Lower bounds for maximal matchings and maximal independent sets

Jukka Suomela

Aalto University, Finland

Joint work with

- Alkida Balliu · Aalto University
- Sebastian Brandt · ETH Zurich
- Juho Hirvonen · Aalto University
- Dennis Olivetti · Aalto University
- Mikaël Rabie · Aalto University and IRIF, University Paris Diderot

Two classical graph problems

Maximal matching

Maximal independent set

Trivial linear-time centralized, sequential algorithm: add edges/nodes until stuck

Two classical graph problems

Maximal matching

Maximal independent set

Can be **verified locally**: if it looks correct everywhere locally, it is also feasible globally

Can these problems be **solved locally**?

Warmup: toy example

Bipartite graphs & port-numbering model

computer network with port numbering

bipartite, 2-colored graph

 Δ -regular (here Δ = 3)

unmatched white nodes: send **proposal** to port 1

unmatched white nodes: send *proposal* to port 1

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 1

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes:

send *proposal* to port 2

unmatched white nodes: send **proposal** to port 2

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 2

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

unmatched white nodes: send **proposal** to port 3

unmatched white nodes: send *proposal* to port 3

black nodes: accept the first proposal you get, **reject** everything else (break ties with port numbers)

unmatched white nodes: send *proposal* to port 3

black nodes:

accept the first proposal you get, *reject* everything else (break ties with port numbers)

Finds a *maximal matching* in $O(\Delta)$ communication rounds

Note: running time does not depend on *n*

Bipartite maximal matching

- Maximal matching in very large 2-colored Δ -regular graphs
- Simple algorithm: $O(\Delta)$ rounds, independently of *n*
- Is this optimal?
 - $o(\Delta)$ rounds?
 - $O(\log \Delta)$ rounds?
 - 4 rounds??

Big picture

Bounded-degree graphs & LOCAL model

Distributed graph algorithms for maximal matching

- Maximal matching in general graphs
 - n = number of nodes
 - A = maximum degree
- LOCAL model of distributed computing
 - "time" = number of synchronous communication rounds
 = how far do you need to see to choose your own part of solution
 - nodes are labeled with unique identifiers from { 1, 2, ..., poly(n) }
 - O(n) = trivial, O(diameter) = trivial
- Strong model lower bounds widely applicable

Maximal matching,

LOCAL model,

Main results

Maximal matching and maximal independent set cannot be solved in

- o(Δ + log log n / log log log n) rounds with randomized algorithms
- o(Δ + log n / log log n) rounds with deterministic algorithms

Upper bound: $O(\Delta + \log^* n)$

This is optimal!

Very simple algorithm

unmatched white nodes: send *proposal* to port 1

black nodes: accept the first proposal you get, reject everything else (break ties with port numbers)

Proof techniques

Speedup simulation

Speedup simulation technique

• Given:

• algorithm A_0 solves problem P_0 in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

Linial (1987, 1992): coloring cycles

- Given:
 - algorithm A_0 solves 3-coloring in $T = o(\log^* n)$ rounds

• We construct:

- algorithm A₁ solves 2³-coloring in T 1 rounds
- algorithm A₂ solves 2^{2³}-coloring in T 2 rounds
- algorithm A_3^- solves $2^{2^{2^3}}$ -coloring in T 3 rounds
- algorithm A_T solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so A_0 cannot exist

Brandt et al. (2016): sinkless orientation

• Given:

• algorithm A_0 solves sinkless orientation in $T = o(\log n)$ rounds

• We construct:

- algorithm A₁ solves sinkless coloring in T 1 rounds
- algorithm A₂ solves sinkless orientation in T 2 rounds
- algorithm A₃ solves sinkless coloring in T 3 rounds
- algorithm A_T solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so A_0 cannot exist

Speedup simulation technique for maximal matching

• Given:

• algorithm A_0 solves problem P_0 = maximal matching in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

What are the right problems P_i here?

Speedup simulation technique for maximal matching

• Given:

• algorithm A_0 solves problem P_0 = maximal matching in T rounds

• We construct:

- algorithm A_1 solves problem P_1 in T 1 rounds
- algorithm A_2 solves problem P_2 in T 2 rounds
- algorithm A₃ solves problem P₃ in T 3 rounds
- algorithm A_T solves problem P_T in 0 rounds
- But P_{T} is nontrivial, so A_{0} cannot exist

Let's start with P_0 ...

