Deterministic Local Algorithms, Unique
Identifiers, and Fractional Graph Colouring

Henning Hasemann

Institute of Operating Systems and Computer Networks,
TU Braunschweig, Germany!»?

Juho Hirvonen - Joel Rybicki - Jukka Suomela
Helsinki Institute for Information Technology HIIT, Finland!?

Department of Information and Computer Science,
Aalto University, Finland!

Department of Computer Science, University of Helsinki, Finland?

Lcurrent affiliations 2where most of this work was done

Abstract. In the fractional graph colouring problem, the task is to schedule
the activities of the nodes so that each node is active for 1 time unit in total,
and at each point of time the set of active nodes forms an independent set.

We show that for any o > 1 there exists a deterministic distributed
algorithm that finds a fractional graph colouring of length at most a/(A + 1)
in any graph in one synchronous communication round; here A is the
maximum degree of the graph. The result is near-tight, as there are graphs
in which the optimal solution has length A + 1.

The result is, of course, too good to be true. The usual definitions of
scheduling problems (fractional graph colouring, fractional domatic partition,
etc.) in a distributed setting leave a loophole that can be exploited in the
design of distributed algorithms: the size of the local output is not bounded.
Our algorithm produces an output that seems to be perfectly good by the
usual standards but it is impractical, as the schedule of each node consists
of a very large number of short periods of activity.

More generally, the algorithm demonstrates that when we study dis-
tributed algorithms for scheduling problems, we can choose virtually any
trade-off between the following three parameters: 7', the running time of the
algorithm, /¢, the length of the schedule, and k, the maximum number of
periods of activity for any single node. Here £ is the objective function of
the optimisation problem, while x captures the “subjective” quality of the
solution. If we study, for example, bounded-degree graphs, we can trivially
keep T and x constant, at the cost of a large ¢, or we can keep k and /¢
constant, at the cost of a large T'. Our algorithm shows that yet another
trade-off is possible: we can keep T and ¢ constant at the cost of a large «.

Keywords: distributed algorithms, fractional domatic partition, fractional
graph colouring, local algorithms, unique identifiers.

NOTICE: this is the author’s version of a work that was accepted for publication in Theoretical Computer Science. Changes resulting from the
publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in
this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published
in Theoretical Computer Science, doi:10.1016/j.tcs.2014.06.044

http://dx.doi.org/10.1016/j.tcs.2014.06.044

1 Introduction

In the study of deterministic distributed algorithms, it is commonly assumed
that there are unique numerical identifiers available in the network: in an
n-node network, each node is labelled with a unique O(logn)-bit number.

In the general case, numerical identifiers are, of course, very helpful—many
fast distributed algorithms crucially depend on the existence of numerical
identifiers, so that they can use the Cole-Vishkin technique [2] and similar
tricks. However, when we move towards the fastest possible distributed
algorithms, the landscape looks very different.

1.1 Local Algorithms and Numerical Identifiers

We focus on local algorithms [9, 12], i.e., distributed algorithms that run in
constant time (a constant number of communication rounds), independently
of the size of the network. In this context, it is no longer obvious if unique
identifiers are of any use:

1. In their seminal work, Naor and Stockmeyer [9] prove that there is a
class of problems—so-called LCL problems—that do not benefit from
unique numerical identifiers: if an LCL problem can be solved with
a local algorithm, it can also be solved with an order-invariant local
algorithm. Order-invariant algorithms do not exploit the numerical
value of the identifier; they merely compare the identifiers with each
other and use the relative order of the identifiers.

2. More recently, Goos et al. [3] have shown that for a large class of
optimisation problems—so-called PO-checkable problems—Ilocal algo-
rithms do not benefit from any kind of identifiers: if a PO-checkable
optimisation problem can be approximated with a local algorithm, the
same approximation factor can be achieved in anonymous networks if
we are provided with a port-numbering and an orientation.

While the precise definitions of LCL problems and PO-checkable problems
are not important here, they both share the following seemingly technical
requirement: it is assumed that the size of a local output is bounded by a
constant (here the size refers to the number of bits in the encoding of the
local output). That is, for each node in the network, there is only a constant
number of possible local outputs, independently of the size of the network.
However, previously it has not been known whether this is a necessary
condition or merely a proof artefact—while contrived counter-examples exist,
natural counter-examples have been lacking.

1.2 Contributions

In this work we provide the missing piece of the puzzle: we show that the
condition is necessary, even if we focus on natural graph problems and natural
encodings of local outputs. More precisely, we show that there is a classical
graph problem—namely, fractional graph colouring (see Section 2)—with
the following properties:

1. In a natural problem formulation, the local outputs can be arbitrarily
large.

2. The problem can be solved with a deterministic local algorithm; the
algorithm exploits both numerical identifiers and unbounded local
outputs.

3. The problem cannot be solved with a deterministic local algorithm
without numerical identifiers.

4. The problem cannot be solved with a deterministic local algorithm if
we require that the local outputs are of a constant size.

Moreover, this is not an isolated example. The same holds for many other
scheduling problems—for example, fractional domatic partitions have similar
properties (see Section 7). It is up to the reader’s personal taste whether
this work should be interpreted as a novel technique for the design of local
algorithms, or as a cautionary example of a loophole that needs to be closed.

The present work is an extended and revised version of a preliminary
conference report [4]. In comparison with the conference version, the material
related to fractional domatic partitions is new.

1.3 Comparison with Other Graph Problems

In the study of local algorithms, one often has to make some assumptions on
the graph family [5-8]. The most commonly used assumption is to focus on
bounded-degree graphs.

