ). Sometimes
even the parenthesis will be omitted, obtaining a : b1 . . . bδ ,
that is the notation used in e.g. Sect. 1.3. As a shorthand nota-
tion, for an LCL problem �, we will also denote the labels
and configurations of � by �(�) and C(�).

Definition 4.2 (solution) A solution to an LCL problem� for
a tree T is a labeling function λ for which:

• every node v ∈ T is labeledwith a label λ(v) from�(�);
• every node v ∈ T with δ children v1, . . . , vδ satisfies that
there exists a permutation ρ : {1, . . . , δ} → {1, . . . , δ}
such that (λ(v) : λ(vρ(1)), . . . , λ(vρ(δ))) is in C(�).

In other words, a solution is a labeling for the nodes that must
satisfy some local constraints. Note that only nodes with δ

children are constrained, but that such LCL problems could
be well-defined even on non-full δ-ary trees (nodes with a
number of children different from δ are unconstrained). Full
δ-ary trees are the hardest instances for the problems as every
node is constrained.

Definition 4.3 (restriction) Given an LCL problem � =
(δ,�,C), a restriction of � to labels �′ ⊆ � is a new LCL
problem �′ = (δ,�′,C′), where C′ consists of all configu-
rations in C that only use labels in �′.

Definition 4.4 (continuation below) Let � be an LCL prob-
lem. Label σ ∈ �(�) has a continuation below if there exists
a configuration (σ : σ1, . . . , σδ) ∈ C(�).

Definition 4.5 (continuation below with specific labels) Let
� = (δ,�,C) be an LCL problem. Label σ ∈ �(�)

has a continuation below with labels in �′ ⊆ � if there
exists a configuration (σ : σ1, . . . , σδ) ∈ C(�) such that
{σ, σ1, . . . , σδ} ⊆ �′.

Definition 4.6 (path-form of an LCL problem) Let � =
(δ,�,C) be an LCL problem. The path-form of � is the
LCL problem �path = (1, �,C ′), where (a : b) ∈ C ′ if and
only if there exists a configuration (a : b1, b2, . . . , bδ) ∈ C
with b = bi for some i .

See Fig. 2b for an illustration of the path-form.

4.4 Automata and flexibility

Definition 4.7 (automaton associated with path-form of an
LCL problem; [17]) Let� be an LCL problem. The automaton
M(�) associated with the path-form of � is a nondetermin-
istic unary semiautomaton defined as follows:
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• The set of states is �(�).
• There is a transition from state a to state b if there is a
configuration (a : b) in the path-form �path of �.

See Fig. 2c for an illustration of the automaton.

Definition 4.8 (flexible state of an automaton; [17]) A state
a fromM(�) is flexible if there is a natural number K such
that for all k ≥ K there is a walk a � a of length exactly k
inM(�). The smallest number K that satisfies this property
is the flexibility of state a, in notation flexibility(a).

As the set of states of the automaton is the set of labels,
we can expand the notion of flexibility of a state to the notion
of flexibility of a label.

Definition 4.9 (path-flexibility) Let� be an LCL problem and
�path its path-form. A label σ ∈ �(�) is path-flexible if σ

is a flexible state in automaton M(�), and path-inflexible
otherwise.

Moreover, an LCL problem � is path-flexible if all labels
are path-flexible labels and its automaton M(�) has one
strongly connected component.

4.5 Graph-theoretic definitions

Definition 4.10 (root-to-leaf path) A root-to-leaf path in a
tree is a path that starts at the root and ends at one of its
leaves.

Definition 4.11 (hairy path) A full δ-ary tree T is called a
hairy path if it can be obtained by attaching leaves to a
directed path such that all nodes of the path have exactly
δ children.

Definition 4.12 (minimal absorbing subgraph) Let G be a
directed graph. A subgraph G ′ ⊆ G, is called a minimal
absorbing subgraph ifG ′ is a strongly connected component
of G and G ′ does not have any outgoing edges.

We note that a minimal absorbing subgraph exists for any
directed graph.

Definition 4.13 (ruling set) Let G be a graph. A (k, l)-ruling
set is a subset S of nodes ofG such that the distance between
any two nodes in S is at least k, and the distance between any
node in G and the closest node in S is at most l.

5 Super-logarithmic region

In this section we prove that there is no LCL problem �

with distributed time complexity betweenω(log n) and no(1).
Also, we prove that, given a problem �, we can decide if its
complexity is O(log n) or n�(1). In view of [14,16], random-
ness does not help for LCL problems with round complexity
�(log n), so we focus on the deterministic setting.

5.1 High-level idea

The key idea is that we iteratively prune the description of
problem � by removing subsets of labels that we call path-
inflexible—these are sets of labels that require long-distance
coordination (cf. 2-coloring). After each such step, we may
arrive at a subproblem that contains a new path-inflexible set,
but eventually the pruning process will terminate, as there is
only a finite number of labels.

Assume the pruning process terminates after k steps. Let
X1, X2, . . . , Xk be the sets of labels we removed during the
process, and let X ′ be the set of labels that is left after no
path-inflexible labels remain. We have two cases:

(1) Set X ′ is empty. In this case we can show that the round
complexity of the problem � is at least �(n1/k). To
prove this, we make use of a k-level construction that
generalizes the one used for 2 1

2 -coloring in [16]. We
argue that, roughly speaking, for o(n1/k)-round algo-
rithms, no label from set Xi can be used for labeling
the level- j nodes, for each j ≥ i , as this requires coor-
dination over distance �(n1/k).

(2) Set X ′ is non-empty. In this case, after removing the sets
Xi , we are left with a non-empty path-flexible subprob-
lem �′ ⊆ �, and we can make use of the flexibility to
solve �′ in O(log n) rounds. Hence the original prob-
lem � is also solvable in O(log n) rounds.

We say that problem � has a certificate for O(log n) solv-
ability if and only if the set X ′ is non-empty.

Formally, we prove the following theorems.

Theorem 5.1 Let � be a problem having a certificate for
O(log n) solvability. Then � is solvable in O(log n) rounds
in the CONGEST model.

Theorem 5.2 Let � be an LCL problem having no certifi-
cate for O(log n) solvability. Then both the randomized and
the deterministic complexity of � in the LOCAL model are
�(n1/k) for some k ≥ 1.

Theorem 5.3 Whether an LCL problem � has round com-
plexity O(log n) or n�(1) can be decided in polynomial time.

5.2 Certificate

We present an algorithm that decides whether the complexity
of a given problem � is O(log n) or n�(1) rounds.

We start by defining a procedure that, given a problem
�, creates its restriction �′ to path-flexible states of �; see
Algorithm1.However, note that states thatwere path-flexible
in � may become path-inflexible in �′; hence problem �′
may still contain path-inflexible states.
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Algorithm1: removePathInflexibleConfigurations(�)

Input: LCL problem �

Output: LCL problem �′, a restriction of � to its path-flexible
states

Construct �path, the path-form of �. � See Definition 4.6.
Construct the automaton M(�). � See Definition 4.7.
�′ ← the set of path-flexible states of �. � See Definition 4.9.
�′ ← the restriction of � to labels �′. � See Definition 4.3.
return �′

Next we describe a new procedure findLogCertificate that
uses Algorithm 1 to analyze the complexity of a given prob-
lem. This procedure either returns ε to indicate that the
problem requires n�(1) rounds, or it returns a new problem
�pf that is a restriction of �, but that will be nevertheless
solvable in O(log n) rounds (and therefore� is also solvable
in this time).

Informally, procedure findLogCertificate applies itera-
tively Algorithm 1 until one of the following happens:

• Weobtain an empty problem. In this case we return ε.We
will show that this can only happen if � requires n�(1)

rounds.
• We reach a non-empty fixed point �i . In this case we

further restrict �i to the labels that induce a minimal
absorbing subgraph in the automaton associated with its
path-form. Let �pf be the problem constructed this way.
We return �pf , and we say that �pf is the certificate for
O(log n) solvability. We will show that �pf and hence
also the original problem � can be solved in O(log n)

rounds. Note that a minimal absorbing subgraph has the
property that any labeling of the two endpoints of a suf-
ficiently long path with labels from the subgraph admits
an extension of the solution to the entire path with labels
from the subgraph. This provides the intuitionwhy reduc-
ing the labels to those of a minimal absorbing subgraph
allows for an O(log n)-round algorithm using the rake-
and-compress approach explained in Sect. 5.3.

The procedure is described more formally in Algorithm 2,
and an example of execution for a concrete problem can be
seen in Fig. 2.

Now, let us prove some of the properties of Algorithm
2. First, we observe that this is indeed a polynomial-time
algorithm.

Lemma 5.4 Algorithm 2 runs in polynomial time in the size
of the description of �.

Proof When creating a successive restrictions of � in Algo-
rithm 2, we always remove at least one label. Hence we
invoke Algorithm 1 at most |�(�)|, and Algorithm 1 runs in
polynomial time [17]. ��

Algorithm 2: findLogCertificate(�)

Input: LCL problem �

Output: Certificate for O(log n) solvability if it exists, or ε

otherwise

�0 ← �

i ← 0
repeat

�i+1 ← removePathInflexibleConfigurations(�i ) � See
Algorithm 1.
i ← i + 1

until �i = �i−1
if �i is empty then

return ε � � cannot be solved in O(log n) rounds.
else

�′ ← labels that induce a minimal absorbing subgraph of
automaton M(�i ) � See Definition 4.12.
�pf ← the restriction of �i to �′
return �pf � Certificate for O(log n) solvability.

end

Then we prove that the step where we restrict to a min-
imal absorbing subgraph behaves well; in particular, it will
preserve flexibility.

Lemma 5.5 Let � be a non-empty LCL problem, such that
all of its states are path-flexible. Let �′ be a set of labels that
induces a minimal absorbing subgraph of automatonM(�),
and let�pf be the restriction of � to labels�′. Thenall states
of �pf are flexible, there is a walk between any two states of
M(�pf), and M(�pf) has at least one edge.

Proof First, let us prove that the restriction will preserve the
flexibility of the states that remain. Since for every state in
a minimal absorbing subgraph all outgoing edges are con-
nected to states in the same minimal absorbing subgraph
by definition, then no configuration for these states will be
removed, and all returningwalks for a state will stay. Second,
a walk between any two states of M(�pf) is implied by the
fact thatM(�pf) is strongly connected. Lastly,M(�pf) has
at least one edge, as every node has returning walks, hence
incoming and outgoing edges, and the minimal absorbing
subgraph is non-empty. ��

In the rest of the section, we will prove that our certifi-
cate for O(log n) solvability indeed characterizes O(log n)

solvability in the following sense: if � has a certificate
for O(log n) solvability, then � can be solved in O(log n)

rounds, otherwise there is an n�(1) lower bound for�. Hence
Lemma 5.4 implies Theorem 5.3.

5.3 Upper bound

We prove that, if Algorithm 2 does not return ε, then the
original problem � can be solved in O(log n) rounds. Note
that �pf , the result of Algorithm 2, is obtained by consider-
ing a subset of labels of � and all constraints that use only
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Fig. 2 Certifying that problem
�0 is solvable in O(log n)

rounds (see Algorithm 2). The
sample problem �0 is a
combination of the branch
2-coloring problem (5), using
labels 1 and 2, and the normal
2-coloring problem (2), using
labels a and b. The grayed out
states in the automaton denote
inflexible states. Problem �pf is
the path-flexible form of
problem �0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

those labels, hence a solution for �pf is also a valid solution
for �. Hence, we prove our claim by providing an algorithm
solving�pf in O(log n) rounds. For this purpose, we start by
providing a procedure that is a modified version of the rake
and compress procedures of Miller and Reif [22], where,
informally, we remove degree-2 nodes only if they are con-
tained in long enough paths. We start with some definitions.
Note that in a rooted tree we assume that each edge {u, v} is
oriented from u to v if v is the parent of u.

Definition 5.6 (leaves) Let G = (V , E) be a graph. We
define that leaves(G) ⊆ V is the set of all nodes with inde-
gree 0.

Definition 5.7 (long-paths) Let G = (V , E) be a graph and
p be a constant. Let X ⊆ V consist of all nodes of indegree 1.
We define that long-path-nodes(G, p) ⊆ X consists of the

set of all nodes that belong to a connected component of size
at least p in the subgraph of G induced by X .

We now define our variant of the rake-and-compress
procedure. Note that a similar variant, for unrooted trees,
appeared in [2].

Definition 5.8 (RCP)Let p ∈ {1, 2, . . . }. ProcedureRCP(p)
iteratively partitions the set of nodes V into non-empty sets
V1, V2, . . . , VL for some L as follows:

G0 = G, Vi+1 = leaves(Gi ) ∪ long-path-nodes(Gi , p)

Gi+1 = Gi \ Vi+1.

Note that the graphs Gi can be disconnected.
We now prove an upper bound on the highest possible

layer obtained by the procedure. In particular, we prove that
there is some layer L = O(log n) such that GL+1 is empty.
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For this purpose, we now prove that the number of nodes of
Gi+1 is at least a (1− 1

6p ) factor smaller than the number of
nodes of Gi , implying that after O(log n) steps we obtain an
empty graph.

Lemma 5.9 Let p be a constant and let G = (V , E) be a
tree with n nodes. At least one of the following holds:

∣∣leaves(G)
∣∣ ≥ n

6p
or

∣∣long-path-nodes(G, p)
∣∣ ≥ n

3
.

