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Abstract

A key concept in the theory of distributed computing is locality : if I am a node in
the middle of a large graph, how far do I need to see in order to pick my own part of
the solution? A modern, effective technique for studying such questions is called round
elimination.

With round elimination, one can turn any local graph problem Π into a new graph
problem Π′ = re(Π) that is strictly more localized: if problem Π can be solved so that
each node needs information only within distance r, then problem Π′ can be solved so
that each node needs information only within distance r − 1. Round elimination is a
mechanical procedure that can be fully automated: one can enter the description of Π
to a computer program and out comes the description of Π′ = re(Π).

One particularly interesting phenomenon is that some problems Π are fixed points
for re or re2, that is, we have got Π = re(Π) or Π = re(re(Π)). Whenever this happens
for a nontrivial problem, we immediately know that Π cannot be solved locally—this is
a quick and easy way to prove lower bounds on the locality of many graph problems.
In this short article I will give a brief introduction to the round elimination technique
and its key applications.
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1 Introduction

Locality of graph problems. Imagine you are a node in the middle of a large graph.
Together with all other nodes, you will need to solve some graph problem, in a distributed
manner: you will need to output your own part of the solution. For example, if we are
interested in the vertex coloring problem, each node has to output its own color, and the
local outputs have to form a proper coloring for the entire graph: adjacent nodes have to
output different colors.

Which color
should I pick?

Which color
should I pick?

Which color
should I pick?

A key concept that the theory of distributed computing studies is locality : how far does
each node need to see in the graph to pick its own part of the solution. If you are only aware
of yourself and know nothing about the structure of the graph, there is not much you can do.
And if you see the entire graph, then you have got enough information to solve any graph
problem. But what happens between these extremes?

Which color
should I pick?

Locality =
how far do I

need to see to
safely choose my

own output?

Which graph problems can be solved based on constant-radius neighborhoods? For
example, what can you do if you see up to distance 3 in the graph, as shown in the
above figure? What about slightly super-constant neighborhoods, e.g. radius O(log∗ n) or
O(log log n)? And which problems are inherently global and require you to see almost the
entire graph in the worst case?
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I can solve
problem Π

I can solve
problem re(Π)

r

r − 1

Figure 1: Round elimination turns a problem Π into a more localized problem re(Π).

How to study locality? The study of locality was initiated by Linial [12, 13] in the late
1980s, but what was lacking for a long time was systematic techniques that can be applied to
a broad range of graph problems. Until recently, the main technique that the researchers
used to study the locality of graph problems was, in essence, thinking hard.

There is a small number of specific graph problems whose locality has been well-understood
already for a long time, see, e.g., Linial [12, 13], Naor [14], and Kuhn et al. [9, 10, 11]. However,
what do you do when you encounter a new graph problem nobody else has studied before?

We do not yet have a complete answer that could be applied to any given graph problem.
However, many graph problems of interest are locally verifiable: if the solution is not feasible,
at least one node will notice it immediately by looking at the solution in its own local
neighborhood. For example, vertex coloring is by definition locally verifiable: if a coloring is
not proper, then there is a node that is adjacent to another node with the same color. And
whenever we have got a locally verifiable problem, there is now a mechanical technique that
we can try to use: round elimination.

Round elimination. Round elimination is based on an old idea that was already used by
Linial [12, 13] in his lower bound for the locality of vertex coloring, but for a long time it
seemed to be just an ad-hoc trick that is applicable to one specific problem. However, in the
past four years it was discovered that the same idea can be generalized and applied to study
any locally verifiable problem [4, 6, 15].

Informally, round elimination is a function “re” that maps a locally verifiable graph
problem Π to another locally verifiable graph problem Π′ = re(Π). Round elimination will
make problems strictly more local in the following sense (see Figure 1):
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If Π has a (sufficiently small) locality r, then re(Π) has locality r − 1.

Here, “locality r” means that Π can be solved (for the worst-case inputs) if and only if all
nodes see up to distance r in the graph.

Round elimination is a mechanical process—there is even a freely available computer
program [15] that is happy to calculate re(Π) for any given problem Π, and we will also soon
see how to use it.