If we have a constant maximum degree A, then a constant-size local output
is a very natural property that is shared by a wide range of combinatorial
graph problems—at least if we use a natural encoding of the solution:

1. Independent set, vertex cover, dominating set, connected dominating
sets, etc.: The output is a subset X C V of nodes. Each node outputs
1 or 0, indicating whether it is part of X.

2. Matching, edge cover, edge dominating set, spanning subgraphs, etc.:
The output is a subset Y C E of edges. A node of degree d outputs a
binary vector of length d, with one bit for each incident edge.

3. Vertex colouring, domatic partition, minimum cut, maximum cut, etc.:
The output is a partitioning of nodes, X1 U XoU---U X = V. Each
node outputs an integer i € {1,2,...,k}, indicating that it belongs
to subset X;. In most cases, there is a natural constant upper bound
on k: for example, a vertex colouring does not need more than A + 1
colours, a domatic partition cannot contain more than A + 1 disjoint
dominating sets, and a cut by definition has k = 2.

4. Graph properties: Each node outputs 1 or 0. For a yes-instance, all
nodes have to output 1, and for a no-instance, at least one node has to
output 0.

Now if we consider the linear programming (LP) relaxations of problems
such as independent sets, vertex covers, or dominating sets, we arrive at a
graph problem in which local outputs could be potentially arbitrarily large:
each node outputs a rational number, and there is no a priori reason to
require that the size of the output (i.e., the length of the binary encoding of
the rational number) is bounded. However, it seems that for these problems
the size of the output cannot be exploited by a local algorithm—for example,
in the case of packing and covering LPs, an exact solution cannot be found
by any local algorithm, and the local approximation schemes [7, 8] do not
need to exploit unbounded local outputs. Indeed, if we had an algorithm
that produces arbitrarily large outputs, we could apply a simple rounding
scheme without losing too much in the approximation ratio.

However, fractional graph colouring—the LP relaxation of the vertex
colouring problem—is a different story. There we not only have unbounded
local outputs, but we show that we can exploit this property in the design of
local algorithms.

2 Fractional Graph Colouring

In the fractional graph colouring problem, the task is to coordinate the
activities of the nodes in a conflict-free manner. Each node has to perform
at least one unit of work, and whenever a node is active all of its neighbours
have to be inactive. The objective is to minimise the total length of the
schedule, i.e., complete the activities as quickly as possible. The applications
include the coordination of radio transmissions in a wireless network: each
node must transmit one unit of data, and the transmissions of adjacent nodes
interfere with each other.

2.1 Definitions

Let G = (V, E) be a simple, undirected graph that represents a distributed
system: each node v € V' is a computational entity, and each edge {u,v} € E

represents a communication link between a pair of nodes. Let
I={ICV:ifu,velthen {u,v} ¢ E}

consist of all independent sets of G. A fractional graph colouring associates
a value z(I) > 0 to each I € Z such that

Z z(I)>1 forall veV.
I€T:vel

The length of a colouring x is

1€l

and an optimal fractional graph colouring minimises ¢(x). See Figure la for
an illustration of a fractional graph colouring, and Figure 2 for a comparison
of non-fractional and fractional graph colourings.

The connection between a colouring x and a conflict-free schedule is
straightforward: we simply allocate a time slot of length z(I) to I. For
example, if we are given a colouring x, we can choose an arbitrary ordering
I ={I,1Is,...} onZ, and schedule the activities of the nodes as follows: first
all nodes in I; are active for (/1) time units, then all nodes in I5 are active
for z(I2) time units, etc.; after £(x) time units each node has been active for
at least one time unit. Conversely, if we can coordinate the activities, we
can construct a graph colouring x, as at each point in time the set of active
nodes is in Z.

2.2 Schedules of Nodes

When we study fractional graph colouring in a distributed setting, we assume
that each node produces its own part of the solution. That is, each node
must know when it is supposed to be active. Formally, the schedule of a
node v € V is a union of disjoint intervals

S(U) = (al,bl] U (GQ,bQ] J---u (ak,bk].

Here 0 < a1 < b1 < as < by < --+ < ap < by are rational numbers. We
require that the total length of the time intervals is at least 1, that is,
> (bi —a;) > 1. The local output of node v is the binary encoding of the
sequence aqi, b1, a9,bo,...,ar,by.

We say that node v is active at time t if ¢ € s(v). Let

Alt,s) ={veV:tes(v)}

consist of the nodes that are active at time ¢. It is straightforward to see
that a schedule s defines a fractional graph colouring x of length at most L if

A(t,s) =0 forall t > L,
A(t,s) € Z forall t < L.

b e
c d
x({b,e})=1/2 x({a,c}) =172 x({b,d}) =172
(@)
x({c,e})=1/2 x({a,d})=1/2
s(a): | A | A ‘
o —e : .
0 o | E E i .
¢« o—e
1 2

s(e): O
0 3

Figure 1: (a) A fractional graph colouring x of length ¢(x) = 5/2 for the 5-cycle.