Proof Let n0, n1, n2+ be the number of nodes of indegree 0,
1, and 2 or more, respectively. We have n = n0 + n1 + n2+.
The number of edges in a tree is m = n − 1 or by counting
using indegrees we get m ≥ 0n0 + 1n1 + 2n2+, from which
we obtain n0 + n1 + n2+ − 1 ≥ 0n0 + 1n1 + 2n2+. Hence
n2+ < n0. We have |leaves(G)| = n0 so if n0 ≥ n/(6p), the
claim holds. In what follows, we assume that n0 < n/(6p)
which together with n2+ < n0 implies that n0 + n2+ <

n/(3p). This implies that the total number of nodes of inde-
gree 1 nodes is n1 = n− (n0 + n2+) > n− n/(3p) ≥ 2n/3.
Consider the subgraph G1 induced by indegree-1 nodes of
G. If we contract each connected component of G1 into an
edge, we obtain a tree G ′ in which we have n′ = n2+ + n0
nodes and m′ = n2+ + n0 − 1 edges. As each edge repre-
sents atmost one connected component ofG1, there are fewer
than n/(3p) components in G1. Hence we have n1 > 2n/3
indegree-1 nodes that are contained in less than n/(3p) con-
nected components. Since components of size less than p can
contain at most p · n/(3p) = n/3 nodes in total, then there
have to be at least 2n/3−n/3 = n/3 nodes in the components
of size at least p, hence |long-path-nodes(G, p)| ≥ n/3. ��

We now prove an upper bound on the time required for all
nodes v to know the layer i in which they belong, that is, the
layer i satisfying v ∈ Vi .

Lemma 5.10 RCP(p) can be computed in O(log n) rounds
in the LOCAL and CONGEST models.

Proof We build a virtual graph where we iteratively remove
nodes for O(log n) rounds. At each step, nodes can check
in 1 round which neighbors have already been removed, and
hence compute their indegree in the virtual graph. Nodes
mark themselves as removed if their indegree is 0, or if their
indegree is 1 and they are in paths of length at least p. The
result of each node is the step inwhich they have beenmarked
as removed. Notice that each step requires O(p) rounds,
even in CONGEST, and since p is a constant, this procedure
requires O(log n) rounds in total. ��

We are now ready to prove that, if Algorithm 2 returns
some problem �pf , then �pf (and hence �) can be solved in
O(log n) rounds, proving Theorem 5.1.

Proof of Theorem 5.1 Let � be a problem having a certifi-
cate for O(log n) solvability. Then we will show that � is
O(log n) solvable in the CONGEST model.

Let �pf be the path-flexible form from Algorithm 2. Let

k = max
σ∈�(�pf )

(flexibility(σ )) + ∣∣�(�pf)
∣∣,

where flexibility(σ ) is the flexibility of a state σ inM(�pf)

as defined in Algorithm 4.8.
Given a tree T , we solve �pf as follows. We start by

running the procedure RCP(k) on T . After this process, each
node v knows the set Vi , 1 ≤ i ≤ L , which it belongs to.
Then, we compute a distance-k coloring by using a palette of
O(1) colors, which can be done in O(log∗ n) rounds, even in
CONGEST, since δ is constant (using, e.g., Linial’s algorithm
[21] on power graphs).

We then process the layers one by one, from layer L to 1.
For each layer i , we label all (unlabeled) nodes in Vi and all
of their children. We need to deal with two cases, either we
are labeling a long path or we are labeling a leaf node (both
in Gi−1).

If a node v j ∈ Vi is a leaf node, then by definition its
children were not processed yet so they are not labeled. Node
v j could be labeled with its parent, or it is unlabeled. But in
both cases, we can complete this labeling (by labeling the
descendants of v j and possibly v j itself) as every label has a
continuation below.

If we need to label a long path P , then by construction
all inner nodes have no fixed labels so far. The topmost node
can be labeled (as we may have already processed its parent)
and the bottom-most node has indegree one, and thus it is
connected to exactly one node from an upper layer, and hence
it will have exactly one child already labeled. To label all
nodes of P , we proceed in several steps. First, we exploit the
precomputed distance-k coloring to compute a (k, k)-ruling
set on each path in parallel in constant time, by iterating
through the constantly many color classes and adding to the
ruling set all nodes of the processed color for which no node
in distance at most k − 1 is already contained in the ruling
set. The ruling set nodes split the path into constant-length
chunks. Next, for each endpoint of the path, we remove the
closest ruling set node from the ruling set. This ensures that
all chunks are of length at least k. Then,we label all nodes that
still remain in the ruling set with an arbitrarily chosen label
from �(�pf). Finally, we label the nodes in the constant-
length chunks (and their children) in a consistent manner.
This is possible since each label used for the ruling set nodes
is flexible and has a walk to any other label in M(�pf) (as
proved byLemma5.5) and the ruling set nodes are far enough
apart (more than the flexibility of any label in �pf ).

As all of these steps can be performed in constant time
(provided the precomputed distance-k coloring), we can
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label the whole tree in L · O(1) + O(log∗ n) = O(log n)

rounds. ��

5.4 Lower bound

We prove that if Algorithm 2 returns ε, then the original
problem � = (δ,�,C) requires n�(1) rounds to solve.
A sequence of labels. If Algorithm 2 returns ε after k itera-
tions, then there is a sequence�1, �2 . . . , �k of sets of labels
meeting the following conditions and leading to a sequence
�0,�1,�2 . . . ,�k of LCL problems:

• �0 = �.
• For 1 ≤ i ≤ k,�i is the LCL problem that is the restriction

of �i−1 to the label set �(�i−1) \ �i , or equivalently,
�i is the restriction of the original LCL problem � to the
label set � \ (�1 ∪ �2 ∪ · · · ∪ �i ).

• For 1 ≤ i ≤ k, �i is the set of path-inflexible labels in
�i−1.

• ��k = ∅, so � = �1 ∪ �2 ∪ · · · ∪ �k is a partition of
�.

The set of labels �i ⊆ � consists of the labels removed
during the i th iteration of Algorithm 2, as they are path-
inflexible in�i−1. AsAlgorithm2 returns ε after k iterations,
� = �1 ∪ �2 ∪ · · · ∪ �k is a partition of �. The goal of this
section is to show that solving � requires �(n1/k) rounds.
Centered graphs. A radius-t centered graph is a pair (G, v)

where v ∈ V is a node in G = (V , E) so that all u ∈ V are
within distance t to v, and each u ∈ V whose distance to v

is exactly t is permitted to have incident edges of the form
e = {u, ?}, indicating that e is an external edge that connects
u to some unknown node outside of G. As we only consider
rooted trees, we assume that all edges are oriented towards
the root, so that each node has outdegree at most 1.

Observe that the view of a node v after t rounds of com-
munication in LOCAL can be described by a radius-t centered
graph. Therefore, a t-round LOCAL algorithm on n-node
graphs is simply an assignment of a label σ ∈ � to each
radius-t centered graph (G, v) where each node in G has a
distinct O(log n)-bit identifier.
Terminology. In this section, we use the term radius-t view of
v to denote the corresponding radius-t centered graph, and
the term radius-t neighborhood of v to denote the set of nodes
that are within distance t to v. Note that the radius-t view of v
contains more information than the subgraph induced by the
radius-t neighborhood of v, as the radius-t view of v includes
information about the external edges.
Permissible labels. From now on, we fix A to be any LOCAL
algorithm that solves � = (δ,�,C) in t rounds on n-node
graphs. Given such an algorithm A, we say that a label σ ∈ �

is permissible for (G, v) if there exists some assignment of

distinct O(log n)-bit identifiers to the nodes in G such that
the output of v is σ when we run A on G.

Using the notion of permissible labels, to show that � =
(δ,�,C) cannot be solved in t rounds on n-node graphs,
it suffices to find a graph G = (V , E) that has at most n
nodes such that there exists a node v ∈ V such that no label
σ ∈ � is permissible for the radius-t centered graph (H , v)

corresponding to the radius-t view of v in G. The following
lemma is useful for showing that some label σ ∈ � is not
permissible for some radius-t centered graph (G, v).

Lemma 5.11 Let A be a t-round LOCAL algorithm that solves
� = (δ,�,C) for n-node rooted trees. Let (G, v) be a fixed
radius-t centered graph. Let �� ⊆ � be a subset of labels,
and let �′ be the restriction of � to � \ ��. Suppose there
exists a number K such that for any d ≥ K, we can construct
a rooted tree T containing a directed path P = v1 ← v2 ←
· · · ← vd+1 meeting the following conditions.

(1) The radius-t views of v1 and vd+1 are isomorphic to
(G, v).

(2) Let S denote the set of nodes v1, v2, . . . , vd+1 and their
children. Then each σ ∈ �� is not permissible for the
radius-t views of each u ∈ S.

(3) The radius-(t+2) neighborhood of vi contains at most
n nodes, for each 1 ≤ i ≤ d + 1.

Then, for each σ ∈ � \ ��, the following holds: if σ is
path-inflexible in �′, then σ is not permissible for (G, v).

See Fig. 3 for an illustration of Lemma 5.11. Before prov-
ing Lemma 5.11, let us give a brief, informal example of how
we might apply it. We assume we have already established
that algorithm A cannot output labels from �� in certain
“tricky” radius-t views. Tree T is then constructed so that
nodes of S have tricky views, so algorithm A is forced to
solve the restriction �′ of � around path P . Now if �′ con-
tains some path-inflexible labels, we can apply Lemma 5.11
to rule out the possibility of using path-inflexible labels along
path P , so we learn that the view (G, v) is super-tricky, as it
rules out not only��, but also all path-inflexible labels of�′.
We can repeat this argument to discover many super-tricky
views, by constructing different trees T .

This way we can start with a problem �0, and rule out the
use of path-inflexible labels of �0 at least in some family of
tricky views.Hence in those viewswe are, in essence, solving
problem �1, which is the restriction of �0 to path-flexible
labels. We repeat the argument, and rule out the use of path-
inflexible labels of�1 in at least some family of super-tricky
views, etc.

If we eventually arrive at an empty problem, we have
reached a contradiction: algorithm A cannot solve the orig-
inal problem in some family of particularly tricky views.
However, plenty of care will be needed to keep track of the
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Fig. 3 An illustration of Lemma 5.11 with t = 2

specific family of views, as well as to make sure that we can
still construct a suitable tree T using only such views. We
will get back to these soon, but this informal introduction
will hopefully help to see why we first seek to prove this
somewhat technical statement.

Proof of Lemma 5.11 Fix a label σ ∈ � \ �� such that σ is
path-inflexible in�′. By the definition of path-flexibility, for
any K , there exists an integer d ≥ K such that the following
statement holds:

• For any length-d directed path P = v1 ← v2 ← · · · ←
vd+1 such that each node vi in P is assigned a label
λ(vi ) ∈ � \ ��, if the two end points v1 and vd+1 are
labeled with σ , then the labeling of P , interpreted as 1-
ary tree, is not a valid solution for the path-form of �′.
More precisely, there must exist 1 ≤ i ≤ d + 1 such that
(λ(vi ) : λ(vi+1)) is not an allowed configuration in the
path-form of �′.

For the rest of the proof, we pick d be a sufficiently large
number such that the above statement holds. The precise
choice of d is to be determined. We consider a rooted tree T
that satisfies the lemma statement for this parameter d. We
assume that σ is permissible for (G, v), and then we will
derive a contradiction.

Now consider the path P in the lemma statement. Here
all nodes in P have exactly δ children, and all nodes of P
and their children can only be assigned labels from � \ ��
by A. Again, if v1 and vd+1 are labeled with σ , then there
must exist 1 ≤ i ≤ d + 1 such that the node configuration
of vi and its δ children is not an allowed configuration of �′.
Furthermore, it cannot be an allowed configuration for �,
either, as �′ contains all configurations that consist of labels
from � \ ��.

Consider any assignment of O(log n)-bit identifiers to the
nodes in (G, v) that makes A output σ , and apply this assign-
ment to the radius-t neighborhoods of v1 and vd+1 in T .
Extend this identifier assignment to cover all nodes that are

within distance t + 2 to some vi such that the radius-(t + 2)
neighborhood of any vi does not contain repeated identifiers.
This is possible because we assume that T satisfies the prop-
erty that the radius-(t + 2) neighborhood of vi contains at
most n nodes, for each 1 ≤ i ≤ d + 1, and because that
we may choose d � t to be sufficiently large so that the
radius-(t + 2) neighborhood of each u ∈ S cannot simul-
taneously intersect the radius-(t + 2) neighborhood of both
v1 and vd+1. Although some identifiers may appear several
times in T and the total number of nodes in T may exceed
n. As we will later see, they are not problematic.

Consider the output labels of vi and its children, for 1 ≤
i ≤ d + 1, resulting from simulating A on T . Note that A
by definition cannot output labels that are not permissible,
and hence all of these nodes receive labels from � \��. Our
choice of d implies that there exists 1 ≤ i ≤ d + 1 such that
the node configuration corresponding to vi and its children is
not in C. We take the subtree T ′ induced by the union of the
radius-(t + 1) neighborhood of vi and its children. Since the
radius-(t + 2) neighborhood of vi contains at most n nodes,
the rooted tree T ′ also contains at most n nodes. The output
labelings of vi and its children due to simulating A are the
same in both T and T ′, as their radius-t views are invariant
of the underlying network being T or T ′. This violates the
correctness of A, as T ′ contains at most n nodes. Thus, σ

cannot be permissible for (G, v). ��

A hierarchical construction of rooted trees.We first consider
the following natural recursive construction of rooted trees.
A bipolar tree is a tree with two distinguished nodes s and t ,
and it is also viewed as a rooted tree by setting s as the root.
The unique path connecting s and t is called the core path of
the bipolar tree. We consider the following operation

⊕x .

• Given a rooted tree T , define
⊕x T as the result of

the following construction. Start with an x-node path
(v1, v2, . . . , vx ). Consider x(δ − 1) copies of T , indexed
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by two numbers i and j :

{
T ′
i, j

}
1≤i≤x, 1≤ j≤δ−1.