Significance of round elimination. Now even if we can apply round elimination to a
given graph problem Π, it does not mean that we will be able to immediately prove tight
upper and lower bounds for the locality of Π. The whole procedure may seem a bit pointless
at first: if we do not understand the locality of Π, why would it be helpful to construct
another problem re(Π) that we do not understand either?

However, as we will see soon, sometimes we are lucky and a mechanical application of
round elimination immediately gives a tight lower bound. For example, some problems Π are
fixed points or period-2 points in round elimination, that is, we have

Π = re(Π) or Π = re(re(Π)),

and whenever this happens we immediately get a lower bound result—more about this soon!
We are currently seeing more and more examples of results in which round elimination

has played a key role, see, e.g., [1–3, 5, 6]. We have recently systematically explored large
families of graph problems, and round elimination has been an essential tool that has made
it possible to make rapid progress.

In this short article I will give a brief overview of the round elimination technique and
some of its key applications; I will use the sinkless orientation problem as a running example
to illustrate the key ideas.

2 Example: sinkless orientation

Problem definition. Sinkless orientation is the following graph problem; see Figure 2:

Given an undirected graph G = (V,E), orient all edges such that each node with degree
at least 3 has outdegree at least 1.

That is, high-degree nodes cannot be sink nodes. It is easy to see that such an orientation
always exists, and there is a very simple centralized algorithm that finds such an orientation
(w.l.o.g. assume that G is connected); see Figure 2c:

1. If G contains a cycle C, first orient all edges of C in a consistent direction (this way all
nodes in C will have outdegree at least 1 and hence they are happy). Then orient all
other edges towards C, breaking ties arbitrarily (this way all other nodes will also have
outdegree at least 1, as there is at least one incident edge that points towards C).
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(a) (b) (c)

Figure 2: (a) Graph G. (b) A sinkless orientation for graph G. (c) A simple centralized algorithm for
finding a sinkless orientation: find a cycle and orient it consistently (orange), orient all other edges towards
the cycle (blue), break ties arbitrarily (gray).

2. Otherwise G is a tree and there is a node v of degree at most 1; then orient all edges
towards v (this way all nodes except v will have outdegree 1).

Locality of sinkless orientation. The above algorithm is inherently global. Furthermore,
it is unnecessarily global: the above algorithm will also ensure that nodes of degree 2 have
outdegree at least 1, while this is not required in the problem definition. Maybe we could
find a much more local solution to this problem?

This is indeed the case; it turns out that the locality of this problem is only O(log log n)
for randomized algorithms and O(log n) for deterministic algorithms [8]. The general case
and the randomized algorithm are more complicated, but it is easy to see that at least in the
case of trees the locality of the problem is O(log n). We describe the distributed algorithm
from the perspective of an individual node v with deg(v) ≥ 3:

1. Node v finds the nearest node x such that deg(x) ≤ 2 (breaking ties arbitrarily). Note
that such a node has to exist within distance O(log n) in any tree with n nodes.

2. Let e = {v, u} be the unique edge incident to v that points towards x.

3. Node v will announce that e is oriented from v to u. Note that there are never conflicts:
node u will not announce that e is oriented from u to v.

Finally, if there are some unoriented edges, orient them arbitrarily. This will ensure that all
edges are oriented and, if a node has degree at least 3, it successfully orients at least one of
its incident edges away from itself. Furthermore, each node only needs to see up to distance
O(log n).

Models of distributed computing. The above idea can be implemented as a concrete
distributed algorithm in many models of distributed computing, but for our purposes it is
sufficient to note that it works in each of the following models (see Figure 3):

• Port-numbering model: For each node, there is a numbering of its incident edges, and for
each edge, there is a numbering of its endpoints. We can refer to the 1st neighbor, 2nd
neighbor, etc. of each node, and we can refer to the 1st endpoint and the 2nd endpoint of
each edge. The port numbering comes from an adversary, and it is completely arbitrary:
for example, if u is the 1st neighbor of v, it does not mean that v has to be the 1st
neighbor of u.
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Figure 3: (a) Port-numbering model; here the numbering of the endpoints of each edge is represented with
arrows and the numbering of the incident edges of each node is represented with numbers 1–3. (b) Deterministic
LOCAL model; the numerical labels of the nodes are their unique identifiers.