(b) The schedules of the nodes; each node is active for 1 time unit in total, and

no node is active after time 5/2.

blue

red red
(@)

blue green
a
b e
(b)
c d
x({b,e})=1 x({a,c}) =1 x({d}) =1
s(a): - O
o o
s(c):
(©) \ ,LL
s(d):
s . | T
0 1 2 3

Figure 2: (a) A graph colouring with 3 colours. (b) The same graph colouring
interpreted as a fractional graph colouring = of length ¢(z) = 3. (c) The
schedules of the nodes; each node is active for 1 time unit in total, and no
node is active after time 3. The schedule is closely related to the original graph
colouring: first all red nodes are active for 1 time unit, then all blue nodes are
active for 1 time unit, and finally the green node is active for 1 time unit. Note
that here each node is active for only one continuous interval, while in the
optimal schedule (see Figure 1) the activities of the nodes are split in multiple
intervals.

Equivalently, we have the locally checkable conditions

max s(v) < L for each v €V,
s(u)Ns(v) =0 for each {u,v} € E.

See Figures 1b and 2c for illustrations.

3 Model of Distributed Computing

All of our results hold in the LOCAL model [10]. In this model, we assume
that each node v € V has a unique identifier f(v) € {1,2,...,poly(|V])}.
Initially, each node knows its own identifier and its degree. Computation
proceeds in synchronous communication rounds. In every round, each node in
parallel (1) sends a message to each of its neighbours, (2) receives a message
from each of its neighbours, (3) updates its own state. After each round,
a node can stop and announce its local output. All state transitions are
deterministic; there is no source of randomness available. The running time
is the number of communication rounds until all nodes have stopped. The
size of a message is unbounded, and we do not restrict local computation.

To keep the positive result of Theorem 1 as general as possible, we will
not use the assumption that we have globally unique identifiers. We only
assume that we have some labelling f: V' — N such that f(u) # f(v) for
each edge {u,v} € E. Put otherwise, we only assume that we are given some
proper vertex colouring f of G—this is not to be confused with the fractional
graph colouring x that we are going to output.

When we turn our attention to fractional domatic partitions in Section 7,
we will need a slightly stronger assumption; we will return to this issue in
due course.

4 Main Results

Now we are ready to give the main result of this work.

Theorem 1. For any a > 1 there exists a deterministic local algorithm A
such that in any graph G algorithm A finds a fractional graph colouring x
for G in one communication round. Moreover, the length of x is at most
a- (A +1), where A is the mazimum degree of G.

We emphasise that algorithm A does not need to know the number
of nodes in G, the maximum degree of GG, or any other properties of G.
Moreover, the running time is 1, independently of G. However, the theorem
heavily abuses the fact that the size of the output is unbounded—in our
algorithm, the size of a local output may be superexponential in maximum
label, maximum degree, and accuracy 1/(a — 1).

The result is near-tight in the sense that there are graphs that do not
have a fractional graph colouring of length shorter than A + 1. A simple
example is the complete graph on A + 1 nodes: an optimal fractional graph
colouring has length A + 1.

From the perspective of the approximability of minimum-length fractional
graph colouring, we cannot do much better, either; the following lower bound
leaves only a logarithmic gap. Note that the lower bound holds even in the
case of d-regular graphs, and even if the running time of the algorithm is
allowed to depend on d.

Theorem 2. Let F; be the family of d-reqular graphs, and let Ayg be a
deterministic algorithm that finds a fractional graph colouring for any G € Fy
in Ty communication rounds (here Ty is a constant that may dependend on d).
Then for each d there is a graph Ggq € F4 such that G4 admits a fractional
graph colouring of length 2, but Ay outputs a fractional graph colouring of
length (d/logd).

Incidentally, in the case of triangle-free graphs, the gap could be closed—
we could improve the upper bound by borrowing ideas from Shearer’s algo-
rithm [11]. Closing the gap for the case of general graphs is left for future
work.

The rest of this paper is structured as follows. We will prove Theorem 1
in Section 5 and Theorem 2 in Section 6. Finally, Section 7 demonstrates
that our algorithm design techniques can be extended to other problems as
well.

5 Proof of Theorem 1

Informally, our algorithm builds on the following idea: We take an appropriate
randomised algorithm A’ that produces independent sets. The running time
of the randomised algorithm is 1, and it does not require that the random
numbers are independent for nodes that are not adjacent. Then we build a
deterministic schedule that, essentially, goes through a (very large) number
of “random” numbers, and feeds these numbers to A’. Then we simply put
together all “random” independent sets that are produced by A’.

The approach is general, in the sense that we could plug in any randomised
algorithm A’ that satisfies certain technical properties. However, to keep the
presentation readable, we hard-code a specific concrete choice of A’: each
node v picks a random number (these are denoted by w(v,t) in Section 5.5),
and a node joins the independent set if its number is strictly larger than the
numbers picked by its neighbours.

5.1 Preliminaries

Choose € > 0 and 8 > 0 such that
1+ 4 <
1—e ™

Define R(z) = [(z+1)/e]. We use the notation N(v) ={u € V : {u,v} € E}
for the set of neighbours of v € V', and we write deg(v) = |N(v)| for the
degree of v. Let N*(v) = {v} UN(v). The case of an isolated node is trivial;
hence we assume that deg(v) > 1 for every node v.

Q.

5.2 Communication

Recall the definitions of Section 3: we assume that we are given a function f
that is a proper vertex colouring of graph G = (V, E). The communication
part of the algorithm is nearly trivial: each node v sends its label f(v) and
its degree deg(v) to each of its neighbours.

This information turns out to be sufficient to find a fractional graph
colouring. The rest of this section explains the local computations that are
done by each node; they do not involve any communication at all.