For 1 ≤ i ≤ x and 1 ≤ j ≤ δ − 1, make the root of T ′
i, j

a child of vi by adding an edge connecting them. Finally,
set the two distinguished nodes of the resulting tree by
s = v1 and t = vx .

Based on this operation, we construct a sequence of
bipolar trees T x

0 , T x
1 , . . . , T x

k , where the nodes in T
x
i are par-

titioned into layers 0, 1, . . . , i ; see Fig. 4:

• For i = 0, define T x
0 as the trivial bipolar tree consisting

of only one isolated node v with s = v and t = v. We
say that v is in layer 0.

• For 1 ≤ i ≤ k, define T x
i = ⊕x T x

i−1. We say that all
nodes in the core path of T x

i are in layer i .

For any constant δ, it is straightforward to see that the
number of nodes in T x

k is n = O(xk), so x = �(n1/k). For
each 1 ≤ i ≤ k, the layer-i nodes form paths consisting of
exactly x nodes. We call such an x-node path a layer-i path.

The tree T x
k is analogous to the lower bound graph used

in [16] for establishing the tight �(n1/k) lower bound for
some artificial LCL problem considered in [16]. The �(n1/k)
lower bound proof in [16] involves an argument showing that
to solve the given LCL problem it is necessary that the two
endpoints of a layer-i path communicate with each other, and
this costs at least x = �(n1/k) rounds.

When x ≥ 2 and 1 ≤ j ≤ k, there are three possible
degrees in T x

j : 1, � − 1 = δ, and � = δ + 1. A node has
degree 1 if and only if it is in layer zero. A node has degree
δ if and only if it is the root or it is the last node vx in some
layer-i path v1 ← v2 ← · · · ← vx . All the remaining nodes
have degree exactly � = δ + 1. Intuitively, the nodes with
degree δ are in the boundary of the graph.
High-level ideas. To prove the�(n1/k) lower bound, we will
construct a sequence S1 ⊇ S2 ⊇ · · · ⊇ Sk of non-empty sets
of radius-t centered graphs, where t = �(n1/k). Each radius-
t centered graph used in our construction is isomorphic to
the radius-t view of some node v in some graph of at most n
nodes. By applyingLemma5.11 inductivelywith�� = �1∪
�2 ∪· · ·∪�i−1 and σ ∈ �i , we will show that for any given
t-round algorithm A, the labels in �i are not permissible
for the radius-t centered graphs in Si , for each 1 ≤ i ≤ k.
Therefore, the given LCL problem � = (δ,�,C) cannot be
solved in t rounds.

The construction of S1 ⊇ S2 ⊇ · · · ⊇ Sk requires some-
what complicated definitions. Tomotivate these forthcoming
definitions, we begin with describing a natural attempt to
prove the �(n1/k) lower bound directly using the trees T x

k
and see why it does not work.

Suppose that the given LCL problem � = (δ,�,C) can
be solved in t = o(n1/k) rounds on n-node graphs by an
algorithm A. We pick x to be a sufficiently large number
such that x = �(t) and the number of nodes in T x

k is at
most O(xk) < n. Recall that �1 is the set of path-inflexible
labels for the original LCL problem � = (δ,�,C). Let
P = v1 ← v2 ← · · · ← vx be a layer-1 path in T x

k . It
is straightforward to see that for each 1 + t < j < x − t ,
the radius-t view of each v j is identical. Let (G, v) denote
the corresponding radius-t centered subgraph. By the path
inflexibility of the labels in�1, all labels σ ∈ �1 are not per-
missible for (G, v). Intuitively, this is because that we can
find in T x

k a path connecting two views isomorphic to (G, v)

with a flexible path length. Similarly, we can apply the same
argument for layer- paths for each 1 ≤  ≤ k, so we infer
that the labels in �1 cannot be used to label nodes in layer 1
or above.

For the inductive step, suppose that we already know that
�1, �2, . . . �i−1 cannot be used to label nodes in layer i −1
or above. We consider the LCL problem that is the restriction
of � to the set of labels �i ∪ �i+1 ∪ · · · ∪ �k . The above
argument stillworks ifwe replace�1 by�i and only consider
the layers i ≤  ≤ k, as we recall that �i is the set of
path-inflexible labels when we restrict to the set of labels
�i ∪ �i+1 ∪ · · · ∪ �k .

It appears that this approach allows us to show that for
each 1 ≤  ≤ k, the layer- nodes cannot be labeled using
�1, �2, . . . , �, so the given algorithm A cannot produce
any output label for the layer-k nodes, contradicting the
correctness of A. This approach, however, has one issue.
Consider again the layer- path P = v1 ← v2 ← · · · ← vx
in T x

k in the above discussion. We are only able to show that
the labels in �1 cannot be used to label the nodes v j for each
1 + t < j < x − t , as the radius-t view of the remaining
nodes in P are different. This is problematic because in the
next level of induction, when we try to show that the labels
in �2 cannot be used to label some node v that is in layer
2 or above, the proof relies on the condition that the labels
in �1 cannot be used to label v and its children; see Lemma
5.11 and its proof. In particular, showing that �1 cannot be
used to label the middle nodes in P whose radius-t views are
identical is not enough.

To resolve this issue, we need to consider essentially all
possible radius-t centered graph (G, v) corresponding to a
radius-t view of a layer-i node, andwe have tomake sure that
for any sufficiently large number d, we can find a rooted tree
T that contains a length-d directed path P = v1 ← v2 ←
· · · ← vd+1 such that the radius-t views of the two endpoints
v1 and vd+1 are isomorphic to (G, v) and all the intermediate
nodes v2, v3, . . . , vd are in layer i or above, so that Lemma
5.11 is applicable.

To deal with the views (G, v) that do not belong to the
central part of the long paths, wewill need to concatenate two
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Fig. 4 Construction of the bipolar tree T x
k , illustrated here for δ = 3, x = 5, and k = 2

Fig. 5 Tree T x
i← j , for δ = 3, x = 4, j = 2, and i = 1

trees T x
i and T x

j for some 1 ≤ i ≤ k and 1 ≤ j ≤ k to obtain
directed paths starting and ending with the same view (G, v),
so that we can apply Lemma 5.11. Such a concatenation will
create new views that did not exist before in T x

k . In order
to capture all such views, we will consider the following
definition T x

i← j and build the argument around it; see Fig. 5.

• For 1 ≤ i ≤ k and 1 ≤ j ≤ k, define T x
i← j as the result of

the following construction. Let T ′
1 = T x

i (distinguished
nodes are s1 and t1) and T ′

2 = T x
j (distinguished nodes

are s2 and t2). Concatenate these two bipolar trees into
a new bipolar tree by adding an edge {t1, s2} and setting
s = s1 and t = t2. We call e = {t1, s2} the middle edge.
The layer numbers of the nodes are kept when T x

i and
T x
j are linked together into T x

i← j .

We make the following two observations. For the special
case of i = j , T x

i←i is simply
⊕2x T x

i−1. For any number
t , the number of nodes in the radius-t neighborhood of any
node in T x

i← j is O(tmax{i, j}) = O(tk), regardless of x .
A sequence of sets of radius-t centered graphs. Now, we are
ready to define the set of radius-t centered graphs Si , for each
1 ≤ i ≤ k. In the definition of Si , we let x be any integer
such that x ≥ 2t + 2. It will be clear from the construction
of Si that the definition of Si is invariant of the choice of x ,
as long as x is sufficiently large comparing with t .

The set Si consists of all radius-t centered graphs (G, v)

such that there exists a node u in the rooted tree T x
a←b for

some a and b meeting the following conditions.

• i ≤ a ≤ k and i ≤ b ≤ k.
• The radius-t view of u is isomorphic to (G, v).
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• The radius-t view of u contains at least one node in the
middle edge e of T x

a←b.• The layer number of u is at least i .

Note that the threshold x ≥ 2t + 2 is chosen to make sure
that for each node u′ in the radius-t neighborhood of u, if u′
is not in layer zero, then its degree is exactly � = δ + 1, that
is, u′ has one parent and δ children.

It is clear from the above definition of Si that we have
S1 ⊇ S2 ⊇ · · · ⊇ Sk �= ∅. Before we proceed, we prove a
result showing that Si includes essentially all radius-t view
for layer-i nodes in T x

i . Formally, for each 1 ≤ i ≤ k, we
define S∗

i as the set of all radius-t centered graphs (G, v)

meeting the following conditions.

• There exist x ≥ 1, i ≤ j ≤ k, and a layer-i node u in
T x
j such that the radius-t view of u in T x

j is isomorphic
to (G, v). Furthermore, for each node u′ in the radius-
t neighborhood of u, if u′ is not in layer zero, then its
degree is exactly � = δ + 1.

Intuitively, S∗
i is the set of all possible radius-t views for

layer-i nodes, excluding those near the boundary.We exclude
the views involvingboundarynodes becausewewant to focus
on the interior part of the graphwhere all nodes have the same
degree � = δ + 1, except the layer-0 nodes whose degree is
always one.

Lemma 5.12 For each 1 ≤ i ≤ k, we have S∗
i ⊆ Si .

Proof Consider the node u in the graph T x
j in the definition

of S∗
i . Since the radius-t neighborhood of u does not include

any non-leaf node whose degree smaller than � = δ + 1,
we may assume that x is an arbitrarily large number. Let u∗
be any node in the radius-t neighborhood of u that has the
highest layer number. Let i∗ be the layer number of u∗. We
have i ≤ i∗ ≤ j ≤ k. The radius-t neighborhood of u is
confined to some subgraph T x

i∗ of T x
j where u∗ lies on the

core path of T x
i∗ . The graph T

x
i∗ can be viewed as a subgraph of

T x
i∗←i∗ such that u∗ is a node in the middle edge of T x

i∗←i∗ .
As u is within distance t to u∗ and the radius-t view of u
in T x

i∗←i∗ , T
x
i∗ , and the original graph T x

j are identical, we
conclude that the radius-t view of u is isomorphic to some
member in Si by considering the graph T x

i∗←i∗ . ��

The lower bound proof. For any given integer t , we pick n
to be the maximum number of nodes in the radius-(t + 2)
neighborhood of any node in T x

i← j , over all choices of i , j ,
and x such that 1 ≤ i ≤ k, 1 ≤ j ≤ k, and x ≥ 1. It is clear
that n = O(tk), or equivalently t = �(n1/k). Therefore, to
prove an �(n1/k) lower bound for the given problem �, it
suffices to show the non-existence of a t-round algorithm A
that solves � on n-node graphs.

Suppose such an algorithm A exists. In Lemma 5.13,
whose proof is deferred, we will prove by induction that
all labels in �i are not permissible for all centered graphs
in Si , for each 1 ≤ i ≤ k. In particular, this means that all
labels in � are not permissible for all centered graphs in Sk ,
as � = �1 ∪ �2 ∪ · · · ∪ �k and S1 ⊇ S2 ⊇ · · · ⊇ Sk .

Lemma 5.13 For each 1 ≤ j ≤ k, all labels in � j are not
permissible for all centered graphs in S j .

We now prove the main result of this section assuming
Lemma 5.13.

Lemma 5.14 If Algorithm 2 returns ε after k iterations, then
� requires �(n1/k) rounds to solve.

Proof In view of the above discussion, it suffices to show
that the algorithm A considered above does not exist. Recall
that Sk �= ∅, and each (G, v) ∈ Sk is isomorphic to the
radius-t view of some node u in T x

a←b with 1 ≤ i ≤ k,
1 ≤ j ≤ k, and x ≥ 2t + 2. Furthermore, the radius-(t + 2)
neighborhood of u contains at most n nodes. If we run A on
the subgraph induced by the radius-(t + 2) neighborhood of
u in T x

a←b, then according to Lemma 5.13 the algorithm A
does not output any label for u, violating the correctness of
A, so such an algorithm A does not exist. ��

It is clear that Lemma 5.14 implies Theorem 5.2.
Constructing a rooted tree T for applying Lemma 5.11. For
the rest of the section, we prove Lemma 5.13. We begin with
describing the construction of the rooted tree T needed for
applying Lemma 5.11 in the proof of Lemma 5.13; see Fig.
6 for an illustration.

The construction of T is parameterized by any (G, v) ∈
S j , for any 1 ≤ j ≤ k. Recall from the definition of S j

that (G, v) is isomorphic to the radius-t view of some layer-
i node u in T x

a←b such that 1 ≤ a ≤ k, 1 ≤ b ≤ k, and
j ≤ i ≤ min{a, b}, and this radius-t neighborhood contains
at least one node in the middle edge e of T x

a←b.
From now on we fix x = 2t + 4. Then D = (k + 1)x − 1

is an upper bound on the length of any root-to-leaf path in
T x
a←b, for any 1 ≤ a ≤ k and 1 ≤ b ≤ k. We define
K = 2D + x + 1.

The construction of T is also parameterized by a distance
parameter d such that d ≥ K . In the rooted tree T that we
construct, there will be a length-d directed path P = v1 ←
v2 ← · · · ← vd+1 satisfying some good properties to make
Lemma 5.11 applicable.

Intuitively, T will be the result of concatenating two copies
Tl and Tr of T x

a←b via a middle tree Tm = ⊕y T x
i−1, and then

P will be the unique directed path in T connecting the two
copies of u in Tl and Tr . Note that Tm = ⊕y T x

i−1 is simply
a variant of T x

i = ⊕x T x
i−1 such that the length of the core

path is y instead of x . We select y to make the length of
P equals d. The points of concatenation will be selected to
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Fig. 6 Constructing a rooted tree T for applying Lemma 5.11. Here
(G, v) was isomorphic to the view of some node u in layer 1 of T x

2←1.
Therefore we construct two copies of T x

2←1, one of them is called Tl
and the other one is Tr , and we identify the nodes ul and ur that have

views isomorphic to (G, v). We identify the unique path Pr from ur to
the root of Tr and the unique layer-1 path Pl that takes us to ul (dark
arrows). Finally, we connect Pr through the middle tree to Pl . Note that
the resulting path P = Pl ← Pm ← Pr does not use layer-0 nodes

ensure that all nodes in P are in layer i or above. Formally,
the construction of the rooted tree T and its length-d path P
is as follows.