• Deterministic LOCAL model: The nodes are labeled with unique identifiers. If there
are n nodes, the unique identifiers are natural numbers between 1 and poly(n). The
unique identifiers come from an adversary.

• Randomized LOCAL model: Each node has a source of independent random bits, and
the solution is correct w.h.p.

We have been discussing here locality but we can equally well study the round complexity of
message-passing algorithms: if we imagine that each node is a computer and each edge is
a communication link, in r synchronous communication rounds each node can gather full
information about its radius-r neighborhood and nothing more. Hence we can use the terms
“locality” and “round complexity” (or distributed time complexity) interchangeably.

Lower bounds on the locality? Good, so far we know that the locality of the sinkless
orientation problem is at most O(log n). But is this the best that we can do? Now we are
getting closer to our topic.

We will use round elimination to show that, even if we are looking at trees, the sinkless
orientation problem cannot be solved in the port-numbering model with locality o(log n), or,
equivalently, in o(log n) rounds. This may sound like a weak statement, as it only applies
to the port-numbering model. However, it turns out that proving a lower bound in the
port-numbering model is the key step. As we will discuss in more detail in Section 6, tight
bounds in the other models follow:

• In the randomized LOCAL model the locality is at least Ω(log log n) [6].
• In the deterministic LOCAL model the locality is at least Ω(log n) [7].
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3 How to represent problems?

Bipartite edge-labeling formalism. One thing we have learned over the recent years is
that it is important to have the right formalism in which we can represent graph problems.
The formalism that we will use here is defined so that it makes round elimination as simple
as possible, but there is a downside: it is not a particularly natural formalism for a human
being to think about graph problems. However, the formalism is very expressive, and in
essence all locally verifiable graph problems can be turned into this formalism with some
effort (with local reductions that only influence locality by a small additive or multiplicative
constant). The right formalism looks like this:

• The input graph is an infinite 2-colored tree.

– The first color class is called active, and each active node has degree d.

– The second color class is called passive, and each passive node has degree δ.

• The task is to label each edge with a label from some finite set Σ.

• The graph problem is a pair Π = (A,P):

– A is the constraint for active nodes.

– P is the constraint for passive nodes.

• The solution is encoded in the local outputs of the active nodes. For each active node v,
its local output contains the labels of each edge incident to v. The passive nodes do
not produce any output.

– The labels of the edges incident to an active node satisfy constraint A.

– The labels of the edges incident to a passive node satisfy constraint P.

The constraints A and P are sets of multisets of edge labels ; we will soon see an example
that makes their role clear. Before that, one remark is in order: we study here infinite
trees, but this is merely for convenience so that we do not need to worry about boundaries.
Nevertheless, we can still prove lower bounds that apply to finite inputs: if we show that, for
example, in an infinite tree a node has to see at least up to distance r, then the same will
hold also in the middle of a finite tree in which all leaf nodes are at distance more than r;
after all, the local neighborhoods are indistinguishable.

Representing sinkless orientation in the formalism. To prove a lower bound, it is
sufficient to construct some family of instances that is hard, and as is often the case, it turns
out that the sinkless orientation problem is hard to solve if you are in the middle of a regular
tree. And it is easy to see that 3-regular trees have to be the most difficult case; after all the
problem becomes trivial if all nodes have degree 2, and there is more slack if there are nodes
of a degree higher than 3.

As discussed above, we can also first consider infinite trees and once we have a lower
bound construction for infinite trees, we can zoom into a finite fragment of an infinite tree.
So the specific problem that we will consider is “sinkless orientation in infinite 3-regular
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Figure 4: (a) Sinkless orientation in a 3-regular tree. (b) Equivalent problem encoded in the bipartite
edge-labeling formalism; active nodes (orange) represent edges, passive nodes (blue) represent nodes, and the
edge labels h and t represent “head” and “tail”. In a feasible solution, the multiset of labels around an active
node is always {h, t}, while the multiset of labels around a passive node is {h, h, t}, {h, t, t}, or {t, t, t}. The
edge labels are encoded in the local outputs of the active nodes.

trees”. But how do we map this to the formalism above? In our formalism we are supposed
to have a 2-colored tree (which we do not have here), and we are supposed to be labeling
edges (while here our task is to orient edges).