5.3 Scheduling Colours

Let g: N x N — N. We say that g is a scheduling colour function if
9(i,7) > 7 for all 7 and j,
g(i,§) # g(i’,5") for all i, i, j, and j' such that i # i

In the algorithm, we will need a scheduling colour function g. For the sake
of concreteness, we give an example of such a function (see Table 1):

g(i,j) =B(i+j—1)+i—1, where B(k)=2/182*],

Other choices of g are equally good for our purposes; the choice of g only

affects the size of the local outputs. From that perspective it is useful that

the values of g are fairly small; with the above definition ¢(7,j) = O(i + j).
We define that the scheduling colour of a node v is

c(v) = g(f(v), R(deg(v))).
We make the following observations:

1. Function ¢: V — N is a proper colouring of G, as f was a proper
colouring of G.

2. We have ¢(v) > R(deg(v)) for each node v.

3. Each node v knows c(u) for all u € N*(v).

2 4 4 8 8 8 8 16 16 16 16 16 16 16
5 5 9 9 9 9 17v 17 17v 17 17 17 17 17
6 10 10 10 10 18 18 18 18 18 18 18 18 34
111 11 11 19 19 19 19 19 19 19 19 35 35
12 12 12 12 20 20 20 20 20 20 20 20 36 36 36
13 13 13 21 21 21 21 21 21 21 21 37 37 37 37
14 14 22 22 22 22 22 22 22 22 38 38 38 38 38
15 23 23 23 23 23 23 23 23 39 39 39 39 39 39
24 24 24 24 24 24 24 24 40 40 40 40 40 40 40
25 25 25 25 25 25 25 41 41 41 41 41 41 41 41

N O W=

Table 1: A scheduling colour function g(i,7), with ¢ = 1,2,... on rows and
j=1,2,... on columns. Each integer occurs in at most one row.

5.4 Coordinates

A coordinate is a sequence p = (p1,pa,...,p¢) where p; € {0,1,...,i— 1}.
Here ¢ is the dimension of the coordinate; we write () for the coordinate of
dimension £ = 0. Note that there are i! coordinates of dimension 1.

Define ; = /(i!) for each i > 0. With each coordinate p of dimension ¢,
we associate a time interval T'(p) of length f; as follows (see Figure 3 for an
illustration):

1. For the 0-dimensional coordinate, set T'() = (0, So].

2. Assume that p = (p1,p2,...,pi—1) is a coordinate of dimension i — 1
with
T((p1,p2s---,pi-1)) = (a,a + Bi—1]

for some a. For each p; =0,1,...,7 — 1, we define
T((p1,p2,--..pi)) = (a+piBi, a+ (pi + 1)5;].

We will use the shorthand notation 7'(p1, po, ..., p;) for T((pl,pg, . ,pz-)).

5.5 First Fragment of the Schedule

Now we are ready to define the schedule within time interval T'(0). To this
end, consider a point in time ¢ € T(()). Time ¢ defines a unique infinite
sequence

p(t) = (p(1,1),p(2,1),...)

such that for any i we have

te T(p(l,t),p(Q,t), .. ,p(i,t)).

Note that p(k,t) ranges over {0, 1,...,k— 1}; see Figure 3 for an illustration.

10

(%))

7(0)

|
7(0,0) | 7(0,1)

700,0,0) | T0,0,1) | Tl(0,0,2) | 70,1,0) | 70,1,1) | 700,1,2)

[
HEEEEEEENEEEREEEEEEEEN
R

0 t p@=(0,0,2,1,0,...) B

Figure 3: Recursive partitioning T'(p) of the interval (0, 5]. Any point in time
t defines a unique infinite sequence p(t) = (p(1,t), p(2,t), ...). If t is picked
uniformly at random, then p(1,t), p(2,t), ... are independent random variables,
and p(i,t) is uniformly distributed over {0,1,...,7 — 1}. In essence, our
partitioning scheme guarantees that we have access to independent, uniformly
distributed, discrete random variables of an arbitrarily large range.

We define the weight of the colour class k € N at time ¢ as follows:

k,t
W, 1) = 20
k
Then we define the weight of a node v at time ¢ as the weight of its scheduling
colour:

w(v,t) = W(c(v),t).

Finally, we define that v is active at time ¢ if it is strictly heavier than any
neighbour, that is

w(v,t) > w(u,t) forall ue N(v). (1)

Note that each node v knows c(u) for each u € N*(v). Hence each node
knows when it is active. Moreover, the schedule can be efficiently computed
and it is of finite length. To see this, let
d(w) = max c(u).

(v) = ma) (u)
Let p be a coordinate of dimension ¢/(v). Now the weights w(u,t) for
u € NT(v) are constant during ¢ € T'(p); hence v is either active or inactive
during the entire time period T'(¢/(v)). Hence it is sufficient to consider a
finite number of time periods.

We will now argue that the schedule for T'() is feasible and each node is
active for a substantial fraction of T'((). To this end, define

1—=¢

M) = Gego) 11

11

Lemma 3. If {u,v} € F, nodes u and v are never active simultaneously
during T(0).

Proof. This is trivial, as we had a strict inequality in (1). O

Lemma 4. Each node v € V is active for at least Sh(v) time units within
time interval T'(0).

Proof. Assume that we choose a point in time ¢ € T'({)) uniformly at random.
Then the random variables p(i,t) € {0,1,...,7 — 1} for i = 1,2,... are
independent and uniformly distributed; it follows that the random variables
W (i, t) are also independent and uniformly distributed. For any ¢ and any
0 <z <1 we have
Pr[W(i,t) < z] > z.

