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Our Result
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α(∆ + 1)

There is a deterministic distributed algorithm that runs in 1
communication round that, for any α > 1, finds a fractional graph
colouring of length at most α(∆ + 1)
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Model of Computation: LOCAL

I Communication graph
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Model of Computation: LOCAL

T = 0

I Synchronous communication
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Model of Computation: LOCAL

T = 1

I Synchronous communication
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Model of Computation: LOCAL

T = 2

I In T rounds gather radius-T neighbourhood
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Model of Computation: LOCAL

I Constant-time algorithms
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Model of Computation: LOCAL

I Each node maps neighbourhood to output
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Fractional Graph Colouring



Fractional Graph Colouring
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Fractional Graph Colouring
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Fractional Graph Colouring
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Our Result Again

0 0.5 1 1.5 2 2.5 3 3.5

α(∆ + 1)

There is a deterministic distributed algorithm that runs in 1
communication round that, for any α > 1, finds a fractional graph
colouring of length at most α(∆ + 1)
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Lower Bound
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Finding a Fractional Graph Colouring



Finding a Fractional Graph Colouring

I Impossible to break symmetry in an anonymous cycle
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Finding a Fractional Graph Colouring

I Nodes must produce an empty schedule
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Finding a Fractional Graph Colouring
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I Standard assumption: numeric identifiers
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Finding a Fractional Graph Colouring

44 31 9 17 91 6 61 8 7 88 16 75 3

5

12344376

65

39 66 87 95

I Standard assumption: numeric identifiers

I FGC is the first example where numeric identifiers give a
constant-time algorithm
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Why Numeric Identifiers Do Not Help?



Numeric Identifiers Not Needed

44 31 9 17 91 6 61 8 7 88 16 75 3

5

12344376

65

39 66 87 95

I Naor & Stockmeyer (1995) studied when numeric identifiers
are necessary

I LCL-problems
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LCL-problems

I Maximal Independent Set
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LCL-problems

I Vertex Cover
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LCL-problems

I Maximal Matching
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LCL-problems

I Fractional Graph Colouring
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Numeric Identifiers Not Needed

44 31 9 17 91 6 61 8 7 88 16 75 3

5

12344376

65

39 66 87 95

I Naor & Stockmeyer (1995): In LCL-problems numeric
identifiers not necessary

I Technicality: applies if output bounded
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No FGC with Comparisons

I Identifiers arranged in an ascending order
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No FGC with Comparisons

I Some nodes must produce an empty schedule
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Why Numeric Identifiers Help with FGC?



Non-constant output

0 1 2 3

I In FGC natural encoding of solution not bounded in size
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Non-constant output
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Non-constant output

0 1 2 3

0 1 2 3
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The Algorithm



Algorithm Design Idea

derandomisationrandomised deterministic
algorithm algorithm

random bits

independent set

indentifiers

FGC

I Use a randomised independent set algorithm as a black box

I Iterate over possible random bit strings for the black box to
get a deterministic algorithm
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A Randomised Algorithm

1011

1010

0011

0101

0101

0100

1001
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0011

0101

0110

I A randomised algorithm
for the independent set
problem

I Each node gets a random
bit string
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A Randomised Algorithm

1011

1010

0011

0101

0101

0100

1001

0010

1110

0011

0110

0101

I Local maxima join the
independent set

I Guarantee: each node v
joins with probability at
least

1 − ε

deg(v) + 1
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Deterministic Algorithm (Oversimplified)

0
1

time

identifiers

1
2
3
4
5
6
7

I Simulate the random algorithm by iterating over all
combinations of inputs

I Encoding of the output grows with size of the network

I By Naor & Stockmeyer, dependence on n is necessary
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Deterministic Algorithm (Oversimplified)
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Tradeoffs



Granularity Tradeoff

running time

length O(1)

O(1)

granularity unbounded

I Any two can be kept
constant in bounded
degree graphs

I Constant running time
and length of schedule

I This work
I granularity of schedule

grows with size of the
network
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Running Time Tradeoff

running time

length

O(1)

O(1)

granularity

log∗n

I Any two can be kept
constant in bounded
degree graphs

I Constant length of
schedule and granularity

I find a
(∆ + 1)-colouring in
O(log∗ n) rounds
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Length of Schedule Tradeoff

running time

length

O(1)

O(1)

granularity

poly(n)

I Any two can be kept
constant in bounded
degree graphs

I Constant running time
and granularity

I node of colour c(v) is
active during time
interval(

c(v) − 1, c(v)
]

I length of schedule
poly(n)
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Time-Length-Granularity Tradeoff—Summary

granularity

running time

length

O(1)

O(1)

O(1)

I Impossible to have
constant running time,
length and granularity at
the same time

I Naor & Stockmeyer
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Our Result
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α(∆ + 1)

There is a deterministic distributed algorithm that runs in 1
communication round that, for any α > 1, finds a fractional graph
colouring of length at most α(∆ + 1)
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