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Graph colouring
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Task: Colour reduction
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Model of computing

Synchronous rounds. Each node
1. sends messages
2. recelves messages

3. updates local state



Local views
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Local views

1 round




Local views
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2 rounds



Local views

r rounds

An algorithm is a map
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Time complexity

C(n,3)

'S the exact number of rounds it takes to
3-colour any n-coloured directed cycle



Prior work

Complexity of 3-colouring

1
§log*n— 1 <C(n,3)

Linial (1992)
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Prior work

Complexity of 3-colouring

1
C(n,3) < §log*n+3

Cole & Vishkin (1987)
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Prior work
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Prior work

Complexity of 3-colouring

1
C(n,3) = 5 log"n 4+ O(1)

In “practice”, the additive term dominates:




Our result

For infinitely many values of n,
3-colouring requires exactly

1

5 log“n  rounds.




The approach

Lower bound: Tighten Linial's bound
using new computational
techniques

Upper bound: A careful analysis of Naor—
Stockmeyer (1995) colour
reduction



The lower bound

Step 1. Bound the complexity of
finding a 16-colouring

Step 2. Show
algori
16-CcO

that a fast 3-colouring
hm implies a fast

ouring algorithm



The lower bound

Step 1. Bound the complexity of
finding a 16-colouring
“Dependence on n”

Step 2. Show that a fast 3-colouring
algorithm implies a tast

16-colouring algorithm
“The additive O(1) term”




Two-sided = one-sided

Two-sided view
C(n,3)

One-sided view
T(n,3)

2 rounds

C(n,3)=|Tn,3)/2




The speed-up lemma

c-colouring in r rounds



The speed-up lemma

(2° — 2) co\ourmg inr—1 rounds



New technique:
Successor Graphs

Fix any (e.g. optimal) algorithm



New technique:
Successor Graphs

Fix any (e.g. optimal) algorithm
and apply the speed-up lemma to get
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New technique:
Successor Graphs

Fix any (e.g. optimal) algorithm
and apply the speed-up lemma to get
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New technique:
Successor Graphs

Fix any (e.g. optimal) algorithm
and apply the speed-up lemma to get

Aqg A, L A,
#colours 3 2% _ 9 S > n

#rounds ¢ t—1 c 0



Successor relation

Consider A, that outputs colours from

C.={0@:---0O}

Colour © is a successor of colour @

if Ay outputs O—O—O—@—@
U




Successor graph

Nodes: C;, = {@ @ --- O

Edges: the successor relation



Starting from any
algorithm we get

Algorithm: Ay A, --- A,

Successor

graph: &9 &1 0 &



Colourability lemma

St IS c-colourable

—

there Is a c-colouring algorithm
running In -k rounds




A finite super graph

For all k, there Is a finite graph
that contains the successor graph of
any algorithm as a subgraph.



Proving lower bounds

Super graph + colorability lemma:

Chromatic number an upper
bound for all successor graphs!

Finite super graph:
Easy to use a computer search
for small enough super graphs!




The key result

For any f-time 3-colouring algorithm,
the successor graph &5 is 16-colourable



omplement of S,




The key result

For any f-time 3-colouring algorithm,
the successor graph &5 is 16-colourable

By colourability lemma, there exists a
16-colouring algorithm running in t -2
rounds



The lower bound

Step 1. Iterated speed-up lemma:
16-colouring takes log™ n — 2

rounds

Step 2. Successor graph bound:
3-colouring takes log™ n

rounds



Two-sided = one-sided

Two-sided view
C'(n,3)

One-sided view
T(n,3)

2 rounds

C(n,3)=|Tn,3)/2




Conclusions

For infinitely many values

1
C'(n,3) = 5 log™ n.

Use successor graphs and
computers for lower bound proofs!



Conclusions

For infinitely many values

1
C'(n,3) = 5 log™ n.

Use successor graphs and
computers for lower bound proofs!

Thanks!