Let v € V, and let C' = {c(u) : uw € N(v)} be the set of scheduling colours
in the neighbourhood of v; note that ¢(v) ¢ C. Let n = |C| and k = ¢(v).
Summing over all possible values of W (k,t), we have

Pr [node v is active at time t]
= Prlw(v,t) > w(u,t) for all u € N(v)]
= Pr[W(k,t) > W(i,t) for all i € C]

= > Pe[Wikt) = ﬂ .Pr[% > W(i,t) for all i € C]

vV
Mz
L
| =
/N
El S
N—
3

|

?g‘
—_

s
7N
]~

<

3
~__

|
| =

§=0 j=1

1 k 1 1 1
> L) p— _Z
= k”+1/0 TR T a1l &

Moreover, n < deg(v) and k > R(deg(v)) > (deg(v) + 1)/e. Therefore node
v is active at time ¢ with probability at least
1 1 1—¢
>

L S Y O
n+1 k = deg(v)+1 (v)

5.6 Complete Schedule

In Section 5.5 we defined the schedule for time interval T'(()). As such, this
does not yet constitute a valid fractional graph colouring—indeed, it cannot
be the case, as T'(()) is far too short.

However, we can now easily construct a valid solution by repeating the
solution that we defined for T'((}). Define

H(v) = {5}3(@)} . ()

12

Now the schedule s(v) of node v is defined as follows: repeat the schedule
defined for T'(0) for H(v) times.

More formally, let ¢ > 0. If t < 3, we have defined in Section 5.5 whether
v is active at time ¢. Otherwise t =i + t/, where t' € T()) and i € N. If
i > H(v), node v is inactive. Otherwise node v is active at time ¢ iff it is
active at time ¢

Lemma 5. Fach node v € V is active for at least 1 time unit within time
interval (0, BH (v)).

Proof. Follows from Lemma 4 and (2). O

Lemma 6. If the mazximum degree of G is A, then the length of the schedule
is at most a(A + 1).

Proof. Let v € V. We have

1 deg(v) +1

HWw) < — =
A+1 143
< < —(A+1) <alA+1).
< sl <a@ry
That is, after time a(A 4 1), node v is no longer active. O

This concludes the proof of Theorem 1—we have designed an algorithm
that only needs one communication round, yet it yields a fractional graph
colouring of length at most (A + 1).

6 Proof of Theorem 2

The theorem holds even if f assigns unique identifier from the set {1,2,...,n},
where n is the number of nodes in G3. The proof uses the following lemma.

Lemma 7 (Bollobéas [1]). For any given integers d > 3 and g > 3, there
exists a d-reqular graph G with n nodes and girth at least g such that any
independent set has size at most O(nlog(d)/d).

Let F be the family of d-regular graphs. Let A be a deterministic
algorithm, with running time 7', that finds a fractional graph colouring
for any graph in F. Now let G = (V, E) be a d-regular graph with girth
g > 2T + 1 obtained from Lemma 7. Each independent set I of G has size at
most ¢|V|log(d)/d, for some constant c. Thus any fractional graph colouring
of G has length at least d/(clog d). Choose a bijection f: V — {1,2,...,|V]}.

If we run algorithm A on G with identifiers given by f, the output is
a fractional graph colouring = of length at least d/(clogd). In particular
there must be a node v* € V' that is active at time ¢t > d/(clogd). Moreover,

13

the radius-T" neighbourhood of v* is a d-regular tree, as G was a high-girth
graph.

Now let G’ = (V', E’) be the bipartite double cover of G. That is, for
each node v of G we have two nodes v; and v in G/, and for each edge {u, v}
of G we have two edges {u1,v2} and {ug,v1} in G’. There is a covering map
¢: V' — V that maps v1 — v and vg — v; let {v},v3} = ¢~ 1(v*). Graph G’
has the following properties.

1. Graph G’ is bipartite; therefore there is a fractional graph colouring z’
in G' with £(z") = 2.

2. Graph G’ is d-regular; that is, G’ € F.
3. The radius-T neighbourhood of v} € V' is a d-regular tree.
4. The number of nodes is [V'| = 2|V|.

To prove the theorem, it is sufficient to show that we can choose the
identifiers for G’ € F so that A outputs a fractional graph colouring of
length (d/logd). To this end, observe that we can choose a bijection
1V = {1,2,...,]V'|} so that the radius-T" neighbourhood of v} in (G’, f’)
is isomorphic to the radius-T" neighbourhood of v* in (G, f). Now apply .4
to (G', f"). By construction, the local output of v} in (G’, f’) equals the local
output of v* in (G, f); in particular, the length of the schedule z’ constructed
by A’ is Q(d/logd).

7 Fractional Domatic Partitions

So far we have discussed the fractional graph colouring problem. Now we
will turn our attention to another scheduling problem: fractional domatic
partitions. While the fractional graph colouring problem was an example
of a minimisation problem, the fractional domatic partition problem is an
example of a mazimisation problem: we want to make the schedule as long
as possible.

7.1 Introduction

Informally, in the fractional domatic partition problem, the task is to coordi-
nate the activities of the nodes so that we maintain a full coverage: if a node
is inactive, at least one of its neighbours has to be active. Each node can be
active for at most one time unit in total, and the objective is to maximise
the total length of the schedule.

