Jukka Suomela Aalto University

What really happened in Helsinki and can you mend it?

Jukka Suomela Aalto University

Two memories:

What really happened in Helsinki?

Can you mend it? [SIROCCO 2022

What really happened in Helsinki? SIROCCO 2016

SIROCCO 2016 Helsinki, Finland

Local organizers:

Jukka Suomela Christopher Purcell Juho Hirvonen Tuomo Lempiäinen Joel Rybicki

Around 2015, we started to study a seemingly simple question:

Can you 4-color a grid locally?

Around 2015, we started to study a seemingly simple question:

Can you 4-color a grid locally?

- 2-coloring: trivially hard
- 3-coloring: not-so-trivially hard
- 4-coloring: ???
- 5-coloring: easy (Δ+1 colors)

We tried the usual strategy: sit in front of a whiteboard and think hard...

Zero progress

We tried an usual strategy: write lots of C and Python code, use SAT solvers...

if(tab2[i][k][k2]!=tab1[j]

if(tab2[j2][k][k2]!=tab1

/* found, identify upper part

for(j2=0;j2<nbr2;j2++) {</pre>

for(k2=0;k2<c;k2++)</pre>

for(k=0;k<r;k++)</pre>

last = 1;

for(i=0.i<c.i++)

x[nbr2] = r;

y[nbr2++] = j;

/* elements of x[],y[] -> tab[][] */

Computer search found a local algorithm for 4-coloring grids!

tiles_tall = read_tiles(d, r+1, c)

tile map[v1].right.add(v2)

tile_map[y2].left.add(y1)

y1 = cut.cut(corners, t left(x))

 $y_2 = cut.cut(corners, t_right(x))$

for x in tiles wide:

for x in tiles_tall:

<pre>/* 2: initialize table auxtab[][] */ for(j=0;j<=r+2*p;j++) for(k=0;k<c+2*p;k++) "holes"="" *="" 3:="" aindex="0;" auxtab[j][k]="-1;" becase="" belophr="0;</pre" for="" in="" independent="" look="" s="" v=""></c+2*p;k++)></pre>	202 203 204 205 206 207	<pre>for(i=0;i<nbr2;i++) %d="" %d\n",4*nbr2,4*ec="" *="" +="ant[i];" a="" cnf="" color="" each="" ecount="" for(i="0;i<nbr2;i++)" have="" instance="" must="" pre="" print="" printf("p="" sat="" vertex="" {<=""></nbr2;i++)></pre>	93 94 95 96 97 98	<pre>11 = 0 for i,t in enumerate(tiles): s.s.add_clause([s.var((t,x)) for x in rang for x in range(cols): for y in range(x+1, cols): s.s.add_clause([-s.var((t,x)), -s.))</pre>	
<pre>notenpr = 0; for(j=0;j<=r;j++) for(k=0;k<c;k++) if(covtab[j+p][k+p]==0) { /* hole hant[holenbr] = 0;</c;k++) </pre>	207 208 209 210	<pre>for(1=0;1<nbr2;1++) ",4*i+j+1);="" for(j="0;j<4;j++)" pre="" printf("%d="" printf("0\n");<="" {=""></nbr2;1++)></pre>	99 100 101	<pre>if t[r/2][c/2] == '1': s.s.add_clause([s.var((t,0))]) for t in tiles:</pre>	

Can you 4-color a grid locally?

- 2-coloring: trivially hard
- 3-coloring: not-so-trivially hard
- 4-coloring: yes, but it's complicated
- 5-coloring: easy (Δ+1 colors)

Brandt, Hirvonen, Korhonen, Lempiäinen, Östergård, Purcell, Rybicki, S., Uznański: "LCL problems on grids"

Much later...

We realized it doesn't need to be complicated!

You just need the right perspective: **local mending**

Local mending for 4-colorings

Simple special case of a more general result by Chechik and Mukhtar (SODA 2019) **Local mending:** generalization of greedily completable problems

Mending radius: how far do you need to undo a partial solution to "patch a hole"?

Balliu, Hirvonen, Melnyk, Olivetti, Rybicki, S.: "Local mending"

An example: LCLs (locally checkable labelings) in trees

Jukka Suomela Aalto University

Two memories:

What really happened in Helsinki?

Can you mend it? [SIROCCO 2022