It turns out that there is a simple trick we can apply: we split all edges in two halves,
and label the half-edges using alphabet Σ = {h, t}, where h denotes “head” and t denotes
“tail”; see Figure 4. And now the constraints are simply the following:

• For each original edge, exactly one of the half-edges has to be labeled with h and
the other half-edge has to be labeled with t (so that each edge has a well-defined
orientation).

• For each original node, at least one of the incident half-edges has to be labeled with t
(so that there is at least one outgoing edge).

Let us formalize this. Let G = (V,E) be the original (infinite) tree. We construct a new
(infinite) tree G′ = (V ′, E ′), where the set of nodes is V ′ = V ∪ E and the set of edges is
E ′ =

{
{v, e} : v ∈ e ∈ E

}
. Now V forms one color class and E forms another color class;

nodes in V have degree 3 and nodes in E have degree 2. We will now (somewhat arbitrarily)
decide to call E the set of active nodes and V the set of passive nodes, that is, active nodes
have degree 2 and passive nodes have degree 3.

As the problem will be the starting point for round elimination, we will call it Π0 = (A0,P0),
and we will use Σ0 = {h, t} to denote the set of labels. To complete the definition, we need
to specify the two constraints A0 and P0. Here A0 is the set of possible multisets of labels
incident to active nodes. As the active nodes correspond to the original edges, we will only
allow one possible multiset that contains exactly one h and exactly one t:

A0 =
{
{h, t}

}
. (1)
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However, for the passive nodes there are more possibilities: we can have one, two, or three
incident t labels, and hence

P0 =
{
{h, h, t}, {h, t, t}, {t, t, t}

}
. (2)

Equivalence of representations. Now we have completed the definition of Π0 = (A0,P0).
The key observation is that problem Π0 faithfully captures the locality of the sinkless
orientation problem in 3-regular trees: if we have an algorithm that finds a sinkless orientation,
we can simulate it as a black box to find a solution for Π0, and vice versa, and the simulation
changes locality only by a constant factor (distance r in graph G corresponds to distance 2r
in graph G′).

Hence, from now on we can forget about the sinkless orientation problem and study the
locality of problem Π0 = (A0,P0) specified in (1)–(2).

Roadmap. We will now apply round elimination to Π0 in two ways: first the hard way in
Section 4, and then the easy way in Section 5 with the help of computers. In both cases we
will see that two applications of round elimination will get us back to the same problem, i.e.,
re(re(Π0)) = Π0; what that implies is then discussed in more detail in Section 6.

4 Round elimination, done by hand

Basic idea. Imagine you have some algorithm A0 that solves Π0 in r rounds in any infinite
tree G. That is, each active node v only needs to see up to distance r in G to determine
what are the labels of its incident edges—which of them to label with h and which of them
to label with t.

We will construct now a new algorithm A1 that solves another problem Π1 in r−1 rounds.
The idea is very simple; algorithm A1 works as follows (see Figure 5):

• Let u be a passive node in Π0, and let v1 be one of its active neighbors.

• Node u gathers all information within radius r − 1 and sees what it now knows about
the output of v1 in algorithm A0.

• Let X1 ⊆ Σ0 be the set of all possible labels that v1 might produce for the edge {u, v1}.

• Node u labels the edge {u, v1} with the set X1.

Note that here we have switched the roles of active and passive nodes : what was previously
passive in Π0 will take an active role in Π1 and vice versa; hence we will refer to e.g. Π0-active
and Π1-active nodes. Also note that the set of labels changes: if our original set of labels was
Σ0, the new set of labels Σ1 will consist of nonempty subsets of Σ0.

Algorithm A1 by construction works based on information within distance r− 1. However,
what is not at all obvious is this: is A1 really solving a nontrivial problem Π1? After all,
could it not happen that A1 just labels all edges with the set Σ0? As we will see through
examples, this is not going to be the case!
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Figure 5: A schematic illustration of the round elimination step Π1 = re(Π0).
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First step. Let us now apply this idea to the sinkless orientation problem, which we
formalized as problem Π0 = (A0,P0) in (1)–(2). Assume that A0 solves Π0 based on radius-
r neighborhoods, for some value r. As we work in the port-numbering model, and the
structure of the tree is regular (alternately nodes of degree 2 and degree 3), the only unknown
information that A0 can use is the specific assignment of port numbers.