One example of an application is lifetime maximisation in a battery-
powered sensor network. Our goal is to maximise the lifetime of the system.
During the lifetime, all locations need to be monitored—if we turn off a

14

sensor, at least one adjacent sensor has to be active. Each sensor has a
limited battery which provides enough power for one time unit of activity.
7.2 Definitions

Recall that we use the notation N*(v) for the set that consists of node v
and its neighbours. Let

D={DCV:DNN"(v)#0 for each v € V}

consist of all dominating sets of G. A fractional domatic partition associates
a value x(D) > 0 to each D € D such that

Z z(D) <1 forall veV.
DeD:veD

The length of a partition x is

DeD

and an optimal fractional domatic partition maximises ¢(x).
As before, in a distributed setting, the schedule of a node v € V is a
union of disjoint intervals

S(U) = (al,bl] U (ag,bg] J---u (ak,bk].

Here 0 < a1 < b1 < as < by < --+ < ap < b are rational numbers. We
require that the total length of the time intervals is at most 1, that is,

Zz(bl — ai) S 1.

A node v is active at time t if ¢ € s(v); let A(t,s) ={v eV :tes(v)}
consist of the nodes that are active at time ¢. A schedule s defines a fractional
domatic partition x of length at least L if

A(t,s) € D for all t < L.
Equivalently, we have the locally checkable condition

(0,L] C U s(u) for each veV.
uENT(v)

7.3 Model

It turns out that we cannot prove a result analogous to Theorem 1 for
fractional domatic partitions without slightly strengthening the assumptions.
In Section 3 we assumed that f is a proper colouring of G, and this turned
out to enough to solve the fractional graph colouring problem.

15

However, this is no longer the case with fractional domatic partitions.
To see this, consider, for example, the complete bipartite graph G' = K, ,,
which admits a fractional domatic partition of length at least n. However,
G can be coloured with two colours, and given G and a 2-colouring f of
(G, a deterministic distributed algorithm cannot find a fractional domatic
partition of length larger than 2; in essence, we cannot break the symmetry
between the nodes of the same colour class.

Therefore we will assume in this section that f is a proper distance-2
colouring of G. That is, if u # v are adjacent nodes, or they share a common
neighbour, then f(u) # f(v). Put otherwise, for any node v € V' we have

{f(u) s uw€ NT(v)}| = deg(v) + 1. (3)

We are primarily interested in the case of unique identifiers, and in that case
(3) is trivially satisfied.

We will also assume, without loss of generality, that there are no isolated
nodes in G. Indeed, if there is an isolated node, the length of any fractional
domatic partition is at most 1, and the optimal schedule of an isolated node
is trivial to find.

7.4 Result

The main result of this section is summarised in the following theorem.

Theorem 8. There exists a deterministic local algorithm that finds a frac-
tional domatic partition x for any graph G in one communication round.
Moreover, the length of x is at least

0+1
3ln(d+1)’

where § > 1 is the minimum degree of graph G.

Note that any fractional domatic partition has length at most § + 1.
Therefore our algorithm is guaranteed to find an O(log(d+ 1))-approximation
of an optimal fractional domatic partition. Again, we have only a logarithmic
gap between the upper and lower bounds.

The constant 3 in the statement of Theorem 8 is in no way magical; we
just picked a nice round number that makes the proof easy to follow and
avoids a tedious analysis of certain corner-cases. A more careful analysis
would yield a slightly tighter value.

7.5 Overview

The rest of this section presents the proof of Theorem 8. The general approach
is familiar from Section 5: We have a randomised algorithm A’ that finds a

16

dominating set in one communication round. Then a deterministic algorithm
feeds appropriate “random” numbers to A’ to construct a fractional domatic
partition—each point of time corresponds to one possible assignment of
random numbers.

In Section 5, the randomised algorithm was nearly trivial: at time ¢, each
node v picks a random weight w(v,t), and a node joins the independent set
if it is strictly heavier than any of its neighbours.

In the case of fractional domatic partitions, the design of the randomised
algorithm requires more care. Therefore we will first design and analyse the
randomised algorithm and only after that explain how to use it as a black
box to construct an appropriate deterministic schedule.

7.6 Preliminaries

The following expressions appear so frequently that we will define a shorthand

notation:
x+1 _ In(z+1)

Az) = In(z + 1)’ Alz) = r+1
With this notation, our algorithm produces a schedule of length at least
A(9)/3. Note that A(z) is monotonically increasing and A(z) is monotonically
decreasing for x > 2.
We fix the constants ¢ = 0.9 and § = 1/60. We have chosen the values
of € and 3 so that they satisfy

31-28)=24¢=29> X1).

Informally, the constant (1) is related to the trivial case of § = 1, while the
constant 2 + ¢ = 2.9 will appear in the analysis of the non-trivial case. This
leaves us some slack in comparison with the constant 3 that appears in the
statement of Theorem 8.

Let g: N x N — N be a scheduling colour function (recall Section 5.3).
In our algorithm, we will need the following values that are derived from the
degrees of the nodes:

d(v) = max {2, deg(v) },

= min d(v),
)= i, 1)

y(v,u) = mln{dN(v),ci(u)}

We also define two functions that discretise A\ and A:

S(x) = [Mx)/e],
Qx, k) = [kA(z)]/k.

Now the scheduling colour of a node v is

c(v) = g(f(v), S(d(v)))-

17

In our randomised algorithm, the probability that a node decides to act is
related to the following expressions:

Note that we have ¢(v) € C(v) and ¢q(v,u) € C(u), where

Cw)={i/e(v):i=0,1,...,¢c(v) — 1}.