The two trees Tl and Tr . Recall that u is a layer-i node
in T x

a←b whose radius-t neighborhood contains at least

one node in the middle edge. We consider two copies of
T x
a←b, called Tl and Tr . The two copies of u in Tl and

Tr are called ul and ur . Similarly, we write (sl , tl) and
(sr , tr ) to denote the two distinguished nodes of Tl and
Tr .
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The path Pl . If ul is on the core path of Tl , then we
define Pl to be the unique directed path ul ← · · · ← tl .
Otherwise, then consider the unique layer-i path w1 ←
· · · ← wx that contains ul , and then we define Pl to be
the unique directed path ul ← · · ·wx . Observe that all
nodes in Pl are in layer i or above.
The path Pr . We define Pr to be the unique directed path
sr ← · · · ← ur in Tr . Observe that all nodes in Pr are in
layer i or above.
The middle tree Tm and its path Pm . Let Dl and Dr

denote the lengths of Pl and Pr . Note that Dl ≤ D and
Dr ≤ D. We define Tm = ⊕y T x

i−1, where y = d −
Dl − Dr − 1, and we define Pm as the core path of Tm .
Note that we must have y ≥ x , due to the assumption
d ≥ K and our choice of K = 2D + x + 1. Clearly, all
nodes in Pm are in layer i .
Concatenation. Now, we are ready to define the rooted
tree T and its associated length-d directed path P . We
construct the directed path P by adding two edges to
concatenate the three paths Pl , Pm , and Pr together: P =
Pl ← Pm ← Pr . The length of P is exactly d due to our
choice of y = d − Dl − Dr − 1. The rooted tree T is the
result of this concatenation of Tl , Tm , and Tr .

The radius-t viewsoful is isomorphic to (G, v), regardless
of the underlying graph being T or Tl . Similarly, the radius-t
views of ur is isomorphic to (G, v), regardless of the under-
lying graph being T or Tr . Hence the radius-t neighborhoods
of the two endpoints of P in T are isomorphic to the given
radius-t centered graph (G, v). We also note that all nodes
in P are in layer i or above, so all children of nodes in P are
in layer i − 1 or above.

Next, we will prove some additional properties of T and
P . We begin with Lemma 5.15 and Lemma 5.16. Informally,
in these lemmas we show that the local view seen from an
edge connecting Tl , Tm , and Tr is isomorphic to the local view
seen from the middle edge e of T x

a′←b′ , for some choices of
i ≤ a′ ≤ k and i ≤ b′ ≤ k.

Lemma 5.15 Let el = u′ ← v′ be the edge connecting Tl and
Tm. Let Ul be the union of the radius-(x − 1) neighborhood
of u′ and v′ in T . There is a subgraph T ′

l of T isomorphic to
T x
a′←b′ for some i ≤ a′ ≤ k and b′ = i such that T ′

l contains
all nodes in Ul . In the isomorphism, the edge el is mapped
to the middle edge e of T x

a′←b′ .

Proof Let a′ be the layer number of u′. Note that we have
either a′ = i or a′ = b. In any case, i ≤ a′ ≤ k. Consider the
2x-node path u′

1 ← · · · ← u′
x = u′ ← v′ = v′

1 ← · · · ←
v′
x in T defined as follows.

• el = u′ ← v′ is the edge connecting Tl and Tm .
• u′

1 ← · · · ← u′
x is the unique layer-a′ path in Tl con-

taining u′.

• v′
1 ← · · · ← v′

x is the path formed by the first x nodes
in Pm .

We consider the subgraph T x
a′ induced by the nodes u′

1 ←
· · · ← u′

x and their descendants in Tl . As v′
1 ← · · · ← v′

x are
the first x nodes in the y-node core path of Tm = ⊕y T x

i−1,
the nodes v′

1 ← · · · ← v′
x and their descendants induce a

subgraph T x
b′ with b′ = i . We choose T ′

l to be the union
of these two subgraphs T x

a′ and T x
b′ , together with the edge

el = u′ ← v′. It is clear that T ′
l is isomorphic to T x

a′←b′ and
contains all nodes in Ul . ��
Lemma 5.16 Let er = u′ ← v′ be the edge connecting Tm
and Tr . Let Ur be the union of the radius-(x − 1) neigh-
borhood of u′ and v′ in T . There is a subgraph T ′

r of T
isomorphic to T x

a′←b′ for a′ = i and b′ = a such that T ′
r

contains all nodes in Ur . In the isomorphism, the edge er is
mapped to the middle edge e of T x

a′←b′ .

Proof Recall that Tm = ⊕y T x
i−1 with y ≥ x and Tr =

T x
a←b is formed by connecting T x

a and T x
b . We write v′

1 ←
· · · ← v′

y to denote the core path of Tm , and we let T ′ =⊕x T x
i−1 = T x

i be a subtree of Tm induced by the x-node
subpath v′

y−x+1 ← · · · ← v′
y and the descendants of the

nodes in this subpath.
The edge er = u′ ← v′ connects the two trees T ′ = T x

i
and T x

a , as u
′ is the distinguished node t of T ′ = T x

i and v′
is the distinguished node s of T x

a . Therefore, we may take
T ′
r to be the union of T ′ = T x

i and T x
a , together with the

edge er = u′ ← v′. The tree T ′
r is isomorphic to T x

i←a and
contains all nodes in Ur . ��

Combining Lemma 5.15 and Lemma 5.16, in Lemma 5.17
we show that the local neighborhood of any node in T is
isomorphic to the local neighborhoodof somenode in T x ′

a′←b′ ,
for some choices of 1 ≤ a′ ≤ k, 1 ≤ b′ ≤ k and x ′ ≥ 1. In
the proof of Lemma 5.17 we utilizes the fact that x = 2t +4.

Lemma 5.17 For each nodew in T , the subgraph induced by
its radius-(t+2) neighborhood is isomorphic to the subgraph
induced by the radius-(t +2) neighborhood of some nodew′
in T x ′

a′←b′ for some 1 ≤ a′ ≤ k, 1 ≤ b′ ≤ k and x ′ ≥ 1.

Proof The proof is done by a case analysis. We write U to
denote the set of nodeswithin the radius-(t+2)neighborhood
ofw in T . IfU is completely confined in one of Tl or Tr , then
the lemma holds with T x ′

a′←b′ = T x
a←b, as both Tl and Tr are

isomorphic to T x
a←b. IfU is completely confined in Tm , then

the lemmaholdswith T x ′
a′←b′ = T y

i−1←i−1, as Tm = ⊕y T x
i−1

is a subgraph of T y
i−1←i−1, as we recall that y ≥ x .

IfU contains the edge el connecting Tl and Tm , thenU ⊆
Ul , where Ul is defined in Lemma 5.15. Note that the fact
that x = 2t + 4 is used to show that U ⊆ Ul . Therefore, the
lemma holds with the tree T x

a′←b′ considered in Lemma 5.15.
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Finally, the remaining case is that U contains the edge er
connecting Tm and Tr . Similar to the previous case, using
Lemma 5.16 we obtain that U ⊆ Ur , so the lemma holds
with the tree T x

a′←b′ considered in Lemma 5.16. ��
Same as the notation used in Lemma 5.11, for the rest of

the section, we write S to denote the set of the nodes in P and
their children. Using Lemma 5.12, Lemma 5.15, and Lemma
5.16, we prove Lemma 5.18, which shows that the radius-t
view of each node in S belongs to Si−1.

Lemma 5.18 If i > 1, then the radius-t view of each node in
S belongs to Si−1.

Proof Let w ∈ S. Let i ′ be the layer number of w. From the
construction of P we already know that all nodes on the path
P has layer number at least i , so their children have layer
number at least i − 1, and so i ′ ≥ i − 1.

Wefirst consider the casewhere the radius-t neighborhood
of w contains a node in the edge el connecting Tl and Tm .
Then w has the same radius-t view in both T and the graph
T x
a′←b′ considered in Lemma 5.15. Since i ′ ≥ i−1, a′ ≥ i >

i−1, b′ ≥ i > i−1, andw is within distance t to a node in the
middle edge of T x

a′←b′ , this radius-t view belongs to Si−1 by
its definition. The case of where the radius-t neighborhood
of w contains a node in the edge er connecting Tm and Tr
can be handled using Lemma 5.16 similarly.

From now on, we assume that the radius-t neighborhood
of w does not contain any node in el and er . There are three
cases depending on whether the radius-t neighborhood of w

is confined to Tl , Tm , or Tr .
Consider the case where the radius-t neighborhood of w

is confined to Tm . Since x is sufficiently large, the radius-t
neighborhood ofw does not contain any non-leaf nodewhose
degree is not � = δ + 1. Observe that Tm = ⊕y T x

i−1 is a
subgraph of T y

i as y ≥ x , so the radius-t view of w is the
same in T , Tm , and T y

i , and so this radius-t view belongs
to S∗

i ′ . By Lemma 5.12, we have S∗
i ′ ⊆ Si ′ . We also have

Si ′ ⊆ Si−1 because i ′ ≥ i − 1. Hence we conclude that this
radius-t view belongs to Si−1, as desired.

For the rest of the proof, we consider the case where the
radius-t neighborhood of w is confined to Tl , as the case
of Tr is similar. Recall that Tl = T x

a←b is constructed by
concatenating T x

a and T x
b by a middle edge e. If the radius-t

neighborhood of w contains a node of e, then we know that
this radius-t view belongs to Si−1, as we have a ≥ i > i −1,
b ≥ i > i − 1, and i ′ ≥ i − 1. Otherwise, the radius-t
neighborhood of w is confined to either T x

a or T x
b . Similarly,

we may use Lemma 5.12 to show that the radius-t view of w

is in Si−1. ��
Using Lemma 5.17 and Lemma 5.18, we are now ready

to prove Lemma 5.13.

Proof of Lemma 5.13 By induction hypothesis, suppose that
the lemma statement holds for smaller j-values. Fix any
(G, v) ∈ S j . Then (G, v) is isomorphic to the radius-t neigh-
borhood of a layer-i node u in T x

a←b such that j ≤ i ≤
min{a, b} and this radius-t neighborhood contains at least
one node in the middle edge e of T x

a←b.
Given T x

a←b and u, construct the rooted tree T and its
directed path P as we discuss above. Remember in our con-
struction there is a number K such that for each d ≥ K , we
are able to make d the length of P .

Consider �� = �1 ∪ �2 ∪ · · · ∪ � j−1. Fix any σ ∈
� j . Recall that � j is the set of path-inflexible labels for the
restriction of � to � \��. To prove the lemma, it suffices to
show that σ is not permissible for (G, v).

We apply Lemma 5.11 with the rooted tree T and its
directed path P with��. We will see that the properties of T
and P that we discuss above imply that the three conditions
of Lemma 5.11 are met. Condition (1) follows immediately
from the construction of T . For Condition (2), if j = 1,
then �� = ∅, so Condition (2) trivially holds; if j > 1,
then i ≥ j > 1, so we may apply Lemma 5.18 to obtain
that for each node w ∈ S, its radius-t neighborhood in T
is in Si−1 ⊆ S j−1. Therefore, by induction hypothesis, we
know that each σ ′ ∈ �� is not permissible for the radius-t
view of each w ∈ S, so Condition (2) holds. Condition (3)
follows from Lemma 5.17 that the radius-(t + 2) neighbor-
hood of each node in P is isomorphic to the radius-(t + 2)
neighborhood of some node in T x ′

a′←b′ for some 1 ≤ a′ ≤ k,
1 ≤ b′ ≤ k and x ′ ≥ 1, and our choice of n guarantees that
the radius-(t+2) neighborhood of any node in T x ′

a′←b′ cannot
contain more than n nodes. Hence Lemma 5.11 is applicable,
so σ is not permissible for (G, v). ��

6 Sublogarithmic region

In this section we prove that there is no LCL problem � with
distributed time complexity between ω(log∗ n) and o(log n).
Also, we prove that, given a problem �, we can decide if its
complexity is O(log∗ n) or �(log n). Moreover, we prove
that randomness cannot help: if a problem has randomized
complexity O(log∗ n), then it has the same deterministic
complexity.

6.1 High-level idea

Informally, we prove that all problems that are O(log∗ n)

solvable can be solved in a normalized way, that is the fol-
lowing:

• Split the rooted tree in constant size rooted subtrees,
where each root has some minimum distance from the
leaves. Note that each leaf is the root of another subtree.
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• In each subtree, assign labels to the leaves, such that for
any assignment to the root, the subtree can be completed
with a valid labeling.

• Complete the labeling in each subtree independently.

Note that the only part requiring �(log∗ n) is the first one,
while the rest requires constant time. We then also prove that
we can decide if there is a subset of labels, and an assignment
for the leaves of the subtrees, that satisfies the second point.

6.2 Certificate

Westart by definingwhat is a uniformcertificate ofO(log∗ n)

solvability. Informally, it is a sequence of labeled trees having
the same depth and the leaves labeled in the same way, such
that for each label used in the trees there is a tree with the
root labeled with that label. An example of such a certificate
for the 3-coloring problem is depicted in Fig. 7.

