Lower bounds for maximal matchings and maximal independent sets

Jukka Suomela

Aalto University, Finland

```
arXiv:1901.02441
```


Joint work with

- Alkida Balliu • Aalto University
- Sebastian Brandt • ETH Zurich
- Juho Hirvonen • Aalto University
- Dennis Olivetti • Aalto University
- Mikaël Rabie • Aalto University and IRIF, University Paris Diderot

```
arXiv:1901.02441
```


Two classical graph problems

Maximal matching

Maximal independent set

Trivial linear-time centralized, sequential algorithm: add edges/nodes until stuck

Two classical graph problems

Maximal matching

Can be verified locally: if it looks correct everywhere locally, it is also feasible globally

Can these problems be solved locally?

Warmup: toy example

Bipartite graphs \& port-numbering model
computer network with port numbering bipartite, 2-colored graph
Δ-regular (here $\Delta=3$)

output: maximal matching

Very simple algorithm

unmatched white nodes:

send proposal to port 1

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 2

Very simple algorithm

unmatched white nodes:

send proposal to port 2

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 2

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 3

Very simple algorithm

unmatched white nodes:

send proposal to port 3

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

unmatched white nodes:
send proposal to port 3

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Very simple algorithm

Finds a maximal matching in $O(\Delta)$ communication rounds

Note: running time does not depend on n

Bipartite maximal matching

- Maximal matching in very large 2-colored Δ-regular graphs
- Simple algorithm: $O(\Delta)$ rounds, independently of n
-Is this optimal?
- o(Δ) rounds?
- $O(\log \Delta)$ rounds?
- 4 rounds??

Big picture

Bounded-degree graphs \& LOCAL model

Distributed graph algorithms for maximal matching

- Maximal matching in general graphs
- $n=$ number of nodes
- $\Delta=$ maximum degree
- LOCAL model of distributed computing
- "time" = number of synchronous communication rounds = how far do you need to see to choose your own part of solution
- nodes are labeled with unique identifiers from $\{1,2, \ldots, \operatorname{poly}(n)\}$
- $O(n)=$ trivial, O (diameter) = trivial
- Strong model - lower bounds widely applicable

Maximal matching,

LOCAL model,
O(f(Δ) + $\mathbf{g (n)) ~}$

Algorithms:

O deterministic

- randomized

Lower bounds:deterministic
randomized

Main results

Maximal matching and maximal independent set

 cannot be solved in- o($\Delta+\log \log n / \log \log \log n)$ rounds with randomized algorithms
- o($\Delta+\log n / \log \log n)$ rounds with deterministic algorithms

> Upper bound: $\mathrm{O}\left(\Delta+\log ^{\star} \mathbf{n}\right)$

This is optimal!

Very simple algorithm

unmatched white nodes:

send proposal to port 1

black nodes:

accept the first proposal you get, reject everything else (break ties with port numbers)

Proof techniques

Speedup simulation

Speedup simulation technique

- Given:
- algorithm \boldsymbol{A}_{0} solves problem P_{0} in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm \boldsymbol{A}_{2} solves problem P_{2} in $T-2$ rounds
- algorithm A_{3} solves problem P_{3} in $T-3$ rounds
- algorithm \boldsymbol{A}_{T} solves problem P_{T} in 0 rounds
- But P_{T} is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Linial (1987, 1992): coloring cycles

- Given:
- algorithm A_{0} solves 3-coloring in $T=o(l o g * n)$ rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves 2^{3}-coloring in T - 1 rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves $2^{2^{3}}$-coloring in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves $2^{2^{2^{3}}}$-coloring in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves o(n)-coloring in 0 rounds
- But o(n)-coloring is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Brandt et al. (2016): sinkless orientation

- Given:
- algorithm \boldsymbol{A}_{0} solves sinkless orientation in $T=O(\log n)$ rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves sinkless coloring in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves sinkless orientation in $T-2$ rounds
- algorithm \boldsymbol{A}_{3} solves sinkless coloring in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves sinkless orientation in 0 rounds
- But sinkless orientation is nontrivial, so \boldsymbol{A}_{0} cannot exist

Speedup simulation technique for maximal matching

- Given:
- algorithm \boldsymbol{A}_{0} solves problem $P_{0}=$ maximal matching in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in $T-1$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{2}}$ solves problem P_{2} in $T-2$ rounds
- algorithm $\boldsymbol{A}_{\mathbf{3}}$ solves problem P_{3} in $T-3$ rounds
- algorithm $\boldsymbol{A}_{\boldsymbol{T}}$ solves problem P_{T} in 0 rounds
- But P_{T} is nontrivial, so \boldsymbol{A}_{0} cannot exist

What are the right problems P_{i} here?

Speedup simulation technique for maximal matching

- Given:
- algorithm \boldsymbol{A}_{0} solves problem $P_{0}=$ maximal matching in T rounds
- We construct:
- algorithm \boldsymbol{A}_{1} solves problem P_{1} in T - 1 rounds
- algorithm \boldsymbol{A}_{2} solves problem P_{2} in T - 2 rounds
- algorithm \boldsymbol{A}_{3} solves problem P_{3} in $T-3$ rounds

Let's start with P_{0}...