7.7 Randomised Algorithm

Informally, we would like to apply a straightforward randomised algorithm
that proceeds as follows. Here we will use the words “join”, “dominate”,
and “cover” to describe the internal state of a node, the idea being that the
nodes in state “join” together with the nodes in state “cover” will form a
dominating set:

1. Node v joins with probability ¢(v).

2. Node v dominates a neighbour u € N(v) whenever it joins.

3. Node v covers if it does not join and none of its neighbours dominates it.
4. Node v is active if it either joins or covers.

Unfortunately, a direct implementation of this scheme is not possible in
one communication round. To see this, consider a path (v1,vs,v3) of length
two. Now the decision of v3 (does it need to cover) depends on ¢(v3), which
depends on deg(vy).

Therefore we will slightly adjust the algorithm:

1. Node v picks a weight w(v) € C(v) uniformly at random. We will
assume that for each v € V, the random variables w(u) for u € N (v)
are mutually independent.

2. Node v joins if w(v) < q(v).

3. Node v dominates a neighbour u € N(v) if w(v) < q(u,v).

4. Node v covers if it does not join and none of its neighbours dominates it.
5. Node v is active if it either joins or covers.

It turns out that this scheme has all the properties that we need. The key
observations are summarised in the following lemmas.

Lemma 9. The decision of a node v € V' only depends on the following
values: deg(u), f(u), and w(u) for u € NT(v).

Proof. The data flows are illustrated in Figure 4. O

18

v 18 active

| v covers |

u dommates %

uo

Figure 4: The decision of whether v is active only depends on the data available
at v and at its neighbours u € N(v). Note that v will not know whether u
joins; it will only know whether v dominates v.

Lemma 10. The set of active nodes forms a dominating set.

Proof. Let v € V. Assume that v is not active; we need to prove that at
least one node u € N(v) is active.

As v is not active, there is a node u € N(v) that dominates v. By
definition, we have w(u) < g(v,u). To prove that u is active, it is sufficient
to show that w(u) < q(v,u) < q(u).

To this end, first observe that

2 <v(u) < v(v,u).

Therefore

A(y(u) > A(y(v,u)),
which implies

q(u)e(u) = [e(w)A(y(w)] = [e(w)A(v(v,u))] = q(v, u)c(uw).

Hence w(u) < q(v,u) < q(u); node u is active. O
Lemma 11. A node v joins with probability at most (1 + &)A((v)).
Proof. We have

Q(z, k) < A(z) + 1/k,

c(v) = S(d(v)) > A(d(v))/e > A(v(v))/e,

which implies

Prfv joins] = g(v) = Q(v(v), e(v)) < (1 +)A(y(v)).

19

The first equality follows from the fact that both w(v) and ¢(v) are multiples
of 1/c(v). O

Lemma 12. A node v with deg(v) > 2 covers with probability at most
1/(y(v) +1).

Proof. The probability that v does not join is 1 — g(v). The probability that
a neighbour u € N(v) does not dominate v is 1 — g(v, u); moreover, all of
these events are mutually independent. Therefore the probability that v
covers is

Prv covers] = (1 — ¢(v)) H (1 —q(v,u)).

ueN (v)

Now we have

Hence

Pr[v covers] < (1 — A(v(v)))V(v)Jr =

(1n:c>n
1+— | <z
n

with 271 = n = y(v) + 1 to derive

We apply the inequality

1
Pr[v covers] < ———. O
7(v) +1

Lemma 13. A4 node v is active with probability at most (2 + £)A(9).
Proof. 1f § = 1, the claim is vacuous:
(2 +€)A(1) > 1.005.

Otherwise 6 > 2, which implies deg(v) > v(v) > § > 2. We have from
Lemmas 11 and 12

. . 1
Pr[v is active] < (1 +¢)A(v(v)) + EFEE
As In(vy(v) + 1) > 1, we have
Prlv is active] < (2 +¢)A(v(v)) < (24 &)A(9). O

20

7.8 Schedule

Now we will use the randomised algorithm of Section 7.7 as a black box to
design a deterministic algorithm for fractional domatic partitions.

We borrow the definitions of coordinates p and time intervals T(-) from
Section 5.4. Following Section 5.5, a point of time ¢ € T'(()) defines a unique
infinite sequence

p(t) = (p(l,t),p(Q,t), s)

We use this sequence to define the weight of a node v at time ¢ as follows:

p(k, 1)

If we pick a point of time ¢ € T'(()) uniformly at random, then from
the perspective of each node v, the weights w(u,t) for all uw € NT(v) are
independent random variables; moreover, each w(v,t) is picked uniformly at
random from C(v).

Now we simply simulate the randomised algorithm of Section 7.7; for
each node v, we assume that the random weight w(v) is equal to w(v,t).
Lemma 9 implies that each node v can determine its own schedule after
one communication round. Lemma 10 implies that at any point of time
t € T(0), the set of active nodes forms a dominating set, and Lemma 13
implies that during the time interval T'()) = (0, 8], each node is active for at
most (2 4 ¢)A(J) time units.

So far we have defined the schedule of each node for the time interval
T(0) = (0, B]. To construct a fractional domatic partition x, we simply repeat
the schedule that we defined for T'(()), as long as possible. Conceptually, each
node first constructs an infinitely long schedule, and then takes the longest
prefix during which it is active for at most 1 time unit in total. Different
nodes may stop at different points; however, none of the nodes stop during

the first N
v 0|5 e
B2+e)] ~ B2+e)
time intervals of length 5. Now observe that
A(9) 1
2+¢ ~ 2

for any 6 > 1. Therefore the total length of the fractional domatic partition
x is at least

A(9) (1=28)A(d) A(9)
Nz e P> ~ 3

This completes the proof of Theorem 8.