Definition 6.1 (uniform certificate for O(log∗ n) solvability)
Let� be an LCL problem. A uniform certificate of O(log∗ n)

solvability for � with labels �T = {σ0, . . . , σt } ⊆ �(�)

and depth d is a sequence T of t labeled trees (denoted by
Ti ) such that:

(1) Each tree is a complete δ-ary tree of depth d (d has to
be at least one).

(2) Each treeTi is labeled with labels from�T and correct
w.r.t. configurations C(�).

(3) Let T i be the tree obtained by starting from Ti and
removing the labels of all non-leaf nodes. It must hold
that all treesT i are isomorphic, preserving the labeling.

(4) Root of tree Ti is labeled with label σi .

We will see that a problem � can be solved in O(log∗ n)

rounds if and only if a certificate of O(log∗ n) solvability for
� exists. We will later show that we can decide if such a
certificate exists. We will now give an alternative definition
of certificate, that we will later prove to be equivalent.

Definition 6.2 (coprime certificate for O(log∗ n) solvability)
Let� be an LCL problem. A coprime certificate of O(log∗ n)

solvability for � with labels �T = {σ0, . . . , σt } ⊆ �(�)

and depth pair (d1, d2) is a pair of sequences T 1 and T 2 of
t labeled trees (denoted by T 1

i and T 2
i ) such that:

(1) The depths d1 and d2 are coprime.
(2) Each tree of T 1 (resp. T 2) is a complete δ-ary tree of

depth d1 ≥ 1 (resp. d2 ≥ 1).
(3) Each tree is labeled with labels from �(�) and correct

w.r.t. configurations C(�).

(4) Let T 1
i (resp. T

2
i ) be the tree obtained by starting from

T 1
i (resp. T 2

i ) and removing the labels of all non-leaf

nodes. It must hold that all trees T 1
i (resp. T 2

i ) are
isomorphic, preserving the labeling.

(5) The root of the tree T 1
i (resp. T 2

i ) is labeled with label
σi .

Note that the difference between a uniform certificate and a
coprime certificate is that a coprime certificate requires two
uniform certificates of coprime depth, but it allows internal
nodes of the trees to be labeled from labels of �(�) that are
not in�T . In the following, we will sometimes omit the type
of the certificate, and we will just talk about certificate for
O(log∗ n) solvability. In this case, we will refer to a uniform
certificate.

6.3 Upper bound

We now present an O(log∗ n)-round algorithm that is able to
solve � if there exists a certificate for O(log∗ n) solvability
for �.

Theorem 6.3 Assume that a uniform or coprime certificate
for O(log∗ n) solvability for � exists. Then � can be solved
in O(log∗ n) rounds in the CONGEST model.

Proof We will prove our claim by describing an algorithm
A. The algorithm will consist of two main phases. First, we
split the tree into constant size subtrees in O(log∗ n) rounds.
Then, we operate in a constant number of rounds on these
subtrees in parallel. We assume that nodes are far enough
from the root or the leaves of the tree, as we can imagine
our tree to be embedded in a slightly larger tree. Since the
leaves are unconstrained, this does not affect the validity of
the solution that we compute.

Consider the following family of problems defined on
directed paths. Let α, β be two parameters. Labels are from
{1, a2, . . . , aα} ∪ {1, b2, . . . bβ}. Allowed configurations are
{
(ai , ai+1)

∣∣ 2 ≤ i < α
} ∪ {

(bi , bi+1)
∣∣ 2 ≤ i < β}

∪{
(1, a2), (1, b2), (α, 1), (β, 1)

}
.

Essentially, this problem requires to label a directed path such
that if a node is labeled 1, then its successor is either labeled
a2 or b2, and then in the first case we continue counting up
to aα and then start again with 1, while in the second case we
continue countingup tobβ and then start againwith 1. Ifα and
β are coprime, then this problem can be solved in O(log∗ n)

rounds, and by [17, Theorem 16] we can solve this problem
in rooted trees, such that every root-to-leaf path is labeled
with a valid labeling w.r.t. the definition of the problem on
directedpaths inO(log∗ n) rounds aswell. Let us nowmodify
the solution as follows: let (v) be the labeling obtained on
each node v. Each node v labels itself with (u), where u
is the parent of v. We obtain that all siblings have the same
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(a)

(b)

(c)

Fig. 7 Finding a uniform certificate for O(log∗ n) solvability (Definition 6.1) for the 3-coloring problem (Sect. 1.2)

labeling. Consider now the subtrees obtained by removing
edges where endpoints are labeled (aα, 1) or (bβ, 1). To each
subtree, we add as new leaves the nodes on the other side of
the edges that have been removed (that is, nodes labeled 1
are at the same time roots of their tree and leaves of the tree
above). By how labels can propagate, we obtain that each
obtained subtree is a perfect δ-ary trees, where each tree has
height either α or β. If we are given a coprime certificate, we
compute such a splitting with α, β equal to the depth pair of
the certificate, while if we are given a uniform certificate, we
compute such a splitting with d, d + 1, where d is the depth
of the certificate.

We now describe the second phase. In the following, we
describe an algorithm that fixes, in constant time, the labeling
of each subtree in parallel.

If we are given a coprime certificate, we proceed as fol-
lows. For every subtree of depth α we label the leaves as
the trees of T 1, while for every tree of depth β we label the
leaves as the trees of T 2. Note that all the leaves are also the
root of a tree below. Hence, for each subtree, we have fixed
the labeling of the root and the leaves. Now, for each tree of
depth α (resp. β) we complete the labeling as in T 1

i (resp.
T 2
i ), where σi is the label assigned to the root. In this way,

we obtain a valid labeling for the whole tree.
If we are given a uniform certificate, to each subtree, we

assign to the nodes at depth d the labels of the trees of the cer-

tificate. On subtrees of depth d + 1 we then assign a labeling
to the nodes at depth d + 1 by using only labels of the cer-
tificate. This is possible since each label of the certificate is a
root of a certificate of the tree, and hence has a continuation
below that only uses labels of the certificate. We now need
to complete the labeling of trees of depth d where all roots
and all leaves have labels of the certificate, and all internal
nodes are unlabeled. This is possible by copying the labels
assigned to the internal nodes of the trees of the certificate.

The round complexity of the described algorithm is
O(log∗ n) for computing the subtrees, and O(1) for every-
thing else, hence we have an algorithm that has a round
complexity of O(log∗ n). ��

6.4 Lower bound

We now prove that, if there is no certificate for O(log∗ n)

solvability, then the problem requires�(log n), even for ran-
domized algorithms.

We start by considering deterministic algorithms. We will
prove that if there is a deterministic o(log n) algorithm for�,
then we can construct an O(log∗ n) certificate for it. In the
following lemma we will prove something stronger, that will
be useful later when considering constant-time algorithms.
This lemma essentially says that, if there exists a fast enough
algorithm that uses some set of labels far enough from the
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root and the leaves, then we can construct a certificate that
uses the same set of labels. Moreover, we can force a leaf of
the certificate to contain some specific label (this specific part
will be used when considering constant-time algorithms).

Lemma 6.4 Assume that there exists a deterministic algo-
rithm A solving� in T (n) ∈ o(log n) rounds on instances of
size n. Let n0 be any integer satisfying n0 > (1 + δ)10T (n0).
Let S be the maximal set of labels satisfying that for each
s ∈ S there exists an instance of � of size n0 in which A
outputs s on at least one node at distance strictly larger than
T (n0) from the root and from any leaf. Let s̄ be an arbitrary
label in S. Then there exists a certificate of O(log∗ n) solv-
ability that contains all labels in S, and where at least one
leaf is labeled s̄.

Proof For all s ∈ S, let Hs be an instance of size n0 in which
there exists a node vs having distance strictly larger than
T = T (n0) from the root and any leaf, where A outputs s.
Let B(v) be the radius-T neighborhood of a node v.

We now consider a δ-ary tree G of n0 nodes that is “as
balanced as possible”. Note that the height of G is at least
10T . Let r be an arbitrary node at distance T + 1 from the
root of G. Let L be the set of descendants of r that are at
distance exactly 5T from r . Since the tree is balanced and
has height at least 10T , then r and all nodes of L do not
see the root of G or any leaf of G. Also, B(r) and B() are
disjoint, for all  ∈ L . Moreover, note that for all nodes x
that are on paths that connect r with nodes of L , it holds that
either B(x) is disjoint with r or B(x) is disjoint with B(),
for all  ∈ L .

We now pick an arbitrary node  ∈ L and fix the identi-
fiers in its neighborhood to make B() = B(vs̄) (that is the
subgraph of Hs in which node vs̄ outputs s̄). Then, for each
label s ∈ S we make a copy of G (copying the partial ID
assignment as well), and we call it Gs . In each copy Gs , we
additionally fix the neighborhood of rs , that is the copy of r ,
to make it equal to B(vs). Then, we fix the identifiers of all
other nodes by using unique identifiers not in B(vs)∪ B(vs̄).
Crucially, we assign the same identifier to all the nodes that
are copies of the same node of G.

We argue that, by running A on the obtained trees, we
must obtain a valid solution, even if some identifiers may
not be unique. In fact, assume that there is a node in which
the output does not satisfy the constraints of�. The radius-T
neighborhood of this node must contain unique identifiers by
construction, and we can hence construct a different instance
of n0 nodes where all identifiers are unique and the same bad
neighborhood is contained. This would imply that A fails in
a valid instance, that is a contradiction.

Hence, we obtain that each tree Gs is properly labeled,
and since S is by definition maximal, then also nodes that are
between rs and nodes in Ls , that are the copy of labels in L ,
must be labeled with only labels in S.

Consider now the |S| trees obtained by taking from each
tree Gs the subtree induced by node rs , nodes in Ls , and all
nodes between them. We obtain |S| trees that have the same
labeling for the leaves (that is, leaves that are copies of the
same node of G have the same labeling), at least one leaf is
labeled s̄, each tree has a different label of S assigned to the
root, and all nodes are only labeledwith labels in S. Hencewe
obtained a certificate for O(log∗ n) solvability that contains
all labels in S, and where at least one leaf is labeled s̄. ��

In particular, since for any algorithm running in o(log n)

rounds there exists some n0 satisfying n0 > (1 + δ)10T (n0),
and since in δ-ary trees of size n0 there exist nodes at distance
strictly larger than T from the root and any leaf, implying
that S is non-empty, then Lemma 6.4 shows that if there is a
deterministic o(log n) algorithm for�, thenwe can construct
an O(log∗ n) certificate for it. Hence,we obtain the following
corollary.

Corollary 6.5 If � has deterministic complexity o(log n)

then there exists a certificate for O(log∗ n) solvability.

We can now prove that uniform and coprime certificates
are in some sense equivalent.

Lemma 6.6 A uniform certificate for O(log∗ n) solvability
exists if and only if a coprime certificate of O(log∗ n) solv-
ability exists.

Proof We first show that, given a uniform certificate T , we
can construct a coprime certificate. Let d be the depth of
the uniform certificate, we show how to construct a different
certificate of depth d + 1. Since each leaf is also a root of
some tree in T , then each leaf has a continuation below. We
can construct a certificate of depth d +1 by starting from the
trees in T and extending them to depth d + 1 in a consistent
manner by using the continuation below that is guaranteed
to exist.

We now prove that if there exists a coprime certificate then
there exists a uniform certificate. By Theorem 6.3 a coprime
certificate implies a deterministic O(log∗ n) algorithm, and
by Corollary 6.5 this implies the existence of a uniform cer-
tificate. ��

We are now ready to extend Corollary 6.5 to randomized
algorithms.

Lemma 6.7 Let � be an LCL problem for which no certifi-
cate for O(log∗ n) solvability exists. Then, the randomized
and deterministic complexity of � in the LOCAL model is
�(log n).

Proof We start by proving the lemma in the case where ran-
domization is allowed and nodes have no identifiers assigned
to them, and we prove the lemma by showing the contrapos-
itive. To this end, let � be an LCL problem with randomized
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complexity T (n) ∈ o(log n). We will show that there exists
a certificate for O(log∗ n) solvability for �.

Let A denote an optimal randomized algorithm for �;
in particular the worst-case runtime of A on n-node trees is
T (n). Let �(�) be the output label set of � and set k =
|�(�)|. Since T (n) ∈ o(log n), there exists an integer n0 ≥
5k2 such that 1 ≤ T (n0) ≤ 1/10 · logδ(n0). Let G be a
rooted tree with n0 nodes that is “as balanced as possible”;
in particular the �logδ(n0)�-hop neighborhood of the root
r is a perfectly balanced tree. Moreover, for any node v,
denote the set of descendants ofv that are at distanceprecisely
2T (n0)+1 from v by D1(v), and those at distance 2T (n0)+2
from v by D2(v). Since T (n0) ≤ 1/10 · logδ(n0), there exists
a node v ∈ V (G) such that the distance between r and v

is at least T (n0) + 1, and the distance between any node
u ∈ D1(v) ∪ D2(v) and the leaf closest to u is also at least
T (n0) + 1. In particular, for any node u ∈ D1(v) ∪ D2(v)

the views of u and v during an T (n0)-round algorithm are
disjoint, and both v and any node in D1(v) ∪ D2(v) do not
see any leaf or the root during an T (n0)-round algorithm.

Let S ⊆ �(�) be the set of all labels thatA outputs with
probability at least 1/(k

√
n0) if A does not see a leaf or the

root (note that the viewof all nodes that do not see a leaf or the
root is the same, since nodes have no ids). By the definition
of D1(v) and D2(v), we know that D1(v)∪D2(v) ≤ √

n0/2.
Note thatA outputs a specific label not in S with probability
strictly less than 1/(k

√
n0), and hence any label not in S with

probability less than 1/
√
n0 by a union bound, and hence the

probability that at least one node in D1(v) ∪ D2(v) outputs
a label not in S is at most |D1(v) ∪ D2(v)|/√n0, by a union
bound. Thus, the probability that all nodes in D1(v)∪ D2(v)

output a label from S is at least

1 − |D1(v) ∪ D2(v)|√
n0

≥ 1

2
.