Now consider a Π0-passive node u. Recall that passive nodes had degree 3, so there
are three active neighbors, v1, v2, and v3. Let U consist of all information within distance
r − 1 from u, and let Vi consist of all information within distance r from vi; see Figure 5 for
illustrations.

Now Vi is exactly enough information to determine what A0 would output for the edge
{u, vi}. However, U represents only a part of Vi, and hence U is not enough to simulate A0.
The key observation is this: Vi can be decomposed in two parts, U and Di, as shown in
Figure 5. Furthermore, parts D1, D2, and D3 are disjoint—this is going to be crucial as we
will soon see!

When we run algorithm A1 at node u, it first gathers all information in U . Then for each
i and each label x ∈ Σ0, we will make the following thought experiment: is there some Di

such that given Vi = U +Di algorithm A0 would label the edge {u, vi} with x? Let Xi be
the set of all such labels x; algorithm A1 will simply output the set Xi for the edge {u, vi}.
Now what are the properties that the output of A1 will satisfy?

• Let u be a Π0-passive node. Assume that for each i there was some Di such that A0

labels {u, vi} with h. But parts Di are disjoint, and therefore we could construct an
input in which A0 simultaneously labels all edges incident to u with h, which is not
allowed in P0 according to (2). Therefore there has to be at least one index i such that
A0 never labels {u, vi} with h, and therefore A1 will label {u, vi} with the set {t}. The
other edges might be labeled with {h}, {t}, or {h, t}.

• Let v be a Π0-active node. If A1 labels an edge e with set X ⊆ Σ0, then we know that
A0 labels the same edge with some value x ∈ X in this set; after all, the real input that
A0 sees is among the possible worlds that A1 will consider in its thought experiment.
By assumption, the output of A0 will satisfy constraint A0 defined in (1), and therefore
it will label exactly one edge e1 incident to v with h and the other edge e2 with t.
Therefore A1 will label e1 with either {h} or {h, t} and e2 with either {t} or {h, t}.

Nodes that were passive in A0 are now active in A1 and vice versa, so if we look at the new
roles of the nodes, we can summarize that the output A1 satisfies the following properties:

• Π1-active nodes (degree 3): at least one incident edge is labeled with {t}.
• Π1-passive nodes (degree 2): one incident edge is labeled with {h} or {h, t} and the

other with {t} or {h, t}.

But if these are the only constraints we have, the label {h} looks rather pointless. WheneverA1

would output {h}, it could equally well output {h, t} without violating the above constraints.
So there are only two meaningful outputs for A1; let us give them some names:

Σ1 = {T,X}, where T = {t} and X = {h, t}.
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Using this notation, we can restate the properties satisfied by the output of A1:

• Π1-active nodes: at least one incident edge is labeled with T .
• Π1-passive nodes: at least one incident edge is labeled with X.

We can now write this down in our formalism as the specification of a graph problem
Π1 = (A1,P1) as follows:

A1 =
{
{T,X,X}, {T, T,X}, {T, T, T}

}
,

P1 =
{
{T,X}, {X,X}

}
.

But note that there is one further simplification that we can do (just to keep the problem
definition as short as possible): if we have a feasible solution in which an active node labels
multiple incident edges with T , it can simply replace some of them with Xs without violating
either of the above constraints. Hence w.l.o.g. we can constrain the problem as follows:

A1 =
{
{T,X,X}

}
, (3)

P1 =
{
{T,X}, {X,X}

}
. (4)

Now we have done one step of round elimination: we started with problem Π0, assumed
that it is solvable in r rounds with some algorithm A0, and we constructed a new problem
Π1 = (A1,P1) that is by construction solvable in r − 1 rounds using an algorithm A1 that, in
essence, just simulates A0 as a black box (and does some minor local post-processing so that
we have got a more concise description for problem Π1).

It turns out that this conversion from Π0 to Π1 is “if and only if”: assuming there is some
algorithm A1 that solves Π1 in r− 1 rounds, we can also recover a solution for Π0 in r rounds.
It is not hard to see this is indeed the case: in essence we can map T to t and then X to
either t or h so that each Π0-active node is adjacent to exactly one t.