21

8 Discussion

We have shown that the fractional graph colouring problem and the fractional
domatic partition problem can be solved very quickly in a distributed setting—
if and only if we do not impose restrictions on the size of the local outputs.

More generally, we can approach scheduling problems from the following
perspective. We have three parameters:

1. T, the running time of the distributed algorithm,
2. ¢, the length of the schedule (objective function),

3. K, the maximum number of disjoint time intervals in the schedule of a
node.

Now for the sake of concreteness, let us focus on the case of fractional graph
colouring on bounded-degree graphs, i.e., A = O(1). Our work shows that
we can keep any two of T', £, and constant, but not all three of them:

1. T=0(1) and k = O(1): trivial, set s(v) = (f(v), f(v) + 1].

= 0O(1) and ¢ = O(1): easy, find an O(1)-colouring ¢ and set
() = (c(v), e(v) + 1].

3. T'=0(1) and £ = O(1): possible, using Theorem 1.

4. T = 0(), £ = O(1), and k = O(1): impossible. Now we have an
LCL-problem. It is easy to see that the problem cannot be solved with
an order-invariant local algorithm (consider a cycle), and hence the
result by Naor and Stockmeyer [9] implies that the problem cannot be
solved with any local algorithm.

Acknowledgements

This work is an extended and revised version of a preliminary conference
report [4]. We thank the anonymous reviewers for their helpful feedback
and comments. This work has been partially supported by the European
Union under contract number ICT-2009-258885 (SPITFIRE), the Academy
of Finland, Grants 132380 and 252018, the Research Funds of the University
of Helsinki, and the Finnish Cultural Foundation.

References

[1] Béla Bollobés. The independence ratio of regular graphs. Proceedings
of the American Mathematical Society, 83(2):433-436, 1981.

22

2]

Richard Cole and Uzi Vishkin. Deterministic coin tossing with applica-
tions to optimal parallel list ranking. Information and Control, 7T0(1):
32-53, 1986. doi:10.1016/50019-9958(86)80023-7.

Mika G66s, Juho Hirvonen, and Jukka Suomela. Lower bounds for local
approximation. In Proc. 81st Annual ACM Symposium on Principles
of Distributed Computing (PODC 2012), pages 175-184. ACM Press,
2012. doi:10.1145/2332432.2332465. arXiv:1201.6675.

Henning Hasemann, Juho Hirvonen, Joel Rybicki, and Jukka Suomela.
Deterministic local algorithms, unique identifiers, and fractional graph
colouring. In Proc. 19th International Colloguium on Structural In-
formation and Communication Complezity (SIROCCO 2012), volume
7355 of Lecture Notes in Computer Science, pages 48-60. Springer, 2012.
doi:10.1007/978-3-642-31104-8_5.

Juho Hirvonen and Jukka Suomela. Distributed maximal matching:
greedy is optimal. In Proc. 31st Annual ACM Symposium on Principles
of Distributed Computing (PODC 2012), pages 165-174. ACM Press,
2012. doi:10.1145/2332432.2332464. arXiv:1110.0367.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What
cannot be computed locally! In Proc. 23rd Annual ACM Symposium
on Principles of Distributed Computing (PODC 2004), pages 300-309.
ACM Press, 2004. doi:10.1145/1011767.1011811.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. The price
of being near-sighted. In Proc. 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2006), pages 980-989. ACM Press, 2006.
doi:10.1145/1109557.1109666.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local
computation: lower and upper bounds, 2010. arXiv:1011.5470.

Moni Naor and Larry Stockmeyer. What can be computed locally?
SIAM Journal on Computing, 24(6):1259-1277, 1995. doi:10.1137/
50097539793254571.

David Peleg. Distributed Computing: A Locality-Sensitive Approach.
SIAM Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics, Philadelphia, 2000.

James B. Shearer. A note on the independence number of triangle-
free graphs. Discrete Mathematics, 46(1):83-87, 1983. doi:10.1016/
0012-365X(83)90273-X.

Jukka Suomela. Survey of local algorithms. ACM Computing Surveys,
45(2):24:1-40, 2013. doi:10.1145/2431211.2431223. http://www.cs.helsinki.fi/
local-survey/.

23

http://dx.doi.org/10.1016/S0019-9958(86)80023-7
http://dx.doi.org/10.1145/2332432.2332465
http://arxiv.org/abs/1201.6675
http://dx.doi.org/10.1007/978-3-642-31104-8_5
http://dx.doi.org/10.1145/2332432.2332464
http://arxiv.org/abs/1110.0367
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1109557.1109666
http://arxiv.org/abs/1011.5470
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1016/0012-365X(83)90273-X
http://dx.doi.org/10.1016/0012-365X(83)90273-X
http://dx.doi.org/10.1145/2431211.2431223
http://www.cs.helsinki.fi/local-survey/
http://www.cs.helsinki.fi/local-survey/

	Introduction
	Local Algorithms and Numerical Identifiers
	Contributions
	Comparison with Other Graph Problems

	Fractional Graph Colouring
	Definitions
	Schedules of Nodes

	Model of Distributed Computing
	Main Results
	Proof of Theorem 1
	Preliminaries
	Communication
	Scheduling Colours
	Coordinates
	First Fragment of the Schedule
	Complete Schedule

	Proof of Theorem 2
	Fractional Domatic Partitions
	Introduction
	Definitions
	Model
	Result
	Overview
	Preliminaries
	Randomised Algorithm
	Schedule

	Discussion