- algorithm \boldsymbol{A}_{T} solves problem P_{T} in 0 rounds
- But P_{T} is nontrivial, so $\boldsymbol{A}_{\mathbf{0}}$ cannot exist

Representation for maximal matchings
white nodes "active"
output one of these:
$.1 \times M$ and $(\Delta-1) \times 0$

- $\Delta \times P$

$$
\begin{aligned}
& \mathrm{M}=\text { "matched" } \\
& \mathrm{P}=\text { "pointer to matched" } \\
& \mathrm{O}=\text { "other" }
\end{aligned}
$$

black nodes "passive"

accept one of these:

- $1 \times \mathrm{M}$ and $(\mathbf{\Delta} \mathbf{- 1}) \times\{\mathrm{P}, 0\}$
- $\Delta \times 0$

Representation for maximal matchings
white nodes "active"
output one of these:
$.1 \times M$ and $(\Delta-1) \times 0$

- $\Delta \times P$
$W=\mathrm{MO}^{\Delta-1} \mid \mathrm{P}^{\Delta}$

M = "matched"
P = "pointer to matched"
$0=$ "other"

black nodes "passive"

accept one of these:

- $1 \times \mathrm{M}$ and $(\mathbf{\Delta - 1}) \times\{\mathrm{P}, 0\}$
- $\Delta \times 0$

$$
B=\mathrm{M}[\mathrm{PO}]^{\Delta-1} \mid \mathrm{O}^{\Delta}
$$

Parameterized problem family

$$
\begin{aligned}
W & =\mathrm{MO}^{\Delta-1} \mid \mathrm{P}^{\Delta}, \\
B & =\mathrm{M}[\mathrm{PO}]^{\Delta-1} \mid \mathrm{O}^{\Delta}
\end{aligned}
$$

$$
W_{\Delta}(x, y)=\left(\mathrm{MO}^{d-1} \mid \mathrm{P}^{d}\right) \mathrm{O}^{y} \mathrm{X}^{x}
$$

$$
B_{\Delta}(x, y)=\left([\mathrm{MX}][\mathrm{POX}]^{d-1} \mid[\mathrm{OX}]^{d}\right)[\mathrm{POX}]^{y}[\mathrm{MPOX}]^{x},
$$

$$
d=\Delta-x-y
$$

"weak" matching

Main lemma

- Given: \boldsymbol{A} solves $P(x, y)$ in T rounds
- We can construct: \boldsymbol{A}^{\prime} solves $P(x+1, y+x)$ in $T-1$ rounds

$$
\begin{aligned}
W_{\Delta}(x, y) & =\left(\mathrm{MO}^{d-1} \mid \mathrm{P}^{d}\right) \mathrm{O}^{y} \mathrm{X}^{x}, \\
B_{\Delta}(x, y) & =\left([\mathrm{MX}][\mathrm{POX}]^{d-1} \mid[\mathrm{OX}]^{d}\right)[\mathrm{POX}]^{y}[\mathrm{MPOX}]^{x}, \\
d & =\Delta-x-y
\end{aligned}
$$

Putting things together

What we really care about

Maximal matching in $o(\Delta)$ rounds
\rightarrow " $\Delta^{1 / 2}$ matching" in o($\left.\Delta^{1 / 2}\right)$ rounds
$\rightarrow P\left(\Delta^{1 / 2}, 0\right)$ in o $\left(\Delta^{1 / 2}\right)$ rounds
k-matching:
select at most k edges per node
$\rightarrow P\left(O\left(\Delta^{1 / 2}\right), o(\Delta)\right)$ in 0 rounds
\rightarrow contradiction
Apply speedup simulation $\mathrm{o}\left(\Delta^{1 / 2}\right)$ times

Putting things together

Proof technique does not work directly with unique IDs

- Basic version:
- deterministic lower bound, port-numbering model
- Analyze what happens to local failure probability:
- randomized lower bound, port-numbering model
- With randomness you can construct unique identifiers w.h.p.:
- randomized lower bound, LOCAL model
- Fast deterministic \rightarrow very fast randomized
- stronger deterministic lower bound, LOCAL model

Main results

Maximal matching and maximal independent set

 cannot be solved in- o($\Delta+\log \log n / \log \log \log n)$ rounds with randomized algorithms
- o($\Delta+\log n / \log \log n)$ rounds with deterministic algorithms

Some open questions

- $\Delta \ll \log \log n:$
- complexity of $(\Delta+1)$-vertex coloring or ($2 \Delta-1$)-edge coloring?
- example: are these possible in $O(\log \Delta+\log * n)$ time?
- $\Delta \gg \log \log n:$
- complexity of maximal independent set?
- is it much harder than maximal matching in this region?
- example: is it possible in deterministic polylog(n) time?

Summary

- Linear-in- Δ lower bounds for maximal matchings and maximal independent sets
- Old: can be solved in $O\left(\Delta+\log ^{*} n\right)$ rounds
- New: cannot be solved in
-o($\Delta+\log \log n / \log \log \log n)$ rounds with randomized algorithms
- o $(\Delta+\log n / \log \log n)$ rounds with deterministic algorithms
- Technique: speedup simulation

> arXiv:1901.02441

Speedup simulation

Given: white algorithm A that runs in $T=2$ rounds

- v_{1} in A sees U and D_{1}

Construct: black algorithm A^{\prime} that runs in $T-1=1$ rounds

- u in A^{\prime} only sees U
A^{\prime} : what is the set of possible outputs of \boldsymbol{A} for edge $\left\{u, v_{1}\right\}$ over all possible inputs in D_{1} ?