Second step. We repeat exactly the same reasoning to construct algorithm A2 that solves
some problem Π2 in r − 2 rounds. Consider a Π1-passive node u. Passive nodes have degree
2, so there are two active neighbors, v1 and v2. Let U consist of all information within
distance r − 2 from u, let Vi consist of all information within distance r − 1 from vi, and let
us decompose Vi in two parts, U and Di.

When we run algorithm A2 at node u, it again gathers all information in U and labels
{u, vi} with the set of all labels that A1 might output for some choice of Di. What are the
properties that the output of A2 will satisfy?

• Let u be a Π1-passive node. Constraint P1 in (4) implies that A1 cannot ever label all
edges incident to u with T , and hence A2 will label at least one edge {u, vi} with the
set {X} that does not contain T .

• Let v be a Π1-active node. Constraint A1 in (3) implies that A1 will label one of the
incident edges with T and the other two with X. Therefore A2 will label one of the
incident edges with {T} or {T,X}, which are the subsets that contain T , and the other
two with {X} or {T,X}, which are the subsets that contain X.

12



So to recap, after switching the roles of the nodes, we have got:

• Π2-active nodes: at least one incident edge is labeled with {X}.
• Π2-passive nodes: one incident edge is labeled with {T} or {T,X} and the two others

with {X} or {T,X}.

Again there is a label that is rather pointless: any {T} can be replaced with {T,X}. Hence
there are only two meaningful outputs for A1; let us again give some convenient names for
them:

Σ2 = {T ,X}, where T = {T,X} and X = {X}.

Using this notation, we can now write down the properties satisfied by the output of A2 as a
specification of a graph problem Π2 = (A2,P2) as follows:

A2 =
{
{X , T }, {X ,X}

}
,

P2 =
{
{X ,X , T }, {X , T , T }, {T , T , T }

}
.

And again we can simplify it further by observing that if A2 would label two incident edges
with X , it can safely replace one of them with T . We arrive at the following problem:

A2 =
{
{X , T }

}
, (5)

P2 =
{
{X ,X , T }, {X , T , T }, {T , T , T }

}
. (6)

And the good news is that we can stop now!

We found a periodic point! Let us recap. We started with Π0, sinkless orientation, and
then applied round elimination twice to obtain Π1 = re(Π0) and Π2 = re(re(Π0)). But now if
we compare Π0 in (1)–(2) with Π2 in (5)–(6), we notice that they are the same problem, up
to the naming of the output labels!

We have found a periodic point in round elimination: Π0 = re(re(Π0)).

We will discuss how to interpret this in more detail in Section 6, but we will first see how to
find such a periodic point with a significantly smaller amount of effort.

5 Round elimination, with the help of a computer

Round Eliminator tool. We have now spent several pages doing a somewhat technical
and error-prone analysis to first construct problem re(Π0) and then another problem re2(Π0),
and along the way we did also some simplifications that may seem like ad-hoc steps. Is round
elimination really that hard?

No, the good news is that we can reproduce exactly what we did in Section 4 with a
couple of mouse clicks if we use the Round Eliminator tool by Olivetti [15]! The only thing
we need to know is the language in which we specify problems.
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Round Eliminator notation. Recall the original definition of problem Π0 in (1)–(2):

A0 =
{
{h, t}

}
P0 =

{
{h, h, t}, {h, t, t}, {t, t, t}

}
.

In the computer-readable version we simply write each possible multiset on its own line; the
elements are space-separated and we can list them in any order, for example:

Active Passive

h t h h t

h t t

t t t

(7)

However, often the number of possible multisets gets very large and a shorthand notation
is needed. The language that we use with Round Eliminator allows us to write the same
problem also as follows:

Active Passive

h t ht ht t
(8)

The interpretation of the line ht ht t is that for the first element we can choose either
h or t, and the same holds for the second element. So expanding this will result in four
possibilities, h h t , h t t , t h t , and t t t , the second and the third one being the
same multiset. So (8) is exactly the same problem as (7). We have got a very concise way of
specifying the sinkless orientation problem.