Representation for maximal matchings

white nodes "active"

output one of these:

- \cdot **1** × **M** and (Δ -1) × **O**
- $\cdot \Delta \times P$

M = "matched"
P = "pointer to matched"
O = "other"

black nodes "passive"

accept one of these: $\cdot 1 \times M$ and $(\Delta - 1) \times \{P, O\}$ $\cdot \Delta \times O$

white nodes "active"

output one of these: $\cdot 1 \times M$ and $(\Delta - 1) \times O$ $\cdot \Delta \times P$

 $W = \mathsf{MO}^{\Delta - 1} \mid \mathsf{P}^{\Delta}$

M = "matched"
P = "pointer to matched"
O = "other"

black nodes "passive"

accept one of these: · 1 × M and (Δ-1) × {P, O} · Δ × O

$$B = \mathsf{M}[\mathsf{PO}]^{\Delta - 1} \mid \mathsf{O}^{\Delta}$$

Parameterized problem family

$$W = \mathsf{M}\mathsf{O}^{\Delta-1} \mid \mathsf{P}^{\Delta},$$
$$B = \mathsf{M}[\mathsf{P}\mathsf{O}]^{\Delta-1} \mid \mathsf{O}^{\Delta}$$

maximal matching

"weak" matching

$$W_{\Delta}(x,y) = \left(\mathsf{MO}^{d-1} \mid \mathsf{P}^{d}\right) \mathsf{O}^{y} \mathsf{X}^{x}, \qquad \text{``weak'' matchings}$$
$$B_{\Delta}(x,y) = \left([\mathsf{MX}][\mathsf{POX}]^{d-1} \mid [\mathsf{OX}]^{d}\right) [\mathsf{POX}]^{y} [\mathsf{MPOX}]^{x},$$
$$d = \Delta - x - y$$

Main lemma

- Given: **A** solves **P**(**x**, **y**) in **T** rounds
- We can construct: A' solves P(x + 1, y + x) in T 1 rounds

$$\begin{split} W_{\Delta}(x,y) &= \left(\mathsf{MO}^{d-1} \mid \mathsf{P}^d \right) \mathsf{O}^y \mathsf{X}^x, \\ B_{\Delta}(x,y) &= \left([\mathsf{MX}] [\mathsf{POX}]^{d-1} \mid [\mathsf{OX}]^d \right) [\mathsf{POX}]^y [\mathsf{MPOX}]^x, \\ d &= \Delta - x - y \end{split}$$

Putting things together

What we really care about

Maximal matching in $o(\Delta)$ rounds

- \rightarrow " $\Delta^{1/2}$ matching" in $o(\Delta^{1/2})$ rounds
- $\rightarrow P(\Delta^{1/2}, 0)$ in $o(\Delta^{1/2})$ rounds
- $\rightarrow P(O(\Delta^{1/2}), o(\Delta))$ in 0 rounds
- \rightarrow contradiction

k-matching: select at most k edges per node

Apply speedup simulation $o(\Delta^{1/2})$ times

Putting things together

Proof technique does not work directly with unique IDs

- Basic version:
 - deterministic lower bound, port-numbering model
- Analyze what happens to local failure probability:
 - *randomized* lower bound, port-numbering model
- With randomness you can construct unique identifiers w.h.p.:
 - randomized lower bound, LOCAL model
- Fast deterministic \rightarrow very fast randomized
 - stronger *deterministic* lower bound, LOCAL model

Main results

Maximal matching and maximal independent set cannot be solved in

- o(Δ + log log n / log log log n) rounds with randomized algorithms
- o(Δ + log n / log log n) rounds with deterministic algorithms

Lower bound for MM implies a lower bound for MIS

Some open questions

• Δ << log log *n*:

- complexity of (Δ+1)-vertex coloring or (2Δ-1)-edge coloring?
- example: are these possible in $O(\log \Delta + \log^* n)$ time?

• Δ >> log log *n*:

- complexity of *maximal independent set*?
- is it much harder than maximal matching in this region?
- example: is it possible in deterministic polylog(*n*) time?

Summary

- Linear-in-∆ lower bounds for maximal matchings and maximal independent sets
- Old: can be solved in $O(\Delta + \log n)$ rounds
- New: cannot be solved in
 - $o(\Delta + \log \log n / \log \log \log n)$ rounds with randomized algorithms
 - $o(\Delta + \log n / \log \log n)$ rounds with deterministic algorithms
- Technique: speedup simulation

arXiv:1901.02441

Speedup simulation

Given: **white algorithm A** that runs in *T* = 2 rounds

- **v**₁ in **A** sees **U** and **D**₁
- Construct: **black algorithm A'** that runs in T 1 = 1 rounds
- *u* in **A'** only sees *U*

A': what is the **set of possible outputs of A** for edge {**u**, **v**₁} over all possible inputs in **D**₁?