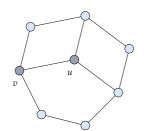
A distributed approximation scheme for sleep scheduling in sensor networks

Patrik Floréen, Petteri Kaski, Topi Musto, Jukka Suomela

Geru project – http://www.hiit.fi/ada/geru

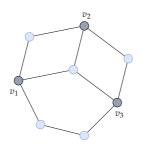

1 Redundancy graph

Battery-powered sensor nodes

Nodes v and u are *pairwise* redundant: if v is active then u can be asleep and vice versa

• E.g., *u* and *v* are very close to each other

Identify all pairwise redundancy relations, present them as a graph



2 Dominating sets

If nodes $\{v_1, v_2, v_3\}$ are active then all other nodes can be asleep

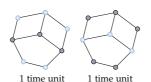
 $D = \{v_1, v_2, v_3\}$ is a *dominating set* in this redundancy graph

Energy conservation scheme: assign a time period to each dominating set

3 Sleep scheduling

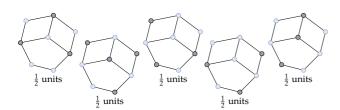
Equal to fractional domatic partition

Objective:


 $\begin{array}{lll} \text{maximise} & \sum_D x(D) & \textit{(network lifetime)} \\ \text{subject to} & \sum_D D(v)x(D) \leq 1 \;\; \text{for all } v, & \textit{(battery capacity constraint)} \\ & x(D) \geq 0 \;\; \text{for all } D. & \textit{(duration is nonnegative)} \end{array}$

- ullet v ranges over all nodes
- *D* ranges over all dominating sets in the redundancy graph
- D(v) = 1 if $v \in D$ and D(v) = 0 if $v \notin D$

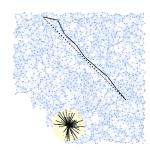
4 Examples of sleep schedules


A domatic partition

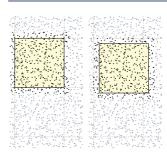
Achieved lifetime 2 units, each node active for 1 time unit

A fractional domatic partition

Achieved lifetime $\frac{5}{2}$ units, each node active for 1 time unit


5 Assumptions on the problem structure

Communication graph


- 1. Bounded density of nodes
- 2. Bounded length of edges
- 3. Geometric spanner

Redundancy graph

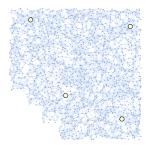
Any subgraph of the communication graph

6 Shifting strategy

Use a grid to partition the graph; solve each subproblem locally; merge the local solutions

Shift the grid to form several partitions; construct a schedule for each partition; interleave

Works fine if the nodes know their coordinates – can we form the partitions without using coordinates?


7 Add or choose anchors

Label some nodes as anchors

Minimal amount of extra information: 1 bit per node (anchor vs. non-anchor)

Some requirements on anchors:

- Not too sparse
- Not too dense

8 Distributed approximation scheme

Voronoi cells for anchors

Shift the borders towards those anchors with larger identifiers

References

P. Floréen, P. Kaski, and J. Suomela. A distributed approximation scheme for sleep scheduling in sensor networks. *Proc. SECON* 2007.