We do not necessarily need to use the concise form when specifying problems, but we will
nevertheless need to be familiar with it so that we can understand the output of the Round
Eliminator tool.

First step. Let us open the Round Eliminator tool [15] and enter problem (8); we press
“start” and then “speedup” to perform one step of round elimination. We get the following
problem back:

Active Passive

B B A AB B
(9)

If we rename A to T and B to X, we can see that Round Eliminator gave us back exactly
the same problem as what we had in (3)–(4) after one manual round elimination step. It is
easier to see the equivalence if we expand the shorthand notation and reorder it a bit:

Active Passive

A B B A B

B B
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Second step. Let us continue and press the “speedup” button again. Now we get the
following problem back:

Active Passive

B A AB AB B
(10)

If we rename A to X and B to T , we see that this is exactly the same problem as what we
had in (5)–(6) after two round elimination steps. And on the other hand we can see that this
is also identical to the problem (8) that we started with (the only difference being the names
of the labels). So we have with a couple of mouse clicks identified that Π0 = re(re(Π0)), and
hence we are at the same point as where we were at the end of Section 4.

6 Consequences of a periodic point

Immediate lower bound in the port-numbering model. We have now seen (twice)
that Π0 = re2(Π0), that is, two steps of round elimination gives us back the same problem—or
a bit more precisely, problem re2(Π0) is isomorphic to Π0. There are at least two useful ways
to interpret this, but both lead to the same conclusion:

1. If the locality of Π0 in infinite trees is some finite value r, then the locality of the same
problem Π0 = Π2 = re2(Π0) is r − 2, which is absurd. Hence the locality of Π0 in
infinite trees cannot be finite.

2. If we have an algorithm A0 that solves Π0 in r rounds for some finite even r, we can use
round elimination repeatedly to reduce r to 0. But it is easy to check that Π0 cannot
be solved in 0 rounds, so A0 cannot exist.

The conclusion in both cases is that sinkless orientation cannot be solved at all in the
port-numbering model if you are in the middle of a regular tree and do not see any leaf nodes
(or other irregularities).

And now it is enough to observe that we can construct a finite 3-regular tree with n nodes
in which all leaf nodes are within distance Θ(log n) from the midpoint, and hence we get
a tight Ω(log n) lower bound on the locality of sinkless orientation in the port-numbering
model.

Consequences for other models of computing. Now let us look back at what we did:
we performed round elimination in the port-numbering model (so e.g. the only “unknown”
information in the distant parts Di was the specific choice of port numbering).

We would like to do the same in the usual deterministic LOCAL model. Unfortunately,
the unique identifiers are something that we cannot directly handle in the round elimination
process. For example, if in some neighborhood U algorithm A0 outputs h for the edge {u, vi}
if and only if it sees the unique identifier 1 in part Di, then we cannot argue that A0 will
also output h for all edges {u, vi} for some choice of unique identifiers. After all, identifier 1
cannot be simultaneously in part D1 and part D2.

However, we can take a detour through randomized algorithms. We simply assume that all
nodes have random bits as inputs. We start with a randomized algorithm A0 that solves Π0
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so that the local failure probability is some small p0. Then we can show that A1 will solve
Π1 so that the local failure probability is some p1, which depends on p0 and the structure of
Π0. Now if we apply this reasoning to the sinkless orientation problem, we can repeat the
argument ` steps for an even ` and arrive at A` that solves Π` = Π0 in r − ` rounds so that
the local failure probability is p`. If we have ` = o(log log n), we can show that p` is not too
high, and A` has to do something nontrivial, and hence r − ` > 0, which implies that the
original algorithm A0 requires more than ` rounds. Therefore the locality of Π0 has to be
Ω(log log n) for randomized algorithms. For the details of this kind of an analysis, see, for
example, [2, 6].

Now that we have a lower bound for the randomized LOCAL model, it immediately implies
a lower bound in the deterministic LOCAL model: after all, any deterministic algorithm
gives also an equally fast randomized algorithm (we can use randomness to construct unique
identifiers w.h.p.). Hence we have got a lower bound of Ω(log log n) for the deterministic
LOCAL model. But we can do better; the gap result by Chang et al. [7] shows that the
existence of an o(log n)-round deterministic algorithm for a locally verifiable problem implies
the existence of an O(log∗ n)-round deterministic algorithm for the same problem, but we
know that such an algorithm cannot exist. Hence the gap result implies that the locality
of the sinkless orientation problem in the deterministic LOCAL model is Ω(log n), which is
tight.