Let us assume for a contradiction that there is no cer-
tificate for O(log∗ n) solvability for �. By Lemma 6.6 this
implies that there is no coprime certificate as well. In partic-
ular, then there is no such certificate with labels from S and
depth pair 2T (n0)+1 and 2T (n0)+2. This implies that there
exists a D(v) ∈ {D1(v), D2(v)} such that for any labeling
 : D(v) → S of the nodes in D(v) with labels from S, there
exists some label s ∈ S such that  is incompatible with s,
i.e., such that there is no correct solution for � where v is
labeled with s and D(v) is labeled according to .

Since we have |S| ≤ k, and the view of v during A and
the union of the views of the nodes in D(v) during A are
disjoint, it follows that the probability that the labeling  of
D(v) that A outputs is incompatible with the label s that A
outputs at v is at least

1

2
· 1

k
√
n0

>
1

n0

since n0 ≥ 5k2. Hence, A fails with probability larger than
1/n0, yielding a contradiction, and proving the lemma for
the case in which identifiers are not provided to the nodes,
but randomization is allowed.

Wenowprove that the same result holds even ifwe provide
identifiers to the nodes. Assume that there exists a o(log n)

randomized algorithm for the case in which identifiers are
provided. We can run it in the case in which identifiers are
not provided in the same asymptotic running time by first
generating unique random identifiers in {1, . . . , n3}, that can
be done with a randomized algorithm with high probabil-
ity of success. But this would imply a o(log n) randomized
algorithm for the case in which identifiers are not provided,
contradicting the lemma. Finally, since the existence of a
deterministic algorithm implies the existence of a random-
ized algorithm, then the lemma follows. ��

6.5 Decidability

Wenowprove thatwe can decide if a certificate for O(log∗ n)

solvability exists. Algorithm 4 describes a procedure that
returns a certificate builder if and only if a certificate exists.
A certificate builder is an object that can be used to easily
construct a certificate, and in Lemma 6.9 we will show that,
given a certificate builder, we can indeed construct a certifi-
cate. This procedure uses another subroutine, Algorithm 3,
to try to find a certificate builder that uses a specific subset
of labels, for all possible subsets of labels. On a high level,
Algorithm 3 works as follows. We start with singleton sets,
one for each label. Then, we repeatedly try to build new sets.
Each new set is obtained as follows.We consider all tuples of
size δ of existing sets, and we see which configurations exist
where the label of each leaf i is contained in the i th sets of
the tuple. The set of roots of such configurations defines a
new set. We repeat this process until we obtain a fixed point.
The algorithm that we describe is also able to find a certifi-
cate builder that contains a leaf with some specific label, if
required and if it exists; we will need this in the next section.

We now prove that Algorithm 4 outputs a certificate
builder if and only if a certificate of O(log∗ n) solvability
exists.

Theorem 6.8 Given an LCL problem �, Algorithm 4 outputs
a certificate builder if and only�has an O(log∗ n) certificate
satisfying the leaf requirement.

Proof We will later show, in Lemma 6.9, that if Algorithm
4 outputs a certificate builder then a certificate exists, so we
now prove the reverse implication, that is, if the problem
has a certificate of O(log∗ n) solvability (satisfying the leaf
requirement), then Algorithm 4 will find a certificate builder.
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Algorithm 3: findUnrestrictedCertificate(�, a)

Input: LCL problem �, label a ∈ �(�) or a = ε

Output: ε if no certificate exists or a certificate builder

i ← 0
R0 ← {({σ }, σ = a)|σ ∈ �(�)} � Ri is a set of pairs. The
first element of each pair is a set of possible labels of certificate
roots. The second element is a Boolean that indicates whether
such set of root labels can have label a as one of its leaves. For
R0, the Boolean is true if and only if σ is equal to a.
CB ← ∅ � Certificate builder which will describe how we
constructed individual elements in sets Ri .
repeat

i ← i + 1
Ri ← Ri−1
for every δ-tuple of sets of root labels and indicators
(r1, a1), (r2, a2), . . . , (rδ, aδ) from Ri−1 do

rn ← {σ |(σ : c1, c2, . . . , cδ) ∈ C(�), c1 ∈ r1, c2 ∈
r2, . . . , cδ ∈ rδ}
an ← a1 or a2 or … or aδ � Indicates whether rn will
have a leaf layer containing label a.
if rn �= ∅ and (rn, an) /∈ Ri then

CB ←
CB ∪ ((rn, an), ((r1, a1), (r2, a2), . . . , (rδ, aδ)))

Ri ← Ri ∪ (rn, an)
end

end
until Ri = Ri−1 � Until we do not enlarge the set Ri .

if (�(�), a �= ε) ∈ Ri and C(�) is non-empty then
return CB

else
return ε

end

Algorithm 4: findCertificate(�)
Input: LCL problem �

Output: ε if no certificate exists or a certificate builder

for all elements �′ of 2�(�) do
�′ ← restriction of � to labels from �′
certificateBuilder ← findUnrestrictedCertificate(�′, ε)
if certificateBuilder �= ε then

return certificateBuilder
end

end
return ε

Let T = (T1,T2, . . . ,Tt ) be a certificate with labels �T
that satisfies the leaf requirement (that is, if a �= ε then at
least one leaf is labeled a). Let |T | = t . Let λ be the labeling
function of the certificate (that is, a function mapping each
node of each tree of the certificate to its assigned label), and
let ti, j,k be the j th node on level i of the kth tree.

First, we define Si, j as the set of all labels of the j th nodes

on level i , that is, Si, j = ⋃|T |
k=1 λ(ti, j,k). S0,0 is by definition

equal to�T , and for all nodes on leveld, Sd,0, Sd,1, . . . , Sd,δd

are singletons, by definition of certificate (recall that each Ti

has depth d).

We will prove by induction on the depth of T that, for all
i and j , there exists a pair (S′

i, j , x) in the set R of Algorithm
3, where S′

i, j ⊇ Si, j , and x is true if and only if ti, j,k is an
ancestor of leaves labeled a. This would imply that (�T , b)
is also in R, where b is true if and only if a �= ε, and that
Algorithm3outputs certificate builderwhich iswhatwewant
to prove.

In the base case, sets Sd,i are just singletons {σ } ⊆ �T
and we add (Sd,i , σ = a) in the initialization of the set R.

For the induction hypothesis, let us assume that all
(S′

i+1, j , x) for level i + 1 are in R, where S′
i+1, j ⊇

Si+1, j , and x is true if and only if ti+1, j,k are ances-
tors of a leaf labeled a. We prove the statement for i .
In the algorithm we loop over all δ−tuples of elements
from R to enlarge R, and hence also over the tuple
((S′

i+1,m, a1), (S′
i+1,m+1, a2), . . . , (S

′
i+1,m+δ−1, aδ)), where

m = jδ, that is, a tuple containing supersets of the sets
assigned to nodes that are children of nodes in position (i, j).
Since certificate trees are labeled correctly, this implies that,
starting from this tuple, we compute Si, j or a superset of it.
Also, the Boolean that we put in the pair that we add to R is
also correct, since we compute it as the or of the ones of the
children. ��

Lemma 6.9 Let CB be a non-empty certificate builder
obtained from Algorithm 3 for LCL problem � and a label
a. Then there exists a certificate of O(log∗ n) solvability T
with at least one leaf labeled with a (for a �= ε) and without
such restriction for a = ε.

Proof Before dealing with the general case, if�(�) consists
of only one label σ and we have a non-empty certificate
builder CB, then we also know that C(�) is non-empty (see
last part of Algorithm 3). Hence a certificate will be just a
single tree of depth one labeled with σ . Hence for the rest of
the proof, we assume that �(�) has size at least two.

Toconvert a certificate builder to a certificate forO(log∗ n)

solvability, we proceed in four phases. The first phase con-
sists of creating a verbose temporary tree Tvt which will be
labeled with pairs with first element being sets of labels and
second element being an indicator for where to find label a
(that is, each node of Tvt is labeled with an element of Ri ).
Tree Tvt is created recursively as follows:

(1) root of Tvt is labeled with (�(�), a �= ε)

(2) each node labeled with (r , a), where r contains at least
two labels, will have δ children labeled with (ri , ai )
according to the (unique) pair ((r , a), ((r1, a1), . . . ,
(rδ, aδ)) in CB which contains pair (r , a) as its first
element.

(3) each node labeled with (r , a), where r is a singleton
set, is a leaf.
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The recursive definition is legal as the labels for children
will always be placed in the certificate builder earlier, so we
cannot have any loop (see Algorithm 3). In the case when
a �= ε, by following the indicators (second pair of label)
from root of Tvt which will be labeled with (�(�), true),
we must be able to reach a leaf that is labeled ({a}, true).
This implies that we have a singleton a as one of the leaves.

As we don’t need the second element of each label any-
more, let us simplify the further analysis by creating a
simplified temporary treeTst as a simplification ofTvt where
each node is labeled only by the first element from the pair.
Examples of such trees are depicted in Fig. 7b and Fig. 8b.

The second phase considers the case when label a is not
ε. In this phase we want to “push down” a leaf node labeled
with the singleton label a so it is a deepest node of the tree
Tst. We will do it as follows. Let na be a node in Tst that is
labeled with the singleton label a. Let da be its depth. Since
the root ofTst is labeledwith�(�), we know that there exists
a hairy path of length da labeled with �(�) that has both of
its endpoints labeled a. For convenience, let Paa denote such
a hairy path and replace all labels by their singleton labels
(label σ will become {σ }). We will use Paa and replace node
na with the path Paa.Wehave nowessentially “pushed down”
a leaf node labeled with the singleton label a by da steps. We
will repeat such “pushing down” until we have that na is the
deepest node of the tree Tst. To summarize, now we have a
tree Tst that has its deepest leaf labeled with the singleton a.

In the third phase, we want to make all leaves to be on the
same level. We do it as follows. Again, observe that since
�(�) is the root of Tst, we have a continuation below for
every label from �(�). We can use such continuation to
“push down” every leaf node of Tst that is not the deepest
by one step in the same manner as in the previous phase. We
replace a leaf node nl labeled with a singleton σ with a δ-ary
tree of depth one, labeled with singletons corresponding to a
continuation below for σ . To summarize, now we have a tree
Tst that has all leaves at the same level. Examples of such
trees are again depicted in Fig. 7b and Fig. 8b.

Finally, in the last phase, we use Tst to build |�(�)| indi-
vidual labeled trees Tst that would form a certificate. At the
beginning, let each Ti be labeled exactly as Tst. Then, for
each Tst, we fix its root label to a distinct label σi . Then,
we recursively fix the labels of the children such that the
resulting configuration is in C(�). Such a configuration will
always exist as it is how we have constructed the certificate
builder (see Algorithm 3). Examples of the obtained trees are
depicted in Fig. 7c and Fig. 8c. ��

We now prove an upper bound on the running time of
Algorithm 4.

Theorem 6.10 The running time of Algorithm 4 is at most
exponential in the size of the LCL problem.

Proof Observe that every iteration of the for loop in Algo-
rithm 3 either adds an element to Ri or finishes the algorithm.
Hence, we can upper bound the number of iterations by the
maximum size of each set Ri , that is 2|�|+1. Also, each iter-
ation requires at most exponential time in � and δ. Hence,
the total running time of Algorithm 3 is exponential in� and
δ. Since Algorithm 4 just calls Algorithm 3 for every choice
over �, then we get one more exponential slowdown, hence
the claim follows. ��

Hence we conclude the following theorem.

Theorem 6.11 Whether an LCL problem � has round com-
plexity O(log∗ n) or �(log n) can be decided in time at most
exponential in the size of the LCL problem.

7 Sub-log-star region

In this section we prove that there is no LCL problem � with
distributed time complexity between ω(1) and o(log∗ n).
Also, we prove that, given a problem �, we can decide if
its complexity is O(1) or �(log∗ n). Moreover, we prove
that randomness cannot help: if a problem has randomized
complexity O(1), then it has the same deterministic com-
plexity.

7.1 High-level idea

We prove that deciding if a problem � can be solved in con-
stant time is surprisingly simple: a problem is O(1) rounds
solvable if and only if it can be solved in O(log∗ n) rounds
and � contains an allowed configuration of a specific form
(this configuration will be called special). This configura-
tion must allow a node to use the same label  that one of its
children uses, the labels used by this configuration should be
contained in the ones used by some certificate for O(log∗ n)

solvability, and  should be used by at least one leaf of the
certificate. If we consider the definition of the MIS problem
given in Sect. 1.3, we can see that it allows the configuration
(b : b1), and informally this configuration is what makes
the problem constant-time solvable. Note that, however, the
algorithm that we can obtain by using this certificate, while
still being constant time, may have a worse complexity com-
pared to the one described in Sect. 1.3. On the other hand,
we can see that in the definition of the 3-coloring problem
given in Sect. 1.2 there is no configuration of this form, and
this is what makes the problem �(log∗ n).

Informally, the reason is the following. The n appearing
in O(log∗ n) complexities does not usually refer to the size
of the graph, but to the range of the identifiers assigned to the
nodes. In fact, in the proof of Theorem 6.3, O(log∗ n) is spent
only to compute some ruling set, while the rest only requires
constant time, and in order to compute such a ruling set, a
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distance-k coloring, for some large enough k, is sufficient.
Unfortunately, it is not possible to compute a distance-k col-
oring in constant time, but as we will show, some defective
coloring (that is, a coloring that allows some neighbors of a
node to use the same color of the node) will be sufficient for
our purposes. We show that in constant time we can produce
some defective distance-k coloring, for some large enough
constant k, such that:

• we can label defective nodes with the special configura-
tion,

• unlabeled nodes are properly colored, and
• labeled nodes that are in different connected components
are far enough from each other.