To recap, we took the following steps:

• Start with a locally verifiable problem Π0.

• Show that Π0 is a periodic point in round elimination: Π0 = re2(Π0).

• It follows that the complexity of Π0 in the port-numbering model is Ω(log n).

• By taking into account failure probabilities, it follows that the complexity of Π0 in
the randomized LOCAL model is Ω(log log n).

• By amplifying this with the gap result, it follows that the complexity of Π0 in the
deterministic LOCAL model is Ω(log n).

All of this generalizes. Now the key point is this: the above reasoning was in essence
only using the fact that Π0 is a locally verifiable problem with Π0 = re2(Π0). Hence whenever
we have a periodic point in round elimination, we get for free the same lower bound results:
the locality is Ω(log n) in the deterministic LOCAL model and Ω(log log n) in the randomized
LOCAL model.

Of course we are not always lucky; however, whenever we encounter a locally verifiable
problem Π of an unknown complexity, it makes sense to check if Π or e.g. some relaxation of
Π happens to satisfy e.g. Π = re(Π) or Π = re2(Π). Lots of examples of such problems are
already known [16], and for all such problems we can immediately derive a lower bound with
the help of the Round Eliminator tool.

16



Often we need to consider relaxations. There is one counterintuitive observation that
is useful to keep in mind when applying round elimination: often it is easier to prove lower
bounds for easier problems ! For example, we have seen that sinkless orientation is a periodic
point in round elimination. Now consider a more challenging version of the problem, sinkless
and sourceless orientation, in which nodes of degree at least 3 must have both indegree and
outdegree at least 1. Trivially, sinkless and sourceless orientation is at least as hard as sinkless
orientation. However, sinkless and sourceless orientation is not a periodic point in round
elimination. Therefore to prove a lower bound for sinkless and sourceless orientation, it is
useful to note that it is a strict restriction of the sinkless orientation problem, which is one of
the problems that is known to be a periodic point in round elimination, and this observation
gives a lower bound also for sinkless and sourceless orientations.

7 There is a lot more we can do

Round elimination sequences. Round elimination is by no means merely about periodic
points. More generally, we can construct e.g. a sequence of problems Π0,Π1, . . . ,Πk such that
Πi+1 = re(Πi) for each i. Such a sequence can be applied both to prove upper bounds and to
prove lower bounds:

• Upper bounds: If Πk is a trivial problem that can be solved in 0 rounds, then we know
that the locality of Π0 is at most k. We can even work backwards to extract a k-round
algorithm for solving Π0.

• Lower bounds: If Πk is a nontrivial problem that cannot be solved in 0 rounds, then
we know that the locality of Π0 is more than k.

Restrictions and relaxations. One challenge here is that if the round elimination se-
quence does not converge to a periodic point, the size of the description of the problems can
very rapidly increase, and even if Π0 is a simple problem with a short description, Π4 might
already be too large to even write down explicitly in a computer, let alone to understand for a
human being. Hence what we often do in practice is to consider restrictions and relaxations:

• An upper bound sequence is a sequence of problems Π0,Π1, . . . ,Πk such that Πi+1 is a
restriction of re(Πi) for each i. Now if Πk is solvable in 0 rounds, the locality of Π0 is
at most k.

• A lower bound sequence is a sequence of problems Π0,Π1, . . . ,Πk such that Πi+1 is a
relaxation of re(Πi) for each i. Now if Πk is not solvable in 0 rounds, the locality of Π0

is more than k.

Lower bound sequences were used recently, for example, to show a lower bound for maximal
matchings and maximal independent sets [1], and also Linial’s [12, 13] lower bound can be
interpreted as such a sequence of problems.
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Further reading. For more information on the round elimination process, these are
recommended reading:

• Brandt [4] gives the formal mathematical definition of the round elimination process.
• Olivetti [15] gives a detailed explanation of how to use the Round Eliminator tool.
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