We can then complete the partial labeling in constant time
with the help of the certificate, similarly to how we use
the certificate of O(log∗ n) solvability to solve problems in
O(log∗ n) rounds, but this time we can speed the computa-
tion of the ruling set up, and make it run in constant time
by exploiting the defective distance-k coloring. In the other
direction, we show that if the special configuration does not
exist, or if it does not satisfy the required properties, then any
algorithm solving the problem can also be used to solve the
coloring problem with a constant size palette, that is known
to require �(log∗ n) rounds.

7.2 Certificate

We start by defining what is a certificate for O(1) solvability,
that is nothing else but a certificate for O(log∗ n) solvability
and a configuration of some specific form. An example of
such a certificate for the MIS problem is depicted in Fig. 8.

Definition 7.1 Let � be an LCL problem. A certificate for
O(1) solvability for problem � is a pair S consisting of a
certificate for O(log∗ n) solvability T and a configuration
(a : b1, . . . , a, . . . , bδ) ∈ C(�) where a, bi ∈ �T and at
least one leaf of the trees in T is labeled a.

7.3 Upper bound

We now prove that we can use a certificate for O(1) solv-
ability to construct an algorithm that solves the problem �

in constant time. Informally, we first spend a constant num-
ber of rounds to try to construct some distance-k coloring.
This coloring cannot always be correct, since the coloring
problem requires �(log∗ n) rounds. We will use the special
configuration to label nodes in which the coloring procedure
failed. The coloring will also satisfy some desirable prop-
erty, such as having improperly colored regions that are far
enough from each other. This will give us a proper distance-k
coloring in the unlabeled regions, and we will use this col-

oring to complete the labeling in constant time. The proof of
this theorem will use some useful lemmas that we will prove
later.

Theorem 7.2 Any LCL problem � that has a certificate of
O(1) solvability is constant-time solvable with a determin-
istic CONGEST algorithm.

Proof We prove the statement by constructing a constant-
time algorithm with the help of a special configuration (a :
b1, . . . , a, . . . , bδ) and O(log∗ n) certificate T of depth d
where at least one leaf of the trees in T is labeled a. Let
k = 20d + 1.

For each node v, let p(v) ∈ {1, . . . , δ} be the index
of v in the sorted sequence containing the identifier of
v and all its siblings (that is, p(·) emulates port num-
bers). We start by assigning a (possibly non-proper) coloring
c(v) to each node v, as follows. Consider the sequence
(vi , i ≥ 0) of nodes obtained by starting from v0 = v

and following edges going up. The color c(v) is defined as
(p(v0), p(v1), . . . , p(v10k−1)). If p(vi ) is undefined because
vi does not exist, that is, while going up we found the root,
then we complete the sequence with 1s (this is equivalent to
imagine the rooted tree to be embedded into a larger rooted
tree, where all nodes of the original are far enough from the
root of the larger tree). This can be done in constant time in
CONGEST, by first computing and sending the p(·) value of
all children, and then repeatedly propagating down the p(·)
value received from the parent. We say that a prefix of length
x of a color c = c(v) has period r if and only if c[i] = c[i+r ]
for all i < x − r .

We define a vertical path to be a subpath of a root-to-leaf
path. We mark all nodes v satisfying that the prefix of length
9k of c(v) has period at most k. By Corollary 7.5, the con-
nected components induced by marked nodes form vertical
paths. We use the configuration (a : b1, . . . , a, . . . , bδ) to
label all marked nodes with a, and all their children with the
other labels of the configuration in some arbitrary consistent
manner.

ByCorollary 7.4, all connected components of themarked
nodes are at distance at least k, and by Lemma 7.6, all
unmarked regions are distance-k colored. We now show how
to complete the partial labeling assigned to the nodes.Wewill
start by splitting the unlabeled parts of the tree into constant
size subtrees, by exploiting the distance coloring to perform
this step in constant time. Then, we will operate in a constant
number of rounds on these subtrees in parallel.

Let us now focus on the first phase, namely splitting the
trees. We will compute a splitting of the unlabeled regions
satisfying the following:

• Subtrees have overlapping boundaries, meaning that
each leaf of a subtree is also the root of another subtree.

• The distance of each leaf from the root is in {d, . . . , 10d}.
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(a)

(b)

(c)

Fig. 8 Finding a certificate for O(1) solvability (Definition 7.1) for the maximal independent set problem (Sect. 1.3)
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• All inner nodes of each subtree are unlabeled.

Consider the following problem, which we call ruling set
extension problem (see Fig. 9a): We are given a directed path
and some set S satisfying that the nodes in S are at distance
at least 2d from each other. The goal is to compute a set S′
such that each node not in S ∪ S′ has a node in S ∪ S′ at
distance at most 4d, and for each node in S′ it holds that the
closest successor in S ∪ S′ is at distance at least 2d. That is,
S ∪ S′ is almost a (2d, 4d)-ruling set: nodes in the given set
S can violate the ruling set requirements, since they could
have a successor in S′ at distance less than 2d.

We show that the ruling set extension problem can be
solved in O(1) rounds on directed paths by using a one-
sided algorithm, provided that we are given a distance-k
coloring with O(1) colors for a sufficiently large k. A one-
sided algorithm is an algorithm in which nodes only send
messages to their predecessors (or equivalently, nodes only
receive information from their successors). One-sided algo-
rithms are convenient, as they are directly applicable in rooted
trees [17]: if we have a one-sided algorithm that finds a rul-
ing set extension in directed paths, we can apply the same
algorithm in rooted trees and it will produce an output in
which all root-to-leaf paths satisfy the constraints of the rul-
ing set extension problem. Our one-sided algorithm works
as follows (see Fig. 9b):

(i) Compute S′ by using a (2d, 2d)-ruling set algorithm
(ignoring S entirely).

(ii) Nodes in S′ that have a successor in S within distance
2d are removed from S′.

We obtain that nodes in S have no predecessors in S ∪ S′
within distance 2d, nodes in S′ are at distance at least 2d
from each other, and nodes not in S ∪ S′ have at least a
node in S ∪ S′ within distance 4d, and hence a solution for
the ruling set extension problem. Here step (ii) is easy to
implement with a one-sided algorithm. There is also a simple
two-sided algorithm A for solving step (i): process the nodes
by color classes; whenever we consider a particular node,
check if there is already another node within distance 2d that
we have selected, and if not, select the node. Finally, we use
the standard trick of “shifting the output” [17] to turn A into
a one-sided algorithm A′ that solves the same problem, as
follows: Let T = O(1) be the running time of algorithm
A, and let us label the nodes by v1, v2, . . . along the path. In
algorithm A′ node vi will output whatever node vi+T outputs
in algorithm A. The output of node vi+T in algorithm A only
depends on the input colors of nodes vi , vi+1, . . . , vi+2T , and
hence one-sided information is sufficient for A′ to simulate
A. We have simply shifted the ruling set by T steps.

Let us now get back to the task of splitting trees. We pro-
ceed as follows. We add all nodes whose label is fixed to a

set S. Then, we run the one-sided algorithm for the ruling
set extension problem on the subgraph induced by unlabeled
nodes and their neighbors. Let S′ be the output of the algo-
rithm. As discussed, in any root-to-leaf path we obtain a
solution for the problem described above, and observe that
this implies that, in any root-to-leaf path, nodes in S ∪ S′
have at least one successor and one predecessor in S ∪ S′ at
distance at most 8d + 1 < 10d. What we obtained almost
satisfies the requirements of the splitting, except that some
nodes of S′ may be too near to the nodes that were already in
the set, since the minimum distance is guaranteed only while
following successors (that is, by going up), and we now fix
this issue.

Let P ⊆ S′ be the set of nodes that have an already
labeled (that is, nodes in S) node as one of its descendants
at distance less than d. For each such node np from P we
do the following. Let dc denote the distance from node np
to its closest labeled node nc below. We remove np from
S′ and add all nodes that are descendants of np at distance
exactly dc to the set S′. Note that, as the connected compo-
nents of labeled nodes are strictly more than 20d steps apart
(by definition of k), all nodes nu just added to S′ (except
node nc) will not have any node of S below it that is closer
than 20d − distance(nu, nc) ≥ 18d steps. The nodes added
to S′ will be closer to the nodes of S′ below, but still at least
2d−d = d far away, as distance between two nodes of S′ on
any root-to-leaf path was originally always at least 2d. Simi-
larly, they will be further away from a node in S′ that is above
them, but again at most distance 8d+1+d = 9d+1 ≤ 10d
far away. Now, observe that the nodes in S ∪ S′ partition the
input tree in subtrees with the required properties.

We now describe the second phase. For that, we use the
certificate T , and for each subtree in parallel, we do the fol-
lowing. First,we checkwhether it has oneof its leaves already
fixed. If not, we directly fix labels at depth d exactly as a leaf
layer of any tree from the certificate (they are by definition
the same). Otherwise, more care is needed. Observe that each
subtree can have at most one fixed leaf (labeled with a). In
fact, in any tree whose depth is upper bounded by 10d, any
two nodes are at most distance 20d apart (the distance is
upper bounded by the length of a walk that starts from a
node, goes to the root, and then goes to other node); but as
fixed nodes are strictly more than 20d apart (by the defini-
tion of k), having one fixed leaf means that all other leaves
are unlabeled. Let such fixed leaf be denoted by nf and also
denote by nd the node that is on a the path connecting nf to
the root at distance d from the root. We fix labels at depth
d exactly as a leaf layer of any tree from the certificate such
that node nd will be labeled with label a. This is possible
as we can freely choose the ordering of the children. Then,
we use the configuration (a : b1, . . . , a, . . . , bδ) to label the
nodes of the hairy path connecting nd to nf .
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(a)

(b)

Fig. 9 Ruling set extension problem

Now, we have fixed layer d of all subtrees, and also some
of the nodes below layer d. We proceed from layer d and
towards lower layers and label all of its children arbitrarily
as every label has a continuation below. This procedure will
stop after constant time as our trees have constant depth.

The only remaining part is to fix labels for nodes that are
between the roots and the nodes at layer d. For that, we use
the certificate trees and for every subtree with root fixed to
label σi , we use tree Ti to label the upper layers. ��

We now prove that if marked nodes are at distance at most
k, then they must lie in the same vertical path. Intuitively,
if two nodes x1 and x2 are siblings, then p(x1) �= p(x2),
implying that they cannot both have a periodic color, and
that the same must hold for the descendants of x1 and x2, up
to some distance. Hence, we can find nodes with a periodic
color only by following vertical paths.

Lemma 7.3 If two marked nodes are at distance at most k,
then they are in the same connected component of marked
nodes, and each connected component forms a vertical path.

Proof Wewill prove the statement by contradiction. Suppose
that v1 and v2 are twomarked nodes from different connected
components that are at distance d ≤ k and the prefix of
length 9k of their colors has period at most k. Let k1 and
k2 be, respectively, the period of the colors of v1 and v2.
Since they are at distance d ≤ k from each other, then their
lowest common ancestor v3 is at distance at most k from
both. Let d1 and d2 be, respectively, the distance of v1 and

v2 from v3. Since a prefix of length at least 8k of c(v3) is
equal to suffixes of length at least 8k of c(v1) and c(v2),
then the prefix of length 8k of c(v3) has also period k3 that
is at most k, and that satisfies k3 = k1 = k2 = k′. We
now prove that either v1 = v3 or v2 = v3. Assume it is not
the case, then there must be two children x1 and x2 of v3
that lie in the two paths connecting v3 to v1 and v2. Since
v3 is the lowest common ancestor, x1 �= x2, and since x1
and x2 are siblings, then p(x1) �= p(x2). Since p(x1) =
c(v1)[d1 −1], and p(x2) = c(v2)[d2 −1], then by the period
assumption c(v1)[d1 − 1 + k′] �= c(v2)[d2 − 1 + k′], which
is a contradiction since by going up from v1 for d1 − 1 + k′
steps we reach the same node that we reach by going up from
v2 for d2 − 1 + k′ steps. Hence, v1 and v2 lie in the same
vertical path. Also, note that all nodes in the vertical path
between v1 and v2 will be marked as well, since the prefix
of length 9k of their color is contained in the union of the
prefixes of v1 and v2, which have period at most k in their
9k-length prefixes. ��

This lemma implies the following corollaries.

Corollary 7.4 (Marked regions are far apart) For all marked
nodes v1 and v2 from different regions, their distance is
strictly larger than k.

Corollary 7.5 (Marked region is a vertical path) Every
marked region forms a vertical path.
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We now prove that, if we consider the subgraph induced
by unmarked nodes, the computed coloring c forms a proper
distance-k coloring.

Lemma 7.6 (Unmarked regions form a distance-k coloring)
Let C be a connected component of unmarked nodes. Then
labels of nodes in C form a distance-k coloring.

Proof By contradiction. Suppose that v1 and v2 are two dif-
ferent unmarked nodes having the same color c and distance
d < k. We will show that there is a marked node on the path
between v1 and v2, contradicting that v1 and v2 are from the
same connected component. The distance to the lowest com-
mon ancestor (denoted by v3) is at most d for both nodes
(the distance will be denoted by d1 and d2 for nodes v1 and
v2 respectively). W.l.o.g. we assume that d1 < d2 (because
of symmetry and the fact that d1 = d2 would contradict that
nodes v1 and v2 have the same color and are different). As
the path upwards from node v3 is the same for both nodes, we
obtain that c[d1 + i] = c[d2 + i] for all 0 ≤ i < 10k − d2. If
we look at color c′ of the lowest common ancestor, we obtain
from the previous equalities that c′[i] = c′[d2 − d1 + i] for
all 0 ≤ i < 10k − d2, hence the prefix of length 9k of c′ has
period at most d2 −d1 ≤ k. Hence node v3 would be marked
and on a path from v1 to v2 contradicting that they are from
the same connected component. ��

7.4 Lower bound

We now prove that, if a certificate for O(1) solvability does
not exist, then the problem requires �(log∗ n), even for ran-
domized algorithms. On a high level, we can prove that if
there is no O(log∗ n) algorithm that can use the special con-
figuration, then it means that we can convert any solution for
� into a proper coloring, implying that� requires�(log∗ n).

Theorem 7.7 Let � be an LCL problem for which no cer-
tificate for O(1) solvability exists. Then, the randomized
and deterministic complexity of � in the LOCAL model is
�(log∗ n).

Proof We consider two possible cases: either there is a con-
figuration of the form (a : b1, . . . , a, . . . , bδ) or not. In the
latter case, each solution for � is such that all nodes have a
label that is different from the labels of the neighbors, mean-
ing that we can interpret such a labeling as a coloring from a
constant size palette. Since an algorithm for O(1)-coloring
δ-ary rooted trees could be simulated in directed paths, by
imagining δ − 1 additional nodes connected to each node
of the path, and since O(1)-coloring in paths is known to
require O(log∗ n) rounds, even for randomized algorithms
[21,23], then the claim follows.

Hence, assume that there is a configuration of the form (a :
b1, . . . , a, . . . , bδ), but there does not exist a certificate for

O(log∗ n) solvability that contains all the labels of the special
configuration, and that a is the label of at least one leaf. We
prove that for any algorithm A that solves �, there exists
some n0, such that for any n > n0, algorithm A running on
any instanceof sizenmust label all nodes that are atω(log∗ n)

distance from the root and from any leaf such that they have
a different label from all their neighbors. In other words,
algorithm A computes a proper coloring in the intermediate
layers.

Assume it is not the case, then there must exist an algo-
rithm A such that, for any n0, there exists some n > n0 such
that on some instances of size n it labels at least one node that
is at ω(log∗ n) distance from the root and from any leaf by
some configuration of the form (a : b1, . . . , a, . . . , bδ). This
implies that also each label in {b1, . . . , a, . . . , bδ} is used by
at least one node that is at ω(log∗ n) distance from the root
and from any leaf, and hence, the requirements of Lemma 6.4
apply. By applying Lemma 6.4 with some n0 large enough
guaranteed to exist by the running time of the algorithm, we
get that there exists a certificate for O(log∗ n) solvability that
contains all labels in {b1, . . . , a, . . . , bδ} and that uses a in at
least one leaf, contradicting the fact that there is no certificate
for O(1) solvability.

Hence, in any solution for � constructed by an algorithm
running in O(log∗ n) rounds all nodes that are at ω(log∗ n)

distance from the root and from any leaf are labeled such that
they have a different label from all their neighbors, and hence
that all these nodes are properly colored, in any instance that
is large enough. Hence we can use any O(log∗ n) algorithm
for � to solve O(1)-coloring in paths, by creating a virtual
graph in which we connect large enough trees to each node
of the path and extend the path on the endpoints, such that no
node sees any root or leaf, and then running the algorithm.
This implies that� requires�(log∗ n) rounds, and hence the
claim follows. ��

7.5 Decidability

The only additional requirement for a problem that is
O(log∗ n) solvable to be constant-time solvable is the exis-
tence of configuration (a : b1, . . . , a, . . . , bδ) where a, bi
are from �T , that are the labels used by the certificate T ,
and at least one leaf in T is labeled a.

Algorithm 3 allows us to search for a certificate builder
containing a specific leaf, and by Lemma 6.9 a certificate
builder of this form implies a certificate of the same form.
Hence, we can just augment Algorithm 4 to additionally
search only for a certificate builder that would satisfy having
a configuration of the form (a : b1, . . . , a, . . . , bδ) consist-
ing of certificate labels, such that a appears in at least one
leaf. This is done in Algorithm 5.
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Algorithm 5: constantCertificate(�)

Input: LCL problem �

Output: ε if no certificate exists, or a certificate builder

for all subsets �′ of �(�) do
�′ ← restriction of � to labels from �′
for all configurations of the form (a : b1, . . . , a, . . . , bδ) in
�′ do

certificateBuilder ←
findUnrestrictedCertificate(�′, a)

if certificateBuilder �= ε then
return certificateBuilder

end
end

end
return ε

Theorem 7.8 The running time of Algorithm 5 is exponential
in the size of the LCL problem.

Proof Follows by using the same arguments as for Algorithm
4 (Theorem 6.10). ��
Theorem 7.9 Algorithm 5 outputs a certificate builder if and
only if an LCL problem has a certificate for O(1) solvability.

Proof Since Algorithm 5 tries to find a certificate builder for
all subsets of labels for which a configuration of the form
(a : b1, . . . , a, . . . , bδ) exists, then the statement follows by
using the same arguments as in Theorem 6.8. ��

Hence we conclude the following theorem.

Theorem 7.10 Whether an LCL problem � has round com-
plexity O(1) or �(log∗ n) can be decided in time at most
exponential in the size of the LCL problem.

8 Polynomial region

In this section, we describe an infinite sequence of LCL prob-
lems �1,�2, . . . with δ = 2 such that the complexity of
�k = (2, �k,Ck) is �(n1/k) in both of the LOCAL and
CONGEST models, as the lower bound applies to LOCAL and
the upper bound applies to CONGEST.

The alphabet �k for �k is

�k = {a1, b1, x1, a2, b2, x2, . . . , ak, bk},

and the set of permitted configurations Ck for �k is defined
as follows.

• For 1 ≤ i ≤ k, add (ai : σ, σ ′) to Ck for all σ, σ ′ ∈
{a1, b1, x1, a2, b2, x2, . . . , ai−1, bi−1, xi−1} ∪ {bi }.

• For 1 ≤ i ≤ k, add (bi : σ, σ ′) to Ck for all σ, σ ′ ∈
{a1, b1, x1, a2, b2, x2, . . . , ai−1, bi−1, xi−1} ∪ {ai }.

Fig. 10 The automata associated with the path-forms of �1 and �2

• For 1 ≤ i ≤ k − 1, add (xi : σ, σ ′) to Ck for all σ ∈ �k

and σ ′ ∈ {a1, b1, x1, a2, b2, x2, . . . , ai , bi }.

When k = 1, �1 is exactly the proper 2-coloring prob-
lem with the two colors �1 = {a1, b1}. When k = 2, �2 is
a combination of two proper 2-coloring problems with the
color sets {a1, b1} and {a2, b2} via the special label x1.When-
ever a node v is labeled x1, it must have at least one child u
such that the entire subtree rooted at u is properly 2-colored
by {a1, b1}. For general k,�k can be seen as a combination of
k proper 2-coloring problems. See Fig. 10 for an illustration.

Lemma 8.1 For each positive integer k, the round complexity
of �k is O(n1/k) in the CONGEST model.

Proof Let V be the node set for a given n-node rooted tree
T . We show that in O(n1/k) rounds, we can partition the set
of nodes V into 2k − 1 parts

V = B1 ∪ X1 ∪ B2 ∪ X2 ∪ · · · ∪ Xk−1 ∪ Bk

satisfying the following properties.

(P1) For each 1 ≤ i ≤ k, each connected component of Bi
has at most O(n1/k) nodes.

(P2) For each 1 ≤ i ≤ k−1, at least one child of each v ∈ Xi

is in B1 ∪ X1 ∪ B2 ∪ X2 ∪ · · · ∪ Bi−1 ∪ Xi−1 ∪ Bi .
(P3) For each 1 ≤ i ≤ k, the children of each v ∈ Bi are in

B1 ∪ X1 ∪ B2 ∪ X2 ∪ · · · ∪ Xi−1 ∪ Bi .

Once we have this partition, �k can be solved in O(n1/k)
rounds by assigning xi to each v ∈ Xi and labeling each
connected component of Bi by an arbitrary proper 2-coloring
with {ai , bi }.

The algorithm for computing the partition V = B1∪ X1∪
B2 ∪ X2 ∪ · · · ∪ Xk−1 ∪ Bk has k iterations. We assume that
at the beginning of iteration i , we have already computed the
parts B1, X1, B2, X2, . . . , Bi−1, Xi−1 in such a way that the
set of remaining nodesUi = V \ (B1 ∪ X1 ∪ B2 ∪ X2 ∪ · · ·∪
Bi−1 ∪ Xi−1) satisfies the following induction hypothesis.

(IH) For each 1 ≤ i ≤ k, we have |Ui | ≤ n1−(i−1)/k .
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Note that (IH) holds initially for i = 1, as U1 = V and
|V | = n.

Suppose we are at the beginning of iteration i . Consider
the subtree Ti induced by the remaining nodes Ui . For each
v ∈ Ui , we write Nv to denote the number of nodes in the
subtree of Ti rooted at v. We compute the two parts Bi and
Xi as follows. It is clear that the computation takes O(n1/k)
rounds.

• If i = k, then Bi = Ui .
• If 1 ≤ i < k, then Bi is the set of nodes v ∈ Ui with

Nv ≤ n1/k .
• If 1 ≤ i < k, then Xi is the set of nodes v ∈ Ui with

Nv > n1/k that satisfy at least one of the following.

– Nu ≤ n1/k for at least one child u of v.
– v has exactly one child in Ti .

It is straightforward to verify that the properties (P1), (P2),
and (P3) are satisfied for Bi and Xi .

• Consider the first property (P1). If i = k, then clearly
|Bk | = |Uk | ≤ n1/k by (IH). If 1 ≤ i < k, then each
v ∈ Bi can have at most n1/k descendants in Ti , including
v itself, so each connected component of Bi has at most
n1/k nodes.

• The second property (P2) follows from the definition of
Xi . There are two cases for each v ∈ Xi . The first case
is that there is a child u of v with Nu ≤ n1/k , so u ∈ Bi .
The second case is that v has exactly one child in Ti , so
the other child u of v is in V \Ui = B1 ∪ X1 ∪ B2 ∪ X2 ∪
· · · ∪ Bi−1 ∪ Xi−1. In both cases, (P2) is satisfied.

• For the third property (P3), consider any child u of a node
v ∈ Bi . If u ∈ Ui , then the definition of Bi ensures that
u ∈ Bi . Otherwise u ∈ B1∪ X1∪ B2 ∪ X2 ∪· · ·∪ Bi−1∪
Xi−1. In both cases, (P3) is satisfied.

For the rest of the proof, we consider the case 1 ≤ i < k
and we will show that |Ui \ (Bi ∪ Xi )| = |Ui+1| ≤ n1−i/k ,
so the induction hypothesis (IH) holds for Ui+1. Observe
that each v ∈ Ui+1 must have exactly two children in Ui , so
the set W of nodes v ∈ Ui \ Ui+1 whose parent belongs to
Ui+1 has size |W | ≥ |Ui+1|. It is clear that W ⊆ Xi . Since
each v ∈ Xi has Nv > n1/k , we can lower bound the size
of Ui by |Ui | ≥ ∑

v∈W Nv > |W |n1/k ≥ |Ui+1|n1/k , so
|Ui+1| < |Ui |n−1/k ≤ n1−i/k , as |Ui | ≤ n1−(i−1)/k by (IH)
for Ui . ��
Lemma 8.2 For each positive integer k, the round complexity
of �k is �(n1/k) in the LOCAL model.

Proof Observe that, given the LCL problem �k , Algorithm 2
takes exactly k iterations to output ε. For the first iteration,
the labels {a1, b1} are path-inflexible in�k . For iteration 1 <

i ≤ k, {xi−1, ai , bi } are path-inflexible in �k restricted to
the labels�k\{a1, b1, x1, a2, b2, x2, . . . , ai−1, bi−1}. There-
fore, the round complexity of �k is�(n1/k) by Lemma 5.14.

��

Combining Lemma 8.1 and Lemma 8.2, we conclude the
following theorem.

Theorem 8.3 For each positive integer k, the round complex-
ity of �k is �(n1/k) in both LOCAL and CONGEST.

9 Future work

While we completely characterize all complexities for LCLs
in rooted trees in both LOCAL and CONGEST, for both deter-
ministic and randomized algorithms, and we show that we
can decide what is the complexity of a given problem, there
are many questions that are left open.

Thefirst question regards the running timeof the algorithm
that tries to find a certificate for O(log∗ n) solvability. The
current running time is exponential, and an open question is
whether we can find such a certificate in polynomial time, or
if we can prove that e.g. deciding the existence of a certificate
is an NP-hard problem.

The second question regards the complexity class of n�(1).
While we present a practical algorithm that determines if the
complexity is n�(1), our algorithm does not determine the
precise complexity. Whether there is an efficient algorithm
for finding the precise value of k such that the complexity is
�(n1/k) remains open.

Another natural question regards extending our results to
unrooted trees. While decidability is known in the �(log n)

region, it is known to require exponential time [14]. In
our setting, we can decide if a problem is O(log n) or
n�(1) in polynomial time via a characterization based on
the existence of a minimal absorbing subgraph. Coinciden-
tally, Brandt et al. [11, Section 6] also recently proved that
essentially the same characterization characterizes whether
a problem is O(log n) or n�(1) for regular unrooted trees.
With some minor modification, our polynomial-time algo-
rithm that decides if a problem is O(log n) or n�(1) can also
be adapted to the setting of regular unrooted trees. How-
ever, deciding if a problem on regular trees requires O(1),
�(log∗ n), or �(log n) rounds remains a major open ques-
tion